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Abstract—With the rapid growth of video content, video sum-
marization, which focuses on automatically selecting important
and informative parts from videos, is becoming increasingly
crucial. However, the problem is challenging due to its subjective-
ness. Previous research, which predominantly relies on manually
designed criteria or resourcefully expensive human annotations,
often fails to achieve satisfying results. We observe that the side
information associated with a video (e.g., surrounding text such
as titles, queries, descriptions, comments, and so on) represents
a kind of human-curated semantics of video content. This side
information, although valuable for video summarization, is over-
looked in existing approaches. In this paper, we present a novel
Deep Side Semantic Embedding (DSSE) model to generate video
summaries by leveraging the freely available side information.
The DSSE constructs a latent subspace by correlating the hidden
layers of the two uni-modal autoencoders, which embed the
video frames and side information, respectively. Specifically, by
interactively minimizing the semantic relevance loss and the
feature reconstruction loss of the two uni-modal autoencoders,
the comparable common information between video frames and
side information can be more completely learned. Therefore,
their semantic relevance can be more effectively measured.
Finally, semantically meaningful segments are selected from
videos by minimizing their distances to the side information in
the constructed latent subspace. We conduct experiments on two
datasets (Thumb1K and TVSum50) and demonstrate the superior
performance of DSSE to several state-of-the-art approaches to
video summarization.

Index Terms—Video summarization, Deep learning, Side Se-
mantics, Embedding.

I. INTRODUCTION

TREMENDOUS popularity of video websites like

YouTube, Yahoo Video, and social networks like Face-

book, Google+ have stimulated massive growth of video

contents over the Internet. In order to manage the growing

number of videos on the web and also to extract effective

information from them, more attentions have been paid to

video summarization, a mechanism which aims to produce

a short summary of a video, so as to give users a synthetic

and useful visual abstract of video content. In general, there

are two different forms of video summarization: static video
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(a) Video and its key frames selected by human annotator

Title: How to lock your bike. The RIGHT way!

Query: Videos about lock up bikes 

Description: Here, our host, Amanda, teaches YOU how to properly lock 

your bike. With the help of a U-Lock or a Chain lock, this can be done fairly 

easily. 

Comment: Instead of using a cable with your D lock, just use a second lock, 

the thief will have to cut two locks instead of only one. 

Side semantic information

(b) Side semantic information around video

Fig. 1. An example of video from Youtube and its side semantic information.
(a) is the video and five key frames selected by human annotator, (b) shows
the side semantic information like video title, user query, video description,
user comment of video in (a).

summarization and dynamic video summarization. Static sum-

mary involves a set of key frames from video and there is no

restriction with time and sequence issue. Dynamic summary

contains a small portion of the video shots concatenated by

chronological order and more like a shorter version of the

original video. In addition, video thumbnail, which is the first

thing a user sees when browsing or searching for videos, can

be thought as a special kind of video summary at the highest

level of abstraction, with only a single frame included.

Video summarization is a challenging problem because of

its subjectiveness — users have their own preferences over

the summaries. Nevertheless, Gong et al. showed that there

exists a high inter-annotator agreement of the summaries of

the same video given by different evaluators [1]. It is therefore

possible to select the important and informative parts from

videos that can basically satisfying the majority of preferences.

To solve this problem, unsupervised approaches [2]–[21] often

picked frames or shots from videos with some manually

designed criteria such as visual attention, representativeness

and importance. However, handcrafted criteria often fail to

suit diverse videos on the web. In contrast to unsupervised

ones, supervised approaches [1], [22]–[27] taught the system

to directly learn from human-created summaries how to select

subsets, so as to meet evaluation metrics derived from human-

perceived quality. Although effective sometimes, they relied on

heavily human annotations which are hard to obtain.

In reality, humans are very good at summarizing information

and experiences in words. After people watch a video, it

is common for them to summarize the video content and

share with each other by words, and what they say can be
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seen as the summary of video in textual form. Different

people may express different contents, but the main topic

and semantic meaning are still the same. Frames or shots

that are most relevant to the common expression from people

are really “summary worthy” since they reflect the semantic

information from video and represent what people concern.

It is not realistic to get textual summaries of videos directly

from people, but as shown in Fig. 1, there are some side

information (e.g., surrounding text such as titles, queries,

descriptions, comments, and so on) associated with videos.

The side information, regarded as the indirect feedback from

people, represents a kind of human-curated semantics of video

content. Although valuable for video summarization, the side

information is often neglected by previous approaches.

In this paper, we investigate the problem of video summa-

rization with side semantic information. Some recent works

have attempted to use titles and queries associated with videos

to infer the importance of video frames. Song et al. leveraged

video titles to search images from the web. They hoped

to get useful visual information from these web images to

find representative parts from videos [28]. Liu et al. directly

mapped the visual feature to a fixed textual space through a

linear transformation [29], therefore video thumbnails can be

selected by measuring their distances to the side information

in textual space. When generating video summaries with

the guidance of side formation, the critical problem is to

select semantically meaningful video parts that are tightly

correlated with side information. Therefore, how to effectively

measure the semantic relevance between video frames and side

information is essential. However, previous works [28], [29]

did not give enough consideration to this point, leading to the

following problems.

Firstly, there exists both common information and modality

specific information in videos and their surrounding texts,

whereas Liu et al. [29] ignored that the modality specific

information is harmful to semantic relevance measurement. As

shown in Fig. 1, even though the video and its descriptions

share common information such as “bike” and “lock”, there

are still some characteristics that cannot be correlated. For

example, “The RIGHT way!” is textual-specific information

that is difficult to capture in the video. While wall and street

are visual-specific information that cannot be depicted in the

text. Intuitively, it’s the common information, rather than

modality specific information that helps us to match relevant

items from two different sources. Therefore, constructing a

new latent subspace where only the common information

can be preserved is a better choice for semantic relevance

measurement.

Secondly, the loss of common information in latent subspace

will also cause performance degradation when matching video

frames and side information, which is overlooked in [28]–[31].

For example, also as shown in Fig. 1, there are “bike, lock and

street” depicted in a video frame, and there are “bike, lock

and people” described in the video title. When embedding

the video frame and title to latent subspace without any other

constrain, there might be only partial finite field “bike” (or

“lock”) covered. This incomplete common information can

lead to incomprehensive measurement of similarity. Hence,

preserving more complete common information (both “bike”

and “lock”) in the latent subspace will make a more robust

semantic relevance measurement.

To tackle the two problems mentioned above, we propose a

Deep Side Semantic Embedding (DSSE) model which serves

as a bridge between the diverse side semantic information

and visual content. In our DSSE, two uni-modal autoencoders

are used to encode the visual features of video frames and

textual features of side information, respectively. By correlat-

ing the hidden layers of the two uni-modal autoencoders, we

construct a latent subspace through interactively minimizing

two novel loss terms, the semantic relevance loss and the

feature reconstruction loss. The semantic relevance loss based

on the hidden representations enables common information to

be learned in the latent subspace. At the same time, the feature

reconstruction loss of the two autoencoders will force common

information to be preserved as much as possible. In addition,

the feature reconstruction loss can also maintain the internal-

similarity in visual and textual domains, which will indirectly

benefit the propagation of semantic relevance between the two

domains.

Moreover, we further employ a largely available click-

through based video and image datasets to train a more

effective DSSE model. Users predominantly tend to click

on videos that are relevant to their queries when browsing

videos in search engines, and thumbnails are the only visual

contents that could be seen before they click on the video.

The stronger the correlation between the video thumbnail

and the user query, the higher the click rate. So the se-

mantic relevance between video thumbnails and queries can

be naturally indicated by the click number. In this paper,

we use the {video thumbnail, query, click number} triads

generated from click-through based datasets to help to train

our DSSE model. It is worth noting that we just choose query

here, as it is one kind of side information. Any other side

information (title, description, comment etc.) available can also

be used.

By jointly integrating the semantic relevance loss and the

feature reconstruction loss, and also with the help of large

scale click-through training data, our DSSE model constructs

a latent subspace where the semantic relevance between the

video frames and side information can be more effectively

measured. Finally, we generate a summary by minimizing

the distances between the selected video frames and side

semantic information in the latent subspace. We conduct two

sets of experiments: video thumbnails selection and dynamic

video summarization on two datasets Thumb1K [29] and

TVSum50 [28] separately. Experimental results show that our

DSSE outperforms several state-of-the-art methods in video

summarization task.

II. RELATED WORK

Conventional unsupervised video summarization methods

generate summaries by leveraging handcrafted criteria based

on low-level visual or motion cues [2]–[21]. The primary

criteria include coverage or representativeness [7]–[11], visual

quality [12], visual attention [2], [13], influence [14], [15],
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Fig. 2. Framework of video summarization by learning deep side semantic embedding. (a) Click-through bipartite graph between queries and videos. (b)
Deep side semantic embedding model: A latent subspace is constructed by simultaneously minimizing the semantic relevance loss and feature reconstruction
loss of the matched query and video thumbnail pairs. (c) Video frames and side information are embedded to the learned latent semantic subspace, then
the distance in the latent subspace is directly taken as the relevance between side information and video frames. Frame level semantic relevance scores are
gathered and video summary is generated by maximizing the overall semantic relevance score of the chosen parts.

[21], tracking of important object [16]–[19], [32] and so on.

However, these handcrafted criteria are usually designed to

deal with specific types of videos like egocentric videos or

user videos, so that it is difficult to apply them to various

kinds of online videos.

More recently, supervised methods which directly leverage

human-edited summary examples to learn how to summarize

videos have attracted much attention [1], [22]–[27]. Gong et al.

proposed a supervised video summarization model, sequential

determinantal point process (seqDPP), and trained seqDPP by

the “oracle” summaries that agree the most among different

users [1]. Based on seqDPP, Zhang et al. considered the long-

short range dependencies in the sequential video frames and

proposed a LSTM-based model for video summarization [25].

From another aspect, Gygli et al. generated video summaries

by learning submodular functions from the user summaries

[24]. One of the most important points for supervised methods

is enough annotated data. People must watch the whole video

and then decide if frames or shots should be included into the

summary, so the annotation procedure can be very time con-

suming. Due to the resourcefully expensive annotation data,

video summarization dataset often contains almost thousands

of videos, which is far from enough to train a satisfying model

so that cannot be scaled up.

Semi-supervised methods exploit some weakly supervised

priors like video categories [33], domain knowledges [34],

web images [35], [36] to facilitate the summarization process.

While promising, these priors do not reflect the concrete

contents of videos and often constrain to a limited number of

object domains. Some other methods think that text associated

with videos are good sources for inferring the semantic im-

portance of video frames [28], [29], [37]. Song et al. learned

canonical visual concepts shared between video frames and

web images searched by video titles, and then measured the

frame-level importance using the learned canonical concepts

[28]. However, indirectly using video titles to grab web images

will bring additional overhead for video summarization, and

therefore causes a non-scalable system. Ideally, for a trained

model, we hope to get its summarization result directly when

meeting a new video instead of starting a learning procedure

again. Liu et al. directly mapped the visual feature to a fixed

textual space through a linear transformation [29], therefore

the similarity between candidate video thumbnails and video

query can be measured by their dot product in textual space.

Candidate which is of high visual quality and is similar to

the query, will be used as the final video thumbnail [29].

However, directly measuring the similarity between two dif-

ferent modalities in textual space will inevitably meet some

textual modality interference mentioned above, which should

be reduced in the semantic relevance learning procedure.

Choosing semantic meaningful parts from videos with the

guidance of textual side information is quite related to sev-

eral multi-modal retrieval methods [38]–[45], which aim at

finding a multi-modal embedding space between image and

tags/sentences so that the information in different domains

can be represented in a unified subspace. Inspired by their

works, we apply the subspace learning methodology in our

video summarization task.
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III. DEEP SIDE SEMANTIC EMBEDDING MODEL

The basic idea of our deep side semantic embedding model

is to construct a latent subspace with the ability of directly

comparing side information and video frames. In this latent

subspace, we hope the comparable common information be-

tween videos and side information can be more completely

learned and the semantic relevance of them can be effectively

measured. Therefore, we design two components in our DSSE

objective function, i.e, learning semantic relevance and learn-

ing feature reconstruction. After we obtain the latent subspace,

the relevance between a video frame and side information can

be measured by their distance. Finally, the video frame with

the highest relevance score can be seen as the thumbnail, and

a dynamic video summary is generated by maximizing the

total relevance score within a summary budget. The approach

overview is shown in Fig. 2.

In the following, we will first construct the basic learning

architecture of DSSE, and then introduce how to employ the

large scale click-through data to strength our DSSE model.

Finally, we will present the video summarization generation

procedure. Some notations in this section are summarized in

Table I.

TABLE I
NOTATIONS

Symbol Definition

G = (V, E) click-through video bipartite graph
Q = {q1, q2, · · · , qi · · · } set of queries in the bipartite graph
V = {v1, v2, · · · , vi · · · } set of videos in the bipartite graph

ci click number of vi in response to qi
qi textual features of query qi
vi visual features of video vi’s thumbnail

X a test video
T the side information of X
t textual feature of T
n the number of frames in X

X = [x1,x2, · · · ,xn] the feature matrix of X

dv dimensionality of visual feature
dt dimensionality of textual feature
dh dimensionality of hidden layers

A. The Basic DSSE Learning Architecture

Learning semantic relevance: Given a video and its side

information like query and title, the task of our method is to

find a subset of frames in the video that are most relevant to its

side information. Although the relevant video frames and side

information are tightly correlated by the semantic meaning,

the similarity in between, could not be directly computed since

the representations of them are absolutely heterogenous (visual

and textual). Some works directly mapped the visual feature of

video frames to textual space by a linear transformation, and

then measured their similarity in the textual space. However,

the textual specific information which is not comparable to

visual features is harmful to correlation learning. One solution,

pursued in this paper, is to rely on the subspace learning, which

assumes that a low-dimensional common subspace exists for

the representations of video frames and side information.

In this subspace, only the comparable common information

Visual Feature Textual Feature

Correlate two hidden layers

Reconstructed Visual Feature Reconstructed Textual Feature

Latent subspace learning

Fig. 3. The basic learning architecture of DSSE. We construct a latent
subspace by correlating the hidden layers of the two uni-modal autoencoders.

between two different sources can be learned and shared, and

the modality specific information is reduced.

Measuring the cross modal relevance between video frames

and side information will result in the open problem of

Semantic Gap, which is highly nonlinear in natural. Therefore

we define the mappings from the visual space and textual space

to the latent subspace as follows:

f(If ;Wf ,bf ) = σ(WfIf + bf ) (1)

g(Ig;Wg,bg) = σ(WgIg + bg) (2)

If ∈ R
dv is the visual feature of video frame and Ig ∈ R

dt

is the textual feature of the side information. Wf ∈ R
dh×dv ,

Wg ∈ R
dh×dt are the transformation matrices and bf ∈ R

dh ,

bg ∈ R
dh are the bias vectors. dv and dt are the dimensions

of visual features and textual features, respectively. dh is the

latent subspace dimension. In Eq. 1 and Eq. 2, we practically

choose the sigmoid function σ(x) = 1
1+exp(−x) as the non-

linear activation function.

To learn the transformation matrices and bias vectors above,

we demand the matched video frame and side information to

be close to each other in the latent subspace. Minimizing the

distance of matched pair will force the comparable common

information to be learned in the latent subspace, because

the uncomparable modality specific information is almost

impractical to align and will be dropped in this learning

procedure. Based on the common information, the semantic

relevance loss can be defined as the L2 distance between the

video frame and side information in the latent subspace:

Lrel(If , Ig;W,b) = ‖f(If ;Wf ,bf )− g(Ig;Wg,bg)‖22
(3)

We group the transformation matrices as W and the bias

vectors as b here.

Learning feature reconstruction: Based on the above

consideration that common information should be preserved

in the latent subspace, another problem is that how much of it

can be preserved? If both “bike” and “lock” are contained

in the side information and video frame, but only one of

them is captured in the latent subspace, then the common

information we observed is insufficient. This will lead to an in-

comprehensive subspace and an unreliable similarity measure,

resulting in the performance loss for video summarization.
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To solve this problem, it’s worth noting that the common

information always comes from the original features, the loss

of information in the latent subspace will also cause the

original features cannot be well reconstructed from the latent

subspace. From this point of view, minimizing the feature

reconstruction loss will help us to preserve more common

information in the latent subspace, and this can be naturally

solved by introducing autoencoder [46] into our model.

Autoencoder is a kind of neural networks and aims to

transform inputs into outputs with the least possible amount

of distortion. The hidden layer of autoencoder can preserve

some important characteristics of input and can be regarded

as a more robust representation of input feature. Therefore, we

rebuild our latent subspace on the hidden layer of autoencoder.

As shown in Fig. 3, our DSSE architecture is composed

of two subnetworks, each with a uni-modal autoencoder. One

autoencoder in DSSE encodes the video frame inputs, the

other encodes the side information correlated to the videos.

The two autoencoders share the same architecture but with

different parameters. We constrain the hidden layers of the two

autoencoders with the same unit number, and correlate the two

layers with the semantic relevance loss term defined in Eq. 3.

The transformation matrices and bias vector can be thought

as the parameters of the two autoencoders at the first layer,

the representations in latent subspace f(If ;Wf ,bf ) and

g(Ig;Wg,bg) can be thought as the hidden representations

of the two autoencoders. Thus, the latent subspace is rebuilt

on the hidden layers of the two correlated autoencoders.

As for the basic autoencoder, the feature reconstruction

loss of the original input features is as follow:

Lrec(If , Ig; Θ) =
∥∥∥Ĩf − If

∥∥∥
2

2
+
∥∥∥Ĩg − Ig

∥∥∥
2

2
(4)

Here Ĩf and Ĩg are the reconstructed feature of If and Ig ,

respectively. To simplify the annotations, Θ represents all the

parameters of the two correlated autoencoders.

If we only preserve partial parts of the common information

in the latent subspace, the feature reconstruction loss is not

optimal, because we will not reach the least possible amount

of distortion without the remaining important common fea-

tures captured in the hidden representations. So minimizing

the feature reconstruction loss when constructing the latent

subspace will help to preserve more valuable common in-

formation between two different sources. Additionally, the

feature reconstruction loss can also maintain the internal-

similarity within the textual and visual domains, which means

that similar video frames (or side information) will have

similar representations in the latent subspace, thus it indirectly

benefits the propagation of semantic relevance between the two

domains.

Overall loss: Combining the semantic relevance loss de-

fined in Eq. 3 and the feature reconstruction loss defined in

Eq. 4, the overall objective function of our DSSE is as follow:

min
Θ

αLrel(If , Ig; Θ) + Lrec(If , Ig; Θ) (5)

α is the parameter used to trade off between the two loss

terms.

B. The click-through based DSSE learning

Based on the basic DSSE learning architecture, we further

consider how to leverage the freely available click-through

image and video datasets to learn a more effective DSSE

model.

As shown in Fig. 2(a), a bipartite graph G = (V , E) between

the user queries and videos is constructed based on the search

logs from a commercial search engine. V = Q
⋃
V is the

set of vertices, which consists of a query set Q and a video

set V . The query set Q can be thought as one kind of the

side information of videos here. The number associated with

an edge represents the click number of a video given a query.

For most video search engines, users can only see the returned

video thumbnails before clicking on a certain video, and they

intend to choose the video whose thumbnail is more related to

the query. Therefore, query and its relevant video thumbnail

are closely bound up by their semantic meaning. Specifically,

each edge and two vertices associated with it in the bipartite

graph can generate a triad {qi, vi, ci}, where ci is the click

number of video vi in response to query qi. Obviously, the

larger the click number ci, the higher the semantic relevance

between qi and vi.

If a metric can be learned to measure the semantic relevance

between different queries and video thumbnails, we can also

measure the semantic relevance between video frames and

their textual side information by this metric naturally. There-

fore, we could use the click-through based data to strengthen

the learning process of our DSSE model.

Specifically, we obtain a set of triplets T from our click-

through bipartite graph, where each tuple
〈
qi, v

+
i , v

−
i

〉
consists

of a query qi, a video thumbnail v+i with higher click number

c+i and a lower clicked video thumbnail v−i with click number

c−i . Also, we involve some thumbnails not clicked by query

qi as v−i in the triplets, enforcing the projections of video

thumbnails with different semantics become far away in the

learnt subspace. Therefore, the click-through based semantic

relevance loss in DSSE is defined as:

L∗
rel(qi,v

+
i ,v

−
i ; Θ) =

max(0, γ + c+i Lrel(v
+
i ,qi; Θ)− c−i Lrel(v

−
i ,qi; Θ))

(6)

For v−i which is not clicked by query qi, we set c−i as 1.

The L∗
rel adopts the hinge rank loss form, it encourages the

distance between a positive pair (qi, v
+
i ) to be smaller than

the distance between a negative pair (qi, v
−
i ), and γ is the

margin term. Compared with the typical hinge loss function,

we further multiply the distance between video thumbnails and

queries by their click numbers in L∗
rel, in order to strengthen

the latent subspace learning. With this modification, the video

thumbnails with higher click numbers will be closer to the

query in the latent subspace, and therefore the model can better

discriminate the irrelevant and relevant video thumbnails given

a query.

The feature reconstruction loss based on the click data is

defined as :

L∗
rec(qi,v

+
i ,v

−
i ; Θ) = Lrec(v

+
i ,qi; Θ) + Lrec(v

−
i ,qi; Θ)

(7)



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 6

For training our DSSE model, we linearly combine L∗
rel and

L∗
rec with the tradeoff parameter α, hence we get the following

optimization problem:

min
Θ

∑

i

αL∗
rel(qi,v

+
i ,v

−
i ; Θ) + L∗

rec(qi,v
+
i ,v

−
i ; Θ) (8)

Since all the terms in Eq. 8 are convex and smooth, we directly

use gradient descent to optimize the overall objective function,

which is convenient in some open source software library for

machine learning like tensorflow and theano.

Because the training samples in the click-through video

dataset are limited, we also use the large scale click-through

image dataset to pretrain our model. The click-through image

dataset is very similar to the video dataset, with only the visual

data changed from video thumbnails to images. More details

will be discussed in the Experiments section.

C. Video Summary Generation

Let X = [x1,x2, · · · ,xn] ∈ R
dv×n denote the matrix of

n video frames in a test video X , with each column xi ∈
R

dv representing the visual feature of a frame. t ∈ R
dt is

the textual feature of the side information T associated with

video X . The side information T here can be various kinds

of surrounding text of videos like query, title, description and

so on.

After we get the optimized two uni-modal autoencoders

of our DSSE model, we can map the frames in video X

and the side information T into the learned latent subspace.

Specifically, we measure the semantic relevance score between

the ith video frame and the side information by computing the

distance between xi ∈ R
dv and t ∈ R

dt in the latent subspace.

Smaller distance means higher relevance, that is:

R (xi) = 1−N (Lrel(xi, t; Θ)). (9)

For simplicity, we normalize the distance between 0∼1 using

min-max normalization N and then we subtract the normalized

distance from 1 as the semantic relevance score.

Video Thumbnail Selection: Video thumbnail can be seen

as the most concise static video summary since it should de-

scribe the video content in a single image. So we conduct some

experiments for video thumbnail selection in this paper. When

we have obtained the video frame level semantic relevance

scores related to the side information, we can rank the frames

by their score numbers and the frame with the highest semantic

relevance score can be seen as the video thumbnail.

Dynamic Video Summarization: To generate a dynamic

video summary of length l, we first employ a video seg-

mentation algorithm to get video shots, and then compute

the shot-level semantic relevance scores by taking an average

of the frame level semantic relevance scores within each

shot. Formally, we want to solve the following optimization

problem:

max
z

m∑

i=1

ziR (si)

s.t.

m∑

i=1

zi |si| ≤ l.

(10)

Here m is the number of shots, zi ∈ {0, 1} and zi = 1
indicates that shot si is selected. R (si) is the shot-level

semantic relevance score of the ith shot. This maximization

is a standard knapsack problem, where R (si) is the value

of an item and the length |si| is its weight. The problem

can be solved globally optimal with dynamic programming.

A dynamic video summary which maximizes the overall

relevance score is then created by concatenating shots with

zi = 1 in chronological order. Following [28], l is set as 15%

of the video length.

IV. EXPERIMENTS

A. Datasets

We train our model on two click-through based datasets

and evaluate the performance of our model on two video

summarization datasets.

Clickture [47]: We leverage two different but similar click-

through datasets to train our DSSE model.

• Click-through video dataset: Click-through video dataset

is collected from Bing, which consists of 0.5 mil-

lion {query, video thumbnail, click number} triples,

where query is a textual word or phrase, click number

is an integer no less than one indicating the total clicked

number.

• Click-through image dataset: Click-through image dataset

is also collected from one year click-through data of Bing.

The dataset comprises of two parts, i.e. the training and

development (Dev) sets, the training set consists of 23.1

million {query, image, click number} triples, and there

are 79926 〈query, image〉 pairs in Dev set. The relevance

of each image to query in Dev set was manually annotated

on a three point ordinal scale: Excellent, Good, and Bad.

The scale of click-through video dataset is limited and not

enough to train a reliable model. Therefore, we leverage the

large scale click-through image dataset to pretrain our model

and then fine tune on click-through video dataset.

Thumb1K [29]: Thumb1K consists of 1037 query-video

pairs collected from Bing. The dataset provides almost 20

key frames as candidate thumbnails for each video, and

these candidate thumbnails are extracted by a representative

attributes based method [48]. All the candidate thumbnails

are labeled by five different scores: Very Good (VG), Good

(G), Fair (F), Bad (B), and Very Bad (VB). We apply video

thumbnail selection task on this dataset. Queries associated

with videos provided in this dataset can be seen as the side

information.

TVSum50 [28]: TVSum50 contains 50 videos downloaded

from YouTube in 10 categories defined in the TRECVid

Multimedia Event Detection (MED). The dataset provides

video title and an important score of 1 (not important) to

5 (very important) to each of uniform-length (2s) shots for

the whole video. Frame level important scores are labeled

the same as their relevant shots and there are 20 different

important scores labeled by 20 different people for each video.

We apply dynamic video summarization task on this dataset.

Titles of videos provided in this dataset can be seen as the

side information.
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B. Experimental Settings

Textual and Visual Features: For both video frames and

side information, we need deep neural models which are well-

suited for learning semantically-meaningful representations so

that the high level semantic relevance can be measured in the

latent subspace instead of the correlation between low level

features. Since the effectiveness of the skip-thought sentence

representations [49] in image-sentence retrieval and sentence

classification tasks, we employ the skip-thought vectors to

represent the side information of videos. The skip-thought

model is trained on 11038 books from BookCorpus dataset

[50] which includes about 74 million sentences, we can use the

trained model as an off-the-shelf sentence embedding method

as authors have concluded in the conclusion of the paper.

Specifically, the 4800-D combine-skip vectors which combine

both unidirectional and bidirectional sentence representations

are chosed in this paper. Inspired by the success of deep

convolutional neural networks (CNN), we employ AlexNet

[51] to generate image representations in this work, the feature

descriptor of each image or frame is obtained by extracting

the output of the fc7 layer of the AlexNet model and we init

the CNN with the parameters learned on ILSVRC-2012 [52].

The textual and visual features we extracted are normalized to

(0,1) domain based on the domain restriction of the activation

function Sigmoid.

Shot Segmentation: To generate dynamic video summary

on TVSum50 dataset, we first temporally segment a video

into disjoint intervals using KTS [33], a kernel-based change

point detection algorithm which is widely used in video

summarization tasks [25], [33].

Implementation details: Our DSSE model is implemented

based on tensorflow [53]. When training our DSSE model

by batch gradient descent, we set the batch size as 128,

the learning rate lr is set as 0.0001 at first and we apply

exponential decay to it. The training process will terminate if

the average training loss difference between two consecutive

epochs is less than the threshold, and the threshold value is

based on the initial loss value. The margin term γ in L∗
rel

is set as 0.5. The tradeoff parameter α is set as 100 and the

latent subspace dimension is set as 256 by grid search. For

more detailed analysis of them, see the next section. We spend

about 13 hours to train our DSSE model on an Ubuntu 16.04

server with Intel Xeon CPU E5-2650, 128 GB Memory and

NVidia Tesla M40 GPU. We use GPU only for extracting deep

visual features.

Baseline methods: Although our method can apply to both

video thumbnail selection and dynamic video summarization,

Thumb1K [29] only provides almost 20 visual representative

and comprehensive candidate thumbnails without the original

videos, some video summarization methods are inapplicable

to this dataset since video summarization is built on the

whole video content. So we compare different methods on

two different tasks below.

For video thumbnail selection, we compare:

• Random Selection: The method randomly selects one im-

age from candidate thumbnails as final video thumbnail.

• Video Representative Attributes based Method (ATTR)

[48]: The method considers the visual attributes of images

and selects the most visual representative video frame as

thumbnail.

• VSEM-VIDEO [29]: A deep visual-semantic embedding

model trained on click-through video dataset for query

dependent video thumbnail selection.

• MTL-VSEM [29]: A multi-task visual-semantic embed-

ding model trained on click-through image and video

dataset for query dependent video thumbnail selection.

For dynamic video summarization, we compare:

• Random Sampling: The method generates a summary

by randomly selecting shots from videos such that the

summary length is within the length budget l.

• Dictionary Selection based Video Summarization (DSVS)

[7]: The method formulates video summarization as a

dictionary selection problem using sparsity consistency,

where a dictionary of key frames is selected such that the

original video can be best reconstructed from this repre-

sentative dictionary. Each frame in a video is assigned

a representative score. Shot-level representative scores

are calculated by averaging frame-level representative

scores within each shot. We select shots with the highest

representative scores that fit in the length budget.

• Co-archetypal Analysis (CA) [28]: The method develops

a co-archetypal analysis technique that learns canonical

visual concepts shared between video and web images

retrieved by video titles. A summary is generated by

maximizing the relevance and the representativeness of

selected shots to canonical visual concepts, with length

budget l.

• MTL-VSEM [29]: A multi-task visual-semantic embed-

ding model mentioned above. Similarity between a video

frame and the associated user query is measured by their

inner product in the common space. Shot-level similarity

scores are calculated by averaging frame-level similarity

scores within each shot. A summary is generated by

maximizing the overall similarity between the selected

shots and the associated user query, and with length

budget l.

Evaluation Metrics: We evaluate video thumbnail selection

by two criteria: HIT@1 which computes the hit ratio for the

first selected thumbnail and Mean Average Precision (MAP)

which computes the mean precision for all the candidate

thumbnails. The MAP is computed by

MAP =
1

|Q|

|Q|∑

j=1

1

mj

mj∑

k=1

Precision (Rjk) . (11)

Where query set is defined as Q, for the jth query-video

pair, there are mj positive thumbnails, Precision (Rjk) is

the average precision at the position of returned kth positive

thumbnails. Since video thumbnails are labeled by five dif-

ferent scores, we can calculate the HIT@1 and MAP in two

different situations: set thumbnails with VG score as positive

samples and set thumbnails with VG or G score as positive

samples.
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Following by [25], [28], we measure the quality of gener-

ated dynamic video summary by multiple human annotations.

Specifically, given a proposed summary S and a user summary

Bi provided by the ith annotator, we compute the precision

pi and recall ri, according to the temporal overlap between

the two. Then the pairwise F1 measure is computed as

F1 =
1

N

N∑

i=1

2piri
pi + ri

. (12)

Where N is the number of user summaries per video, and

N is set as 20 in TVSum50 dataset. We evaluate video

summarization results by the average F1 score of all the

videos.

TABLE II
THE MAP OF DIFFERENT METHODS FOR VIDEO THUMBNAIL SELECTION

Method Image Video MAP(VG) MAP(VG&G)

Random × × 0.3870 0.6407
ATTR [48] × × 0.4852 0.7078

VSEM-VIDEO [29] ×
√

0.4729 0.7066
MTL-VSEM [29]

√ √

0.5228 0.7523

DSSE-VIDEO ×
√

0.5612 0.7557
DSSE-ALL

√ √

0.5922∗ 0.7821∗

DSSE-ALLglove

√ √

0.5763 0.7642
DSSE-ALLnr

√ √

0.5744 0.7742
DSSE-ALLclick1

√ √

0.5541 0.7617

Notes: MAP(VG) means the MAP value when positive score equals VG;
MAP(VG&G) means the MAP value when positive score equals VG and
G.

√
(×) represents whether or not the click-through image or video dataset

used in the training procedure of a method. *: Our method (DSSE) statistically
significantly outperforms all other baselines (p < 0.001) in pairwise t-test.

C. Evaluation of Video Thumbnail Selection

We first evaluate the performance of our DSSE method in

video thumbnail selection task, Table II summaries the MAP

scores, the HIT@1 results can be seen in Fig. 4.

There are some variations of our DSSE model that should

be explained first. DSSE-VIDEO means we only employ the

click-through video dataset to train our model, compared

to it, DSSE-ALL means we pretrain our model on click-

through image dataset and then fine tune on video dataset. The

“
√

” and “×” in Table II also interpret this difference. Since

our baseline method VSEM-VIDEO and MTL-VSEM applied

“glove” word features to represent the video titles and queries,

to be fair, we also use “glove” features in DSSE-ALLglove to

represent words, and then average the word features as the

sentence representation. In order to measure the usefulness of

our feature reconstruction loss, we remove it from the overall

loss in DSSE-ALLnr model, with only semantic relevance loss

preserved. To justify the influence of the click numbers, we

set them equal to 1 for all the positive query-thumbnail (and

query-image) pairs in DSSE-ALLclick1.

From the results, we can find that when we pretrain on

click-through image dataset and then fine tune on video

dataset, our DSSE-ALL statistically significantly outperforms

other methods whether on selecting one thumbnail or ranking

several candidate thumbnails. The performance improvement

between DSSE-VIDEO and DSSE-ALL proves that pretrain-

ing our model on click-through image dataset is beneficial.

Specifically, our method achieves higher accuracy than ATTR

method. It shows that compared to visual representative at-

tributes, the semantic relevance between video thumbnails

and queries measured by our DSSE model can better re-

flect people’s concern when they watch videos, and so as

to provide them a more satisfactory video thumbnail. With

almost the same setting and the same training data, our DSSE-

ALLglove outperforms MTL-VSEM at MAP(VG) by 10.2%,

and HIT@1(VG) by 7.7%. It shows that constructing a new

latent subspace for similarity measurement is a better choice

because the harmful modality specific interference can be

reduced. Compare DSSE-ALL with DSSE-ALLglove, we find

that a better sentence representation can further improve the

performance of our method. Another observation is that there

is a performance decrease from DSSE-ALL to DSSE-ALLnr

in terms of all the evaluation metrics, and it verifies the

effectiveness of the feature reconstruction loss. Considering

the data completeness will help to preserve more useful

common information in the latent subspace, and therefore ben-

efits the semantic relevance measurement. Compared DSSE-

ALL with DSSE-ALLclick1, we find that setting all the click

numbers equal to 1 can cause a performance degradation,

therefore the click number constrain has a great influence to

our DSSE model. Besides considering the ranking relationship

in different video thumbnails by hinge loss in L∗
rel, the

click numbers further quantify the semantic relevance between

queries and thumbnails, and can help the latent subspace

learning procedure. For a trained DSSE model, it only takes

18ms on average to select a video thumbnail for a query-video

pair.

We further conduct experiments to measure the impacts of

the tradeoff parameter α and the dimension of latent subspace

(hidden layer unit number). The MAP and HIT@1 curves

with different α and latent subspace dimensions are shown

in Fig. 5. As for the tradeoff parameter α, both too small

and too large values show poorer results, this is consistent

with the impact of α in our DSSE model. Too small value

of α overemphasizes the reconstruction loss of visual feature

and ignores the semantic relevance between video thumbnails

and side information, too large value reduces the influence of

the feature reconstruction term. However, the curve is very

smooth in a long range of α {10, 100, 1000, 10000}, thus

the performance of our model is not very sensitive to the

change of the tradeoff parameter. As for the dimension of

latent subspace, the selection of its value do not have a great

influence to our DSSE model. A smaller 64-D subspace and

a larger 2048-D subspace get slightly poorer results. We infer

that the semantic relevance between video frames and side

information cannot be fully learned in a smaller subspace,

and more training data are needed for a larger subspace.

Considering both performance and run time efficiency, a

moderate subspace dimension 256 or 512 is better for our

DSSE model.
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Fig. 4. HIT@1 score of different methods for video thumbnail selection.(a)
positive score equals VG; (b) positive score equals VG and G.
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Fig. 5. The HIT@1 and MAP performance curves with different tradeoff
parameters α and different subspace dimensions (hidden layer unit numbers).
(a) HIT1@1 performance curves when positive score equals VG and G; (b)
MAP performance curves when positive score equals VG and G.

TABLE III
THE F1 SCORE OF DIFFERENT METHODS FOR VIDEO SUMMARIZATION

Category Random CA
‡

[28]
DSVS

[7]
MTL-
VSEM

[29]

DSSE

VT 0.31 0.52 0.54 0.65 0.63
VU 0.32 0.55 0.51 0.56 0.60
GA 0.35 0.41 0.53 0.59 0.58
MS 0.32 0.58 0.50 0.55 0.64
PK 0.34 0.44 0.40 0.48 0.54
PR 0.37 0.53 0.46 0.50 0.48
FM 0.32 0.51 0.47 0.54 0.52
BK 0.33 0.47 0.45 0.44 0.51
BT 0.28 0.49 0.56 0.56 0.63
DS 0.34 0.48 0.47 0.50 0.55

AVG 0.33 0.50 0.49 0.54 0.57∗

Notes: *: Our method (DSSE) statistically significantly outperforms all other
baselines (p < 0.001) in paired t-test. ‡: CA used auxiliary grabbed web
images for learning and we provide their published results here.

D. Evaluation of Dynamic Video Summarization

Table III shows the pairwise F1 scores of different methods

on TVSum50 dataset. There are 10 categories in TVSum50

dataset: changing Vehicle Tire (VT), getting Vehicle Unstuck

(VU), Grooming an Animal (GA), Making Sandwich (MS),

Parkour (PK), Parade (PR), Flash Mob Gathering (FM), Bee-

keeping (BK), Attempting Bike Tricks (BT), Dog Show (DS).

The performance on one category is represented in a row

and the last row shows the average F1 score. Our method

significantly outperforms all other methods and is particularly

well on some categories like VU, MS, BT. It demonstrates

that when watching these videos, users pay more attention

to finding some specific content, so that the video titles can

give a valuable guide to grab semantic meaningful frames or

shots. However, the DSVS method which only considers the

representativeness of video frames and ignores their semantic

meaning is not effective to generate a good result. The CA

method needs auxiliary web images related to the video titles

because they need to learn co-archetypes between those web

images and video frames, but they do not publish the auxiliary

images for learning so that we report their published results

there. To be fair, we use their evaluation code to evaluate our

method. Although both of our DSSE and CA need auxiliary

data for learning a video summarization model, the biggest

difference is that they need to grab images from web and

start a learning procedure again when meeting a new video,

however, our model can directly generate the video summary

in 4.8s for a 4 minutes’ video.

Fig. 6 gives some qualitative results of our method. We can

see that in the first example, the predicted summary aligns well

with the human selection, it demonstrates that our method can

find video content that most people concern with the help of

video title. For the second example, we get a lower F1 score.

In this case, the video always contains scenes related to dogs

from the beginning to the end. Hence it is hard to choose

from so many relevant shots. Even so, the generated summary

is still a good depict of the video content. Some other video
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(a) Video Title: Spicy Sausage Sandwich; F1 Score: 0.6824

G
ro

u
n

d
T

ru
th

 

S
u

m
m

a
r
y

H
u

m
a
n

 

A
v

er
a

g
e 

 

S
co

re

P
re

d
ic

te
d

  
S

co
re

P
re

d
ic

te
d

  

S
u

m
m

a
ry

(b) Video Title: The Dog Show; F1 Score: 0.5618

Fig. 6. Example summaries of videos from TVSum50. For each video we show the average human labeled important score curve in the second row and
the predicted semantic relevance score curve based on our DSSE method in the third row. A peak in the human score curve indicates that this part is more
likely to be selected by people, while a peak in the semantic relevance score curve indicates a high prediction for this part. We mark the selected segments
by red and green bar on these two curves separately. Groundtruth summary based on the average human score and predicted summary based on the semantic
relevance score are shown in the first and the last row respectively.

summarization results of our method are available online.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a deep side semantic embedding

model for video summarization, which aims to find semantic

meaningful frames or shots of videos with the help of side

semantic information. For this purpose, we construct a latent

subspace by correlating the hidden layers of the two uni-

modal autencoders, so that the comparable common infor-

mation between video frames and side information can be

learned more completely, and their semantic relevance can

be measured more effectively. The large scale click-through

based data also supply a massive resources to help to train

a more robust model. Extensive experiments have verified the

effectiveness of our method. The results demonstrate that when

there are some specific content in videos that people are more

purposeful to watch, side information is really a good guidance

for video summarization because it can help to locate the

crucial parts in videos that people concern.

Moving forward, we plan to improve our method by con-

sidering the temporal relationship between video frames, the

https://www.youtube.com/watch?v=Ldn8kcJ1Y-U

motion features and other specific properties of videos when

building the video summarization model. Other kinds of side

information like video tags, captions, comments and so on will

also be investigated in the future.
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