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Abstract

Our goal is to segment a video sequence into moving ob-

jects and the world scene. In recent work, spectral embed-

ding of point trajectories based on 2D motion cues accumu-

lated from their lifespans, has shown to outperform factor-

ization and per frame segmentation methods for video seg-

mentation. The scale and kinematic nature of the moving

objects and the background scene determine how close or

far apart trajectories are placed in the spectral embedding.

Such density variations may confuse clustering algorithms,

causing over-fragmentation of object interiors. Therefore,

instead of clustering in the spectral embedding, we propose

detecting discontinuities of embedding density between spa-

tially neighboring trajectories. Detected discontinuities are

strong indicators of object boundaries and thus valuable for

video segmentation. We propose a novel embedding dis-

cretization process that recovers from over-fragmentations

by merging clusters according to discontinuity evidence

along inter-cluster boundaries. For segmenting articulated

objects, we combine motion grouping cues with a center-

surround saliency operation, resulting in “context-aware”,

spatially coherent, saliency maps. Figure-ground segmen-

tation obtained from saliency thresholding, provides object

connectedness constraints that alter motion based trajec-

tory affinities, by keeping articulated parts together and

separating disconnected in time objects. Finally, we intro-

duce Gabriel graphs as effective per frame superpixel maps

for converting trajectory clustering to dense image segmen-

tation. Gabriel edges bridge large contour gaps via geo-

metric reasoning without over-segmenting coherent image

regions. We present experimental results of our method that

outperform the state-of-the-art in challenging motion seg-

mentation datasets.

1. Introduction

The goal of this work is to segment a video sequence

into moving objects and the world scene. Motion, as the

gestaltic principle of “common fate” suggests, is a strong

perceptual cue for video segmentation [24]. In order to
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Figure 1. Segmentation by tracing discontinuities. (a)A trajectory

spectral embedding has varying density, depending on the scale

and kinematic nature of the objects captured by the embedded

trajectories. (b) Density discontinuities (shown in red) between

spatially neighboring trajectories are strong indications of object

boundaries. c) Video segmentation by discontinuity thresholding.

take advantage of motion information available in multi-

ple frames, many recent video segmentation approaches

use point trajectories. Multi-body factorization methods

[5, 25, 15] cluster trajectories by reasoning about rela-

tionships between the corresponding trajectory motion sub-

spaces. These works extend the low rank constraint on the

trajectory matrix proposed in [22], under assumptions about

3D object deformation and camera projection. In contrast,

works of [4, 7, 3, 8] cluster trajectories directly from sim-

ilarities of their 2D motion profiles, without modelling the

camera projection process. In recent work, trajectory spec-

tral clustering computed from 2D motion information has

shown to outperform factorization methods and per frame

segmentation approaches [4]. The spectral embedding is

obtained by the top K eigenvectors of a normalized affinity

matrix, where pairwise affinities reflect motion similarity

between the corresponding point trajectories.

Determining the number of objects K automatically and

computing a corresponding clustering (discretization) of the

trajectory embedding has turned out to be a nuisance even

under rigid body motions [4]. In this paper, we show

that such difficulties stem from the scale variation of mov-

ing objects, that cause different corresponding densities

in the embedding space. Articulated motion poses addi-

tional challenges to motion based trajectory clustering; ar-

ticulated body parts may move distinctly while separate

agents may move similarly, resulting in a difficult trade-off

of body over-fragmentation versus cross-object leakage in
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±j = max`Ŵi`

Ŵij

(a)Motion a±nities A (b)Embedding a±nities Ŵ
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Figure 2. Embedding discontinuity detector. (a) Motion affinities A “break” inside the large car. (b) The corresponding embedding affinities

Ŵij are smoother but vary according to the object scale and motion: we have high affinities Ŵij (red) on the small car interior and lower

on the background or the larger car. (d) Our discontinuity detector adapts locally to the embedding density and outputs high discontinuity

values across all object boundaries and low at object interiors.

video segmentation.

To deal with the limitations above, we propose an em-

bedding discontinuity detector for localizing object bound-

aries in trajectory spectral embeddings. Instead of cluster-

ing, we detect sudden drops or peaks (discontinuities) of the

embedding density, where density quantifies how close or

far apart trajectories are placed in the embedding. We show

that embedding discontinuities are strong indicators of ob-

ject boundaries (see Figure 1). Detected discontinuities are

incorporated in a novel embedding discretization process,

that recovers from over-fragmentations by merging across

inter-cluster boundaries that have weak discontinuity sup-

port. The proposed discretization is robust to the number of

eigenvectors K, and has controlled over-segmentation error

in contrast to previous approaches.

To deal with the challenges of articulated motion, we

complement motion cues with topological information. Re-

cent work has shown that video figure-ground segmentation

can provide semantic object connectedness constraints on

point trajectories, for distinguishing object articulation ver-

sus object separation in video segmentation [8]. Our contri-

bution lies in combining grouping information of a trajec-

tory embedding with a standard center-surround filter for

spatially and temporally coherent video saliency. We call

this “context-aware” saliency. The center-surround context-

aware filter essentially needs to label each (trajectory) group

as salient or not salient, rather than discovering the precise

extent of salient foreground, thus bypassing the hard scale

selection problem [9]. Then, object connectedness con-

straints from thresholded saliency maps modify the motion

based trajectory affinities by canceling attraction between

trajectories that violate object connectedness.

Finally, we introduce constrained Gabriel graphs as ef-

fective per frame superpixel maps for converting trajectory

clustering to dense pixel-wise segmentation. Gabriel graph

construction converts a contour map to a set of closed re-

gions by “bridging” contour gaps via geometric reasoning.

In this way, region leakage is prevented without threshold-

ing the image boundary map too low. Furthermore, result-

ing superpixels adapt to the complexity of the input contour

map, i.e., they are larger in textureless areas and smaller in

textured ones. We obtain a dense video segmentation by

graph cuts on the Gabriel superpixels of all video frames.

We present quantitative and qualitative results of our

method that outperform previous approaches on established

segmentation datasets. Further, we systematically evalu-

ate the various components of our system in isolation and

demonstrate their individual contribution.

2. Embedding Discontinuity Detector
Work on perceptual organization in static images sug-

gests feature discontinuity to be of equal importance as fea-

ture similarity for segmentation. In the video domain, mo-

tion boundary detectors seek motion discontinuities by de-

tecting edges where motion cues aggregated from adjacent

regions change abruptly [19, 21]. However, when the re-

gions are too small for the computed cues to be reliable,

spurious boundaries are detected. Also, body deformations

may give rise to many interior boundaries, not correspond-

ing to objects.

In this work, we propose an embedding discontinuity de-

tector for localizing object boundaries by detecting density

discontinuities in a trajectory spectral embedding. Acting

on trajectories rather than pixels, our detector benefits from

long range motion cues. Acting on the embedding rather

than the initial motion space, it benefits from global propa-

gation of motion information, avoiding spurious motion dis-

similarities caused by body deformation. In Section 2.1 we

present our trajectory spectral embedding, in Section 2.2

our embedding discontinuity detector and in Section 2.3

a discontinuity-aware discretization process, that recovers

from over-fragmentations by exploiting detected disconti-

nuities.

2.1. Trajectory Spectral Embedding

We define a point trajectory tri to be a sequence of

points:
tri = {(xk

i , y
k
i , t

k
i ), k = 1 · · ·Ti}, i = 1 · · ·n,

where Ti the length of tri and n the number of trajectories.

We obtain point trajectories by tracking densely using op-

tical flow [20]. Between each pair of trajectories tri and

trj we set affinities Aij measuring their motion similarity

by penalizing their maximum velocity difference, following

[4]. We compute the spectral embedding given by the top K

eigenvectors of the normalized affinity matrix P = D
−1

A,



(a) Video segmentation by thresholding trajectory embedding discontinuities

(c) Spectral Pb

(e) Static images

(b) Discontinuties in static image pixel embeddings

Figure 3. Embedding discontinuities and segmentation. (a) Moving objects pop out by thresholding trajectory embedding discontinuities.

In last column, drifting trajectories in the yellow circle locally confuse the embedding. (b) Application of our discontinuity detection on

spectral embedding computed from static pixel affinities (c) Comparison with spectral Pb.

where D is the degree diagonal matrix, Dii =
∑

j Ai,j

[18]. The embedding given by the top three non-trivial

eigenvectors of P is visualized in Figure 4 (a). We define

embedding affinities Ŵ = VΛV
⊤, with V ∈ R

n×K be-

ing the eigenvectors and Λ the diagonal matrix of the cor-

responding eigenvalues of P. Embedding affinities Ŵ are

visualized in Figure 2 (b).

Trajectories are embedded as lines rather than spherical

clusters, as shown in Figure 4 (a). That is because optical

flow measurements change smoothly along the object sur-

face, rather than forming compact clusters. The scale and

kinematic nature of the moving objects and the background

scene determine the density with which corresponding tra-

jectories are placed in the embedding space. Specifically,

the smaller an object and the further it is from the cam-

era, the more compactly embedded it is. In this case, all its

point trajectories have similar rather than smoothly chang-

ing motion measurements (approximated by a translation

rather than affine model) and thus very strong affinities be-

tween them. This is illustrated in Figure 2 (b): embedding

affinities Ŵ are high on the small car and much lower on

the background or the larger car.

2.2. Embedding Discontinuities

Our main insight is that detecting motion discontinuities

is easier than finding semantic motion clusters, since clus-

tering in the embedding space may be confused by density

variations. We define embedding discontinuities as sudden

drops or peaks of the embedding affinities Ŵ. Mapping of

trajectory discontinuities to dense pixel-wise region bound-

aries will be discussed in Section 4.

Spatially neighboring trajectory points in each frame are

candidate places for motion embedding discontinuities. In

each frame t, we capture neighborhood relations among tra-

jectories with a Delaunay triangulation graph Dt built on

the trajectory points of that frame (see Figure 2). By defi-

nition of Delaunay triangulation, three trajectory points are

connected with triangulation edges if no other point is con-

tained in the circumcircle of their triangle. Each Dt is a

planar graph on trajectory points of frame t, with Delaunay

edges etij spanning spatially neighboring trajectories tri and

trj of that frame. For each trajectory tri, we define N i
xy to

be the set of neighboring trajectories in the Delaunay trian-

gulation graph of any frame:

N i
xy = {j, s.t. ∃t, 1 ≤ t ≤ T, eti,j = 1},

where T denotes the total number of frames. For each tra-

jectory tri, we define density δi to be the maximum embed-

ding affinity to its Delaunay neighbors:

δi = max
j∈N i

xy

Ŵij .

Trajectory densities quantify locally the density of the tra-

jectory embedding. They are high when a trajectory is close

in embedding distance to at least one of its spatial neighbors

(e.g. interior of the small car in Figure 2 (b)) and low for

loosely embedded trajectories (e.g. background scene or in-

terior of the larger car in Figure 2 (b)).

For each pair of spatially neighboring trajectories tri,
trj , we define the density discontinuity dij to be:

dij =

{

1− Ŵij
1

max(δi,δj)
, if j ∈ N i

xy

0, otherwise
.

Density discontinuities capture sudden peaks or drops of

embedding densities (it is a peak when traversing the edge

in one direction and drop in the opposite direction). They

provide a strong indication of object boundaries, as shown

in Figure 3 (a): thresholding embedding discontinuities pro-

vides the desirable trajectory clustering results. Empirically

we found 0.6 to be a suitable threshold.



K = 3 K = 4 K = 8

under-segmentation over-segmentation

Discontinuities robust to K

(a)Trajectory embedding

(b)Eigenvector rotation

(c)Embedding discontinuitites

(d)Dicontinuity-aware discretization

Figure 4. Discontinuity-aware discretization. Trajectory embedding discontinuities (shown in red in (c)) are robust to the number of

eigenvectors K, in contrast to clustering based discretizations (b). Merging adjacent clusters with no local indication of discontinuity along

their boundary recovers from artificial over-fragmentations (d). Notice that there is not a “right” eigenvector number K that would produce

the same result: choosing K = 3 results in under-segmentation while K = 4 in over-segmentation.

The proposed discontinuity detector is not limited to tra-

jectory embeddings. In Figure 3 (b) we show its applica-

tion to an image pixel embedding, where input pixel affini-

ties Aij are computed from static image cues ([10]). For

each pixel i, the neighborhood N i
xy is the set of four pix-

els around it. Image boundaries are captured by embedding

density discontinuities, as shown in Figure 2 (g). In contrast

to Spectral Pb [10], our discontinuity detector does not in-

volve any feature weight learning. Instead, it relies on the

intrinsic variations of embedding density. Furthermore, in

our approach, the embedded elements are not required to

reside on a regular grid in the input space. Instead, neigh-

borhood relationships are captured via triangulation.

2.3. DiscontinuityAware Discretization

In previous work, there are two popular methods for dis-

cretizing a spectral embedding: K-means clustering (K-

means) with embedding distances [18] and eigenvector ro-

tation (rot) [26]. As the number of eigenvectors K varies,

both methods may break large coherent regions into chunks

[1]. More interestingly, as shown in Figure 4, there may not

be an ideal K: for K = 3 the large car is over-fragmented

before the small car is delineated from its surroundings.

We propose a discontinuity-aware discretization that

merges clusters whose inter-cluster boundary is not sup-

ported by embedding discontinuity evidence. We use eigen-

vector rotation (rot) to obtain an initial trajectory over-

segmentation. For each pair of spatially neighboring tra-

jectory clusters Cp,Cq , we define their inter-cluster discon-

tinuity d
C
pq to be:

d
C
pq =

∑

tri∈Cp, trj∈Cq

dij

|{(i, j), tri ∈ Cp, trj ∈ Cq, j ∈ N i
xy}|

.

To recover from artificial fragmentations, we merge clus-

ters whose inter-cluster discontinuities dC are below ρ. We

found empirically ρ = 0.4 to be a suitable threshold.

3. Context-Aware Trajectory Saliency
Motion information alone is often insufficient for seg-

menting articulated bodies since motion discontinuities may

exist both across distinctly moving articulated parts of the

same object as well as across objects. This is illustrated in

Figure 7 (b) where the human body is over-fragmented (in

torso and legs) while at the same time segmentation leaks

across similarly moving agents. Recently, authors of [8]

complemented motion trajectory affinities in A by setting

repulsive weights between trajectories violating object con-

nectedness constraints. Two trajectories violate object con-

nectedness if at any point during their time overlap, they

belong to two different connected components of the video

foreground. In this way, figure-ground video segmentation

provides semantic information that is valuable for untan-

gling the articulated agents.

Center-surround filtering on per frame flow magnitude

has been used by numerous works for spatio-temporal

figure-ground segmentation [9]. Our contribution lies in

coupling the center-surround saliency computation with the

trajectory embedding. In each video frame t, we com-

pute a pixel-wise center-surround saliency map S
t us-

ing the publicly available code of [14] (Figure 5 (b)).

For each trajectory tri, we compute trajectory saliency

si as the maximum of the saliencies of its points: si =

max1≤k≤Ti
S
tki (xk

i , y
k
i ). This propagates saliency in time

and assigns an object as salient even at frames it is station-

ary [8]. For each trajectory tri, we define context-aware

trajectory saliency si as the average of trajectory saliencies

sj in its embedding neighborhood N i
s
:

si =
1

|N i
s
|

∑

j∈N i
s

sj ,

where N i
s

= {j, s.t. max(
Ŵij

δi
,
Ŵij

δj
) < ℓ} and ℓ is a

threshold controlling the neighborhood size.

The above operation smooths saliency information

across closely embedded trajectories. As a result, context-

aware trajectory saliency is space and time coherent; it re-
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(a)Flow magnitude (b)Pixel saliency maps S (c)Trajectory saliency s (d)Embedding discontinuities
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trajectory saliency s
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tk
i (xki ; y

k
i ) si = meani2N i

s
sj

N i
s

center-surround ¯ltering

tri

correction

Figure 5. Context-aware trajectory saliency. Thresholding of trajectory saliencies s erroneously isolates the flowers from the bush in (c).

In contrast, context-aware trajectory saliency s in (e) has less noise and better spatial coherence thanks to the employed grouping cues. For

ease of visualization, we show thresholding of the saliency maps at 0.5 rather than their initial values.

covers from the noise of center-surround filtering thanks to

long range grouping constraints, as shown in Figure 5 (e).

By thresholding saliencies s at 0.5, trajectories are classi-

fied as foreground and background. Foreground trajectories

are shown in red in Figure 7 (a) top row. We then segment

using object connectedness by setting to zero affinities be-

tween trajectories belonging to distinct connected compo-

nents of the foreground, as shown in second row of Figure

7. The final trajectory clustering is obtained by discretiz-

ing the motion and topology embedding with the method of

Section 2.3.

4. Trajectory Clustering to Pixel Boundaries
To obtain a dense video segmentation we convert tra-

jectory clusters to image regions. Recently, authors of [13]

used a superpixel hierarchy in a variational framework for

trajectory to superpixel region mapping. In this paper, we

propose constrained Gabriel graphs as per frame superpixel

region maps and compute a dense video segmentation by

graph cuts on Gabriel superpixels. We describe constrained

Gabriel graph construction in Section 4.1 and Gabriel su-

perpixel labelling in Section 4.2.

4.1. Contours to Regions via Gabriel Graphs
We introduce constrained Gabriel graphs, a novel to the

vision community representation, for converting locally de-

tected contours to a set of closed regions in an image. We

define a constrained Gabriel graph as the subset of the

corresponding constrained Delaunay triangulation (CDT)

after deleting edges violating the Gabriel property [11],

i.e., edges whose circumcircle encloses other input points.

Given a set of line segments, fitted to the image thresholded

Pb, a CDT is a variant of the Delaunay triangulation for

which the input line segments are constrained to lie in the

triangulation. CDT has been used in computer vision for

contour completion [17, 16]; however, CDT can contain ar-

bitrarily thin triangles. As such, it has not been popular as

a superpixel graph. As a result of edge deletion, Gabriel

superpixels are no longer necessarily triangles; they are

rounder, since edges of “thin” triangles of CDT are likely

to violate the Gabriel property. A CDT and the correspond-

ing constrained Gabriel graph are shown in Figure 8.
(a)CDT (b) Constrained Gabriel graph

Figure 8. (a) Constrained Delaunay Triangulation (CDT) on edge

line segments. Constraining line segments are shown in red and

added Delaunay edges in green. (b) Constrained Gabriel graph.

Gabriel superpixels are rounder and larger than Delaunay trian-

gles, while Gabriel edges still bridge large contour gaps of missing

or faint contours (yellow circle).

A constrained Gabriel graph has a number of desirable

properties as a superpixel region graph. First, Gabriel edges

bridge faint or missing contours based on geometric reason-

ing rather than image intensity. In this way, region leakage

is prevented without thresholding the image boundary map

(e.g. Pb) too low. In contrast, most approaches on super-

pixel segmentation cannot bridge large faint contour gaps

without resorting to an overwhelming over-segmentation of

the image [12, 6]. Second, Gabriel superpixels adapt to the

complexity of the input contour map, i.e., they are larger

in textureless areas and smaller in textured ones. Third,

constrained Gabriel graph construction is efficient, it can

be computed in linear time given the corresponding CDT.

4.2. Gabriel Cut

Trajectory clustering induces a labelling on the set of

Gabriel superpixels in the video sequence. Let R denote



(a)Trajectory clusters (b)Triangle labelling (f)Gabriel cut
scores from trajectories

(d)Pairwise across frame(c) Pairwise per frame

scores from Pb

t

t+ 1

Figure 6. From trajectories to regions. (a)Dragging effect. Notice the yellow trajectories residing on the background, above woman’s

shoulder. In (f), Gabriel cut correctly labels such pixels on oversmoothed foreground boundaries. At the same time, it propagates informa-

tion to untextured image regions that are sparsely populated with trajectories. In (c-d) the weight of each arrow indicates smoothness cost

between the corresponding Gabriel superpixels: the larger the weight the higher the penalty for label disagreement.

S e p a r a t i o n

Motion embedding Trajectory saliency sATrajectory a±nities

Aij = 0

Context-aware
trajectory saliency s

No ¯gure-ground

No connectedness constraints
on foreground trajectories

(a) (b) trajectory classi¯cation

Connectedness constraints
Discontinuity-aware

discretization
Motion + topology

embedding

Gabriel cut

Figure 7. (a) Segmentation pipeline. (b) Motion-based baselines. Top: Discretization of a motion embedding. Bottom: Discretization of

a motion embedding of foreground only trajectories without connectedness constraints. Under articulation, motion segmentation leaks to

the background or across agents. After cancellations of affinities A between trajectories violating object connectedness, the two agents in

the yellow circle are correctly separated while the player holding the ball is no longer over-fragmented.

the superpixel set and L the number of possible labels. We

consider a pairwise MRF on R. For each superpixel r,

unary costs are set according to the normalized histogram

of trajectory labels that intersect its interior, denoted by

hr ∈ [0, 1]L×1. For each pair of spatially adjacent super-

pixels rp, rq , pairwise costs are set according to mean Pb

along their common boundary, denoted by pbp,q . Finally,

for each pair of temporally adjacent superpixels rp, rq , pair-

wise costs are set according to the fraction of their common

trajectories divided by the maximum number of trajectories

intersecting either one of them and denoted by flp,q ∈ [0, 1].
We compute a labelling f that minimizes the energy:

min. E(f) =
∑

r∈R

λr · (1− hr(fr))
︸ ︷︷ ︸

unary

+

∑

rp∼rq

1fp 6=fqpbp,q +
∑

rp∽rq

1fp 6=fqflp,q,

︸ ︷︷ ︸

pairwise

where ∼ denotes spatial adjacency, ∽ denotes temporal ad-

jacency, 1 is the delta function and λr is a weight on the

unary term of each superpixel r.

Unary costs computed from superpixels at object interi-

ors are more reliable than those computed from superpix-

els close to object boundaries due to the “dragging effect”

of optical flow, visualized in Figure 6. We identify unreli-

able superpixels by converting trajectory labels to triangle

labels in the Delaunay graphs Dt, t = 1 · · ·T , built on per

frame trajectory points. In Figure 6 (b) we show in yellow

and light blue, Delaunay triangles whose vertices share the

same trajectory cluster label. Such triangles are likely to

capture object interiors. In the same Figure, we show in

blue, triangles whose vertices do not agree on their trajec-

tory labels. They are likely to capture inter-object space and

be susceptible to dragging. In practice, for superpixels with

more than 30% intersection with blue (ambiguous) area we

set the corresponding λr weights to zero, encouraging the

smoothing pairwise costs to dominate their labelling. The

Gabriel superpixel labelling is computed via graph cuts [2]

and is visualized in Figure 6 (f).

5. Experiments

We test our method on Moseg and Figment segmentation

datasets. Moseg (Motion segmentation) [4] is a publicly

available dataset which contains objects of various scales

under mostly rigid motions. We use the trajectories and

the evaluation software delivered with the dataset. We dis-

card trajectories shorter than seven frames. We test on the

first 50 frames in each sequence (when the sequence has

less than 50 frames we use the whole sequence). First, we



Figment 

Moseg 

Figure 9. Top row: Experiments on Moseg dataset. We correctly segment objects of various scales. Bottom row: Experiments on Figment

dataset. Due to the low resolution of Figment dataset, we only show dilated trajectory points rather than pixel segmentation. Notice the

two players inside the orange circle: our model can find the right spatial support of objects under persistent partial occlusions.

Discontinuity driven discretization consistently 

oversegments less and detects more objects than 

clustering based discretizations.

our method

Figure 10. Discretization evaluation.

evaluate our discontinuity-aware discretization (rot-disc) in

isolation, and compare with four other discretization algo-

rithms: K-means and rot with K selected by thresholding

eigenvalues, K-means-gap and rot-gap with K selected by

thresholding consecutive eigenvalue gap. In Figure 10 we

plot the average across sequences over-segmentation error

(i.e. the number of interior fragmentations not correspond-

ing to object boundaries) against the average miss detection

error (i.e. the number of groundtruth objects or world scene

that were not matched to a cluster with intersection over

union score above 70%), as we vary the thresholds of the

various algorithms. Our method outperforms standard dis-

cretizations, it has considerably smaller over-segmentation

error for the same miss-detection error.

Second, we evaluate our segmentation pipeline, with

connectedness constraints (our method) as well as without

(our method w/o FG). We evaluate both trajectory cluster-

ing as well as dense pixel segmentation. We use trim mean

to average results across sequences where we reject the top

and bottom 10 % of the measurements. Results are shown

in Table 2 and in Figure 9. Our approach, both with and

w/o connectedness constraints, outperforms previous ap-

proaches. Pixel segmentation has increased error in com-

parison to trajectory clustering. This is due to possible er-

roneous segment labels in absence of trajectories. Increas-

ing the minimum allowed trajectory length would provide

better trajectory to regions mapping results but may cause

errors due to accidental similarities of short trajectories.

Figment (Figure untanglement) dataset contains 18 video

sequences of 50-80 frames each, with scenes from a bas-

ketball game [23]. For each sequence, all players and the

background scene are labelled every seven frames. For eval-

uation, each trajectory cluster is optimally assigned to one

groundtruth object based on maximum intersection. Given

this assignment, clustering error measures for each se-

quence the percentage of wrong pixels, i.e., pixels overlap-

ping with a trajectory cluster not assigned to their labelled

object). Per region clustering error measures percentage of

wrong pixels per groundtruth object. Please refer to [8] for

explanation of the rest of the metrics. We show results in Ta-

ble 1 and in Figure 9. In contrast to the Moseg dataset case,

where the gain from the use of foreground topological infor-

mation is small, under articulation and object deformation,

connectedness constraints improve performance by a large

margin. Additional results, videos and code are available at:

http://www.seas.upenn.edu/∼katef/videoseg.

6. Conclusion
We presented a novel density discontinuity detector ap-

plied on trajectory embedding affinities for detecting mo-

tion boundaries from long range motion cues. The pro-



Figment density clustering error per region clustering error over-segmentation recall leakage tracking time

our method 7.05% 7.90% 18.47% 1.5 33.28% 19.55% 82.29%

our method w/o FG 4.90% 17.49% 41.06% 3.21 19.19% 44.96% 48.49%

Fragkiadaki et al [8] 5.21% 4.73% 20.32% 1.57 31.07% 16.52% 75.13%

Table 1. Results in Figment. Our method has lower per region clustering error, which is the essential metric that does not take into account

the background, as clustering error does. Slightly higher object leakage is attributed to the increased density of our approach.

Moseg density clustering error per region clustering error over-segmentation extracted objects

our method (trajectory clustering) 3.07% 2.29% 20.93% 0.29 29

our method w/o FG (traject. clustering) 3.15% 2.55% 20.63% 0.48 28

our method (pixel segmentation) 93.72% 3.95% 26.14% 0.25 26

Fragkiadaki et al. [8] 3.22% 3.76% 22.06% 1.15 25

Brox et al. [4] 3.32% 3.43% 27.06% 0.4 26

Table 2. Results in Moseg.

posed discontinuity-driven embedding discretization is ro-

bust to the number of eigenvectors chosen and recovers

from over-fragmentations that occur in typical, clustering

based, discretization algorithms. Further, we presented

context-aware trajectory saliency for space and time co-

herent figure-ground video segmentation. It provides ob-

ject connectedness constraints that modify the motion affin-

ity graph for effectively segmenting articulated moving ob-

jects. Finally, we presented constrained Gabriel graphs as

flexible per frame superpixel maps for converting trajectory

clustering to dense pixel segmentation. We showed quanti-

tative and qualitative results of our method, outperforming

the state-of-the-art.
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