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Abstract

Previous video stabilization methods often employ ho-

mographies to model transitions between consecutive

frames, or require robust long feature tracks. However,

the homography model is invalid for scenes with significan-

t depth variations, and feature point tracking is fragile in

videos with textureless objects, severe occlusion or camera

rotation. To address these challenging cases, we propose

to solve video stabilization with an additional depth sen-

sor such as the Kinect camera. Though the depth image

is noisy, incomplete and low resolution, it facilitates both

camera motion estimation and frame warping, which makes

the video stabilization a much well posed problem. The ex-

periments demonstrate the effectiveness of our algorithm.

1. Introduction

Videos captured by a handheld camera often suffer from

serious frame jitters, which is the most obvious difference

from professional videos. Video stabilization techniques

can make casually captured videos look professional by re-

moving these undesirable jitters. However, existing meth-

ods are limited by two key issues. First, methods rely on

homography based frame registration such as [12, 6] suf-

fer from image distortion when there are significant depth

changes in a scene. In principle, a homography can regis-

ter two frames only when the scene is flat, or when there

is no camera translation at all. These two conditions are

not precisely true in most real videos, and can cause seri-

ous distortions in the stabilized results, especially when the

distance between scene objects and camera is small such as

indoor scenes. Second, long feature tracks are difficult to

obtain in scenes with severe occlusion, sudden camera rota-

tion, motion blur, or textureless objects (e.g. white walls in

indoor scenes). Hence, methods requiring feature tracking

such as [9, 10] tend to fail in these challenging cases.

We propose to use additional depth sensors to solve

these two challenging problems. Depth sensors such as the

Kinect camera are cheap, compact and widely available in

the market. Though their depth measure is noisy, incom-

plete and low resolution at each frame, this additional in-

formation can make the video stabilization much robust.

Specifically, we exploit the rough depth measure to improve

both the camera motion estimation and frame warping.

We first combine color and depth images to robustly

compute 3D camera motion. Since we have depth infor-

mation, we perform motion estimation between every two

consecutive frames without requiring long feature tracks.

We extract corresponding points between two neighboring

frames, and use their depths to estimate relative camera mo-

tion. Our method does not rely on fragile feature tracking,

or structure-from-motion algorithms [7]. We then smooth

the recovered 3D camera trajectories following cinematog-

raphy principles [6], which removes both high frequency

camera jitters and low frequency shakes. The novel video

frames can be generated by projecting 3D scene points (gen-

erated from the depth image) according to the new camera

poses. However, since the depth image is noisy and incom-

plete, we further warp the color image to fill-in missing re-

gions caused by incomplete depth to create the final results.

2. Related Work

Previous methods on video stabilization can be roughly

divided as 2D and 3D stabilization. 2D video stabilization

methods use a series of 2D transformations to represent the

camera motion, and smooth these transformations to stabi-

lize the video. Early 2D video stabilization methods such

as [13, 12] computed affine or homography transformations

between consecutive frames and applied low pass filtering

to reduce high frequency camera jitter. To reduce low fre-

quency camera shakes, Chen et al. [4] fit polynomial curves

to represent camera trajectories. Gleicher and Liu [5] fur-

ther broke camera trajectories into segments and fit smooth

motion to each of them for better camera motion. More

recently, [6] applied cinematography rules and represent-

ed camera motion by a combination of constant, linear or

parabolic motion. All these methods share a common dis-

advantage that the assumed 2D motion model (e.g. affine or

homography transformations) is insufficient to model frame

changes when the scene contains significant depth changes.
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3D video stabilization methods reconstruct the 3D cam-

era trajectories and smooth them for stable videos. Buehler

et al. [3] proposed a 3D video stabilization method based

on a projective reconstruction of the scene with an uncali-

brated camera. When a Euclidean reconstruction can be ob-

tained, Zhang et al. [16] smoothed the camera trajectories to

minimize its acceleration in rotation, translation and zoom-

ing. However, video frames at the new camera poses were

generated by applying a per-frame homography to original

frames. A full 3D stabilization method was proposed by Li-

u et al. [9]. After smoothing the 3D camera trajectories, the

projections of reconstructed 3D points were used to control

a ‘content-preserving’ warping of the original frames to cre-

ate the final result. These methods are limited by their em-

ployed 3D reconstruction algorithms. Though there is sig-

nificant progress [14, 1] in 3D reconstruction, reconstruct-

ing a general video is still difficult. Videos with zooming,

quick rotation and significant moving objects will make the

reconstruction algorithm fail. Besides these problems, ro-

bust 3D reconstruction requires long feature tracks, which

are difficult to obtain in amateur videos.

A trade-off between 2D and 3D stabilization techniques

is to directly smooth the trajectories of tracked image fea-

ture points. Lee et al. [8] directly searched for a serious

of similarity or affine transformations between neighboring

frames to minimize the acceleration of image feature points.

To better capture the scene 3D structure, Liu et al. [10]

proposed to smooth the bases of the subspace formed by

these feature trajectories. However, in real amateur videos,

feature point tracking is also complicated by occlusion and

camera rotation, which makes these methods fragile.

Smith et al. [15] employed specialized hardware, a light

field camera, to solve the video stabilization problem. Here,

we also employ additional hardware, a depth sensor, for sta-

bilization. Depth cameras are cheap and widely available in

the market, such as the Kinect camera and other time-of-

flight cameras. A depth camera helps us in camera motion

estimation as well as the creation of novel frames. Though

we demonstrate our method with the Kinect camera in in-

door scenes, we believe the same algorithm can be applied

to time-of-flight cameras to work in outdoor environments.

3. Challenges in Video Stabilization

Before going to the details of our method, we first high-

light two key challenges to previous video stabilization

methods, which commonly exist in indoor scenes. Indoor

scenes are particularly important, because many amateur

videos (such as family event, party, shopping, etc) are cap-

tured in indoors. Many of previous methods employed 2D

transformations such as similarity [8], affine or homogra-

phy [12, 6] transformations to register neighboring frames.

However, these simple motion models are invalid when

there are large depth changes in the scene, especially when
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Figure 1. Results on the ‘Cube’ example. From top to bottom

are two sample frames from (a) original video,(b) 2D stabilization

method[6], (c) 3D stabilization method[10] and (d) our approach.

The results (b) and (c) both have clear shear and wobble distortions

at the first-aid box and cubes, while our results are more visually

pleasing.

the scene is close to the camera. Figure 1 shows such an ex-

ample where three cubes in front of a wall are captured by

a handheld video camera. The first row shows two frames

of the original shaky video. The second row are the corre-

sponding frames from the video stabilized according to [6]
1. The results are clearly distorted. For example, the first-

aid box on the left image is subject to a shearing mapping.

This is because the sudden depth change between the cubes

and the wall makes homography based registration invalid.

For a comparison, the same frames from the video stabilized

by our method are shown in the last row. Our method is free

from this distortion by exploiting rough depth information

from a depth camera.

3D video stabilization methods such as [3, 16, 9] require

feature correspondence in different frames for robust 3D re-

construction. Methods based on feature track smoothing

1We uploaded our videos to Youtube (http://www.youtube.com) with

the ‘stabilize’ feature enabled. The uploaded videos are stabilized by the

website server according to the method in [6]. We then downloaded the

results for comparison.



(a) (b) (c) (d)
Figure 2. Feature point tracking in amateur videos is difficult. (a)

frame in a video with quick rotation,(c) frame in a video with se-

vere occlusion. (b) and (d) are frames after (a) and (c). Both the

number of tracked points and the length of the feature tracks drop

significantly in (b) and (d).

such as [8, 10] also need long tracks of feature points. As

commented in [10], typically, features should be tracked for

about 50 frames to make their algorithm robust. Howev-

er, robust tracking of feature points is a difficult problem,

which could be affected by textureless regions, sudden cam-

era rotation or severe occlusion. The third row of Figure 1

shows the results from [10]2. Most of the tracked feature

points locate on the foreground cubes, which leads to wob-

ble artifacts on the background first-aid box (please refer to

the supplementary videos for a clearer comparison).

To further demonstrate the tracking difficulty, we show

two typical amateur videos in Figure 2. Figure 2 (a)(b)

and (c)(d) show two frames from one video.The video

of frame(a)and(b) has quick rotation, while the one of

frame(c)and(d) suffers from severe occlusion caused by

pedestrians. On the selected video frames, we overlay the

trajectories of tracked feature points. Here we used the

KLT tracker [11] to trace detected SURF features [2]. On

each trajectory, the red points are the feature positions in

tracked frames. When rotation or occlusion happens, both

the number of tracked feature points and the length of fea-

ture tracks drop significantly, which makes feature tracking

based video stabilization fragile. The average lengthes of

feature tracks in the image (a) and (c) are 10 and 23 frames.

In comparison, the average lengthes of (b) and (d) are 6 and

2 frames. The numbers of tracked points are also reduced

from 248 in (a) and 158 in (c) to 21 in (b) and 37 in (d).

With an additional depth camera, we compute camera mo-

tion between any two consecutive frames from correspond-

ing pixels with known depth. This method does not require

long feature tracks. Hence, we avoid this challenging track-

ing problem.

4. Our Method

The input to our method is a video with an accompany

depth image for each frame. In developing our algorithm,

we use the Kinect camera in indoor scenes for data captur-

ing, though other depth sensors might also be used. Similar

to most of the video stabilization methods, our method in-

2We used the ‘stabilize motion’ with ‘subspace warp’ in the Adobe

After Effects CS5.5 with 50% smoothness and Rolling shutter automatic

reducing to generate results of [10].

Figure 3. Camera motion estimation from corresponding 3D points

between two consecutive frames. pt and pt−1 are coordinates of

the same 3D point in two local camera coordinate systems. The

Euclidean transformation Ht between two cameras can be esti-

mated from corresponding 3D points.

cludes mainly three steps. We first estimate the 3D camera

motion from neighboring color and depth images. Since

we have depth information, we do not require long feature

tracks for 3D reconstruction. Once the 3D camera trajecto-

ry is known, we smooth it following [6] to reduce both high

frequency jitters and low frequency shakes. We then gener-

ate video frames according to the smoothed camera poses,

again by combing information from color and depth images.

4.1. Camera motion estimation

We begin by recovering camera motion in the original

shaky video. Our input are the video frames I1, I2, · · · ,

In, and their corresponding depth images P1, P2, · · · , Pn

measured in local camera coordinate system. We seek to

estimate a 4× 4 matrix Ct at each time t that represents the

camera pose in a global coordinate system, i.e.

Ct =

(

Rt Ot

0 1

)

.

Here, Rt and Ot are the 3 × 3 rotation matrix and 3 × 1
translation vectors representing the camera orientation and

position in the global coordinate system respectively.

As shown in Figure 3, the relative camera motion at time

t can be represented by a 3D Euclidean transformation Ht

satisfying Ct = Ct−1Ht. Ht has similar form as Ct, where

Ht =

(

R̂t Ôt

0 1

)

.

Here, R̂t, Ôt are the rotation and translation components of

Ht. We set the world coordinate system at the first frame.

Hence, camera poses can be computed by chaining the rel-

ative motions between consecutive frames as

Ct = H1H2...Ht.

To estimate Ht, we first detect and match SURF features

[2] between two frames It−1 and It. Since depth images



are incomplete, some matched feature points might not have

depth recorded. Here, we only choose those corresponding

feature points whose depths in both Pt−1 and Pt are known.

Each pair of correspondence introduces a constraint about

Ht as,

R̂tpt−1 + Ôt = pt.

As illustrated in Figure 3, pt, pt−1 are the coordinates of the

same 3D point in the two local camera coordinate systems

of the frame t and t− 1 respectively.

Suppose N pairs of features are collected, we can then

estimate Ht (i.e. R̂t, Ôt) by minimizing

N
∑

i=1

ρ(||R̂tpt−1 + Ôt − pt||2). (1)

Here, ρ(·) is the M-estimator (we use the Tukey bi-weight

function [17]) for robust estimation defined as

ρ(x) =

{

t2/6 (1− [1− (x
t
)2]3) if |x| ≤ t

t2/6 otherwise.

Equation 1 is minimized by the standard iteratively re-

weighted least squares (IRLS) method [17]. During the

computation, RANSAC is also applied to skip outliers.

Specifically, we repetitively draw three random pairs of cor-

responding points at a time to solve Equation 1 until we

find the largest set of inliers. We then solve Equation 1

again with all inliers to decide the camera motion. For

computation efficiency, during the random sampling, we set

t = +∞ (i.e. without using M-estimator), while we set t as

the standard deviation of the fitting residual in all inliers in

the final estimation.

4.2. Camera trajectory smoothing

We smooth the estimated camera trajectory for stable

motion. We follow [6] to adopt cinematography principles

to remove both high frequency jitters and low frequency

shakes. The smoothed camera trajectory should be a com-

bination of constant, linear and parabolic motion. Note that

the key difference from [6] is that we work with real 3D

camera poses (i.e. orientations and positions), while [6]

used a series of homogrpahies to indicate the camera mo-

tion.

We represent the camera rotation matrix Rt by its quater-

nions, which offer a better representation for interpolation

than Eulerian angles. For notation simplicity, we still de-

note these quaternions by Rt. We then concatenate the 4D

quaternions Rt and the 3D translation vector Ot to a 7D

vector Ft to represent the camera pose at time t. The op-

timal camera trajectory is obtained by minimizing the fol-

lowing objective function,

O(F ) = w1||D(F )||1 + w2||D
2(F )||1 + w3||D

3(F )||1
(2)

Figure 4. Camera trajectory smoothing results. The red and green

curves show trajectories before and after smoothing respectively.

where ||D(F )||1 , ||D2(F )||1 and ||D3(F )||1 are the L-1

norms of the first order, second order and third order cam-

era pose derivatives respectively. We set w1 = 10, w2 =
1, w3 = 100 for all our examples.

The optimization is solved by linear programming with

the first camera pose F1 unchanged. Following [6], we also

require new camera poses to be close to the original ones

to simplify video generation. Specifically, we require the

components in Rt do not change more than 0.05, and the

components in Ot do not change more than 20 in all our ex-

periments. In other words, the new camera center should be

within 20 mm distance to its original position, the principal

axis should not change for more than 3 degrees. Figure 4

shows the camera trajectories before and after smoothing in

red and green respectively.

4.3. Video frame generation

Once we obtain the stabilized camera poses, we are

ready to synthesize the output video. In principle, if the

depth sensor returns a precise depth for each pixel, we can

generate the stabilized frame by simply projecting all 3D

points according to smoothed camera poses. However, the

depth image is often incomplete, as shown by the grayscale

images in Figure 5 (a). Figure 5 (b) shows a projection of

the 3D points (generated from the color and depth image

in Figure 5 (a)) to the stabilized video frame, where many

pixels are missing because of the incomplete depth map.

Hence, we apply the ‘content-preserving’ image warping

[9] to fill-in these missing regions.

To seamlessly blend results from projecting 3D points

and image warping, we use morphological dilation operator

to create a r-pixel width (r = 1.5% of image width in our

experiments) buffer band surrounding all missing regions.

We use all pixels in this band as ‘control points’ for im-

age warping, so that the warping will be as consistent as

possible with the projection. Figure 5 (d) shows the green

control points and the image warping grid (a clearer ver-

sion is provided in the left of Figure 6). We combine these

two methods in the band by linearly interpolating the two

motion fields introduced by them.

Motion field from depth images We project pixels with

depth measure according to the smoothed camera pose.

Given the original camera pose Ct and its smoothed pose
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Figure 5. Video frame generation pipeline. We use the color and depth images in (a) to generate the projection in (b) and the motion field in

(c). Many pixels are missing because of the incomplete depth image. Hence, we warp the color image by the ‘content-preserving’ warping

[9] in (d) according to the green control points and a regular grid. This warping generate a color image (e) and a motion field (f). We then

generate a complete motion field (g) by combining (c) and (f). The final video frame (h) is created by warp the original frame with (g).

Figure 6. Left: control points and image grid for ‘content-

preserving’ warping. Right: illustration for motion interpolation.

C ′

t, we can compute the image coordinates of a 3D point in

both original and stabilized video frames (we need to cali-

brated the intrinsic camera matrix K beforehand). The dif-

ference between these two coordinates gives a motion vec-

tor, which maps a pixel from original video to the stabilized

one. In this way, we obtain a motion field M1

t that covers

all pixels with depth measure, as shown in Figure 5 (c).

Motion field from image warping To fill in missing re-

gions, we take all pixels in the buffer band as control points

for the ‘content-preserving’ warping. Basically, we parti-

tion the original image into 10 × 10 regular grid. We solve

a linear equation [9] to decide the motion of the grid ver-

tices. The motion of a pixel is then computed by bilinear

interpolation of the motion vectors at its four grid vertices.

This generates another motion field M2

t , which covers all

pixels without depth measure and the buffer band as show

in Figure 5 (f).

Motion fields blending We then linearly blend M1

t and

M2

t in the buffer band. Specifically, the motion of a pixel in

the band is computed by linearly interpolating the motion

of its two nearest neighbors at the two sides of the band.

As shown on the right of Figure 6, A,B are two pixels on

the two sides of the band with minimum distance (dA, dB
respectively) to the black pixel in consideration. vA, vB are

the motion vectors of A and B, which are computed from

projecting 3D points and image warping respectively. We

linearly interpolate these two vectors in the band to blend

M1

t and M2

t . For example, the motion of the black pixel is

computed as

dA/(dB + dA)vB + dB/(dA + dB)vA.

Figure 5 (g) shows the interpolated motion from (c) and (f).

Once the motion field is obtained for the whole frame, we

use it to warp the original video frame to create the stabi-

lized frame as shown in Figure 5 (h).

5. Experiments

We evaluated our method with some challenging videos

captured by a Kinect camera. To avoid the calibration be-

tween the color and depth cameras, we used the embedded

color camera in Kinect whose calibration is known. All our

videos have resolution of 640× 480. Figure 1 and Figure 9

compare our results with the method described in [6] and

[10]. In both figures, from top to bottom, the four rows for

each example are sample frames of the original video, sta-

bilized video according to [6], [10] and our method respec-

tively. For easy reference, we name these examples in Fig-

ure 1 and Figure 9 as ‘Cube’, ‘Boy’. The ‘Cube’ and ‘Boy’

examples showed a nearby scene with sudden depth change,

which made the homography based frame registration in [6]

fail. Hence, severe geometric distortions were observed in

these results (please notice the shear distortion on the first-

aid box in the ‘Cube’ example, and on the bookshelf in the



(a) (b) (c)
Figure 7. Comparison with method[10]. Each row shows one ex-

ample. Columns from left to right: (a)sample frames from origi-

nal video, (b)stabilized video according to [10] and (c)our method.

Please notice the zoom in artifacts circled in blue of the first ex-

ample and warping distortion of the second and third examples in

(b).

‘Boy’ example). The ‘content-preserving’ warping in [10]

is more robust to depth changes. However, the large tex-

tureless wall in the ‘Cube’ example had few tracked fea-

ture points, which caused wobble in the result, e.g. on the

first-aid box. (Note that tracked feature points were used

as control points for warping in [10]. Similar artifacts were

reported in [9] when the image feature points distributed un-

equally over the image.) Though more feature points can be

tracked in the ‘Boy’ example, it was not stabilized well by

[10], perhaps because the dynamic scene confused the sub-

space analysis. In comparison, our method took advantage

of the depth camera and generated better results on all these

examples.

Figure 7 provide more comparison with method[10].

The first example of Figure 7 contained severe occlusion,

where people walked through and blocked the whole frame.

It is challenging for [10] because of tracking failures caused

by severe occlusion. The region circled in blue had incon-

sistent motion in the stabilized video. The second and third

example of Figure 7 contained quick camera rotation. Both

the number of tracked points and the length of the feature

tracks drop significantly. This caused shear artifacts on the

whole scene. Furthermore the warping distortion produce a

large empty area compared to ours. In Figure 8, three ex-

amples illustrate the severe geometric distortion of method

[6]. The depth change confused the homography registra-

tion. The simple linear model can not describe variations of

depth in these scenario. Please notice the shear distortion

on the background of Figure 8 (b).

We show additional examples in Figure 10. Please refer

(a) (b) (c)
Figure 8. Comparison with method[6]. Each row shows one ex-

ample. Columns from left to right: (a)sample frames from origi-

nal video, (b)stabilized video according to [6] and (c)our method.

Please notice the wobble on the background in (b).

Figure 10. Additional results under different indoor environment

from our video stabilization. Please visit project website for more

videos.

to project website for more results. Examples in Figure 10

were captured under various indoor environment including

library,canteen,shopping mall, supermarket,gym etc. Some

of them contain large depth change and sever occlusion.

With the help of a depth camera, our method generated

steady video from these challenging examples.

Limitations We observe a number of limitations of our

current method during experiments, which point out the di-

rection for future work. First, our method does not consider

the rolling shutter effects of both the color camera and the

depth camera, which sometimes make the camera motion

estimation imprecise and lead to some high frequency jit-

ters in the results. Second, our current implementation is

limited to the Kinect camera, which only works in indoor

scenes. But we believe the same algorithm can be applied to

time-of-flight cameras in outdoor environments. We leave

this to the future study.

6. Conclusion

We study two challenges in video stabilization, namely

sudden depth change making 2D motion model imprecise



(a)

(b)

(c)

(d)
Figure 9. Results on the ‘Boy’ examples. From top to bottom, the four rows are sample frames from (a) original video, (b) stabilized video

according to [6], (c) stabilized video according to[10] and (d) our method.

and tracking failure making 3D stabilization fail. We solve

these problems with an additional depth sensor, which pro-

vides a depth measure for each video frame. We exploit

this rough depth information to improve both camera mo-

tion estimation and frame warping. The result is a robust

stabilization algorithm that works in challenging cases.
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