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Abstract

Video super-resolution (VSR) aims to give a satisfying estimation of a high-resolution (HR)

image from multiple similar low-resolution (LR) images by exploiting their hidden redun-

dancy. The rapid development of convolutional neural network (CNN) techniques provide

numerous new possibilities to solve the VSR problem. Recent VSR methods combine CNN

with motion compensation to cancel the inconsistencies among the LR images and merge

them to an HR images. To compensate the motion, pixels in input frames are warped

according to optical-flow-like information. In this procedure, trade-off has to be made be-

tween the distraction caused by spatio-temporal inconsistencies and the pixel-wise detail

damage caused by the compensation.

We proposed a novel VSR method with the name, Video Super-Resolution via Dynamic

Local Filter Network, and its upgraded edition, Video Super-Resolution with Compensa-

tion in Feature Extraction. Both methods perform motion compensation via a dynamic

local filter network, which processes the input images with dynamically generated filter

kernels. These kernels are sample-specific and position-specific. Therefore, our proposed

methods can eliminate the inter-frame differences during feature extractions without ex-

plicitly manipulating pixels. The experimental results demonstrate that our methods out-

perform the state-of-the-art VSR algorithms in terms of PSNR and SSIM and recover more

details with superior visual quality.
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Chapter 1

Introduction

Image super-resolution (SR) refers to the technique that recovers a high-resolution (HR)

image from low-resolution (LR) images without changing the hardware sensors. As a long-

standing fundamental research topic in image processing field, it has wide applications in

medical imaging [26] [52] [62] [63] [64], satellite imaging [15] [34] [41] [59] [60], surveillance

[10] [27] [32] [43] [71] , etc. It can also be used to facilitate image/video enhancement

[5] [16] [17] [53] and text/object recognition [8] [29] [45]. There are mainly two branches:

single image super-resolution (SISR) and video super-resolution (VSR). We will discuss

them separately in the following sections.

1.1 Single image super-resolution

The SISR estimates the HR image from a single LR image. It can be viewed as a sophisti-

cated improvement of traditional image interpolation methods. Traditional interpolation

methods, like the nearest neighbor, bilinear and bicubic, usually re-sample the images with

simple averaging algorithms to ensure that the up-sampled images have smooth edges, as
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shown in Figure 1.1. However high frequency details of original images are lost in this

process. The interpolated image often looks blurry.

Nearest Bilinear Bicubic Hamming Lanczos [38] HR

Figure 1.1: Various image interpolation methods.

As most of the information has been discarded in the down-sampling process, it is

impossible to recover the original HR image perfectly. However, there are still left resources

which SISR can exploit to reconstruct the HR image much more accurately than plain

interpolations. While traditional SISR algorithms [14] [22] [23] [30] [68] usually focus on

inherent similarities of the LR images, machine learning based methods [18] [19] [35] [54]

[66] comprehend high-level knowledge by inspecting large amount of external examples

and use this knowledge to super-resolve target images. Figure 1.2 illustatres comparisons

between the bicubic interpolation and the enhanced deep super-resolution network (EDSR)

[42], one of the state-of-the-art SISR methods. The images are from the original paper of

EDSR.

Bicubic EDSR HR Bicubic EDSR HR

Figure 1.2: Comparison between bicubic interpolation and EDSR [42].
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1.2 Video super-resolution

VSR problem assumes multiple LR observations of an HR image are available in the form

of video frames. Abundant explicit redundancy existing in the frames can be naturally

utilized to construct HR images. Despite the redundancy is worthy of exploitation, how to

combine and assemble this information has become a key challenge, which limits extensive

explorations of VSR.

One of the main obstacles is the inter-frame inconsistencies which are caused by the

emergence, vanishing and transformation of the various objects in the frames. Recent

methods mostly employ motion compensation to address this issue. For the LR frames

are assumed to be consecutive and aligned along the time dimension, it is possible to

estimate the motion of objects, according to which transformations can be applied to

reduce the inconsistencies. Then the compensated frames can be easily combined into an

HR image. Figure 1.3 shows the experimental results of a state-of-the-art method, detail-

revealing deep video super-resolution. The result in Figure 1.3(d) is from 3 consecutive

frames, representing VSR. Because the neural network is trained to accept exact 3 frames

as input, 3 identical images are fed to the network to simulate the behavior of SISR for

comparison. The result is shown in Figure 1.3(b). It is obvious that the VSR generates

more accurate results than the SISR.

Neural network technique, especially the convolutional neural network, has achieved a

rapid development in recent years. It has provided numerous new possibilities and made

significant performance improvements to the VSR. The VSRnet proposed by Kappeler et al.

[33] uses optical flow technique to estimate the motion information among the input frames.

The frames are then warped according to the motion information and fed to an SRCNN [19]

inspired network for super-resolving. The video efficient sub-pixel convolutional neural

network (VESPCN) proposed by Caballero et al. [7] uses a motion compensation module,

which is inspired by the spatial transform network (STN) [31], to replace the optical flow

3



(a) Bicubic (b) SR with 3 identical frames

(c) Ground Truth (d) SR with 3 consecutive frames

Figure 1.3: Detail-revealing deep video super-resolution.

calculating procedure. In [54], an efficient sub-pixel convolutional neural network (ESPCN)

based module is used for super-resolving. Tao et al. [58] improved the VESPCN with a

sub-pixel motion compensation (SPMC) layer, which combines motion compensation and

sub-pixel up-sampling into one operation. Detailed review on these works will be given in

Chapter 3.

1.3 Thesis contributions

In our proposed methods, there are two contributions which improve the performance and

efficiency of the VSR task.

The first contribution is introducing dynamic local filter network for motion compen-

sation in VSR. To our best knowledge, this is the first time that the dynamic local filter

network is applied for VSR problem. Traditional CNN based VSR methods rely on pixel

4



manipulation based motion compensation which might damage the original pixel informa-

tion and make SR results suboptimal. We propose to use dynamic local filter networks for

estimating and compensating the motion among video frames. Two novel VSR networks

are proposed based on this idea and experimental results demonstrate that the proposed

networks outperform the state-of-the-art methods.

The second contribution is introducing multi-scale up-sampling structure to VSR for

the first time. Traditional VSR networks are separately trained for different scale factors,

which unnecessarily consumes large amount of time for redundant training and storage

space. In the proposed VSR network, we introduce a multi-scale up-sampling structure

which utilizes the inter-scale correlation and super-resolves images at multiple scale factors

simultaneously. A considerable time and space can be saved.

1.4 Thesis structure

We focus on video super-resolution in this thesis and proposed two novel methods: video

super-resolution via dynamic local filter network (DLVSR) and video super-resolution with

compensation in feature extraction (VSR-CFE). Both methods share the same inspiration

which introduces dynamic filter network with locally-connected layers to VSR. The rest

of this thesis are organized as follows. Chapter 2 introduces the basic concepts of neural

network and some SR-related components. Chapter 3 illustrates three SISR methods and

three VSR methods in detail. Chapter 4 presents the proposed SR methods. Chapter 5

gives our experimental results and Chapter 6 concludes this thesis.

5



Chapter 2

Related concepts

2.1 Quality evaluation

To estimate the performance of algorithms, quality evaluation is an essential procedure

in image processing area. There are many approaches proposed to compare the processed

images with the ground truth. In the research of SR, the most commonly used quality eval-

uation metrics are Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM),

by which, the super-resolved HR images are compared against the ground truth.

First, the mean squared error (MSE) is formulated as

MSE(Is, Ig) =
1

MN

M−1
∑

i=0

N−1
∑

j=0

[Ig(i, j)− Is(i, j)]
2, (2.1)

where Is is the super-resolved image, Ig is the corresponding ground truth. Both of the

images are of size M ×N . Based on the MSE, PSNR can be defined as

PSNR(Is, Ig) = 10 · log10
[

(MAX−MIN)2

MSE(Is, Ig)

]

, (2.2)

where MAX and MIN are the maximum and minimum possible pixel values of the image

respectively. For 8-bit gray-scale images, the MAX is 28 − 1 which equals to 255 and

6



the MIN is 0. In the scenario of image SR, the related images are usually colored and

represented in RGB or YCbCr color space. For an RGB image, the PSNR is measured on

R, G, B channel individually and averaged afterwards. For a YCbCr image, due to most

of its information has been concentrated in the luminance (Y) channel, PSNR is usually

only applied on the luminance channel. The larger the PSNR is, the better the image is

recovered.

Although PSNR generally indicates the quality of images, it is also known to perform

poorly when there are differences in translation, contrast, brightness or other factors be-

tween the measured image and the ground truth. SSIM proposed by Wang et al. [65]

has been proved to be more consistent with human visual perception than PSNR. It is a

combined comparison on the luminance, contrast and structure differences between two

images and can be formulated as

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ, (2.3)

where α, β, γ are weights. The l(x, y), c(x, y), (x, y) are the comparison measurements on

luminance, contrast and structure respectively, and are defined as

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
, (2.4)

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
, (2.5)

s(x, y) =
σxy + c3

σxσy + c3
, (2.6)

where µx and µy are the average of x and y respectively. σ2
x and σ2

y are the variance of x

and y respectively. σxy is the covariance of x and y. c1 = (k1L)
2, c2 = (k2L)

2, c3 =
1
2
c2 are

variables to stabilize the division with weak denominator, where L is the dynamic range

of the pixel-values, k1 = 0.01 and k2 = 0.03 by default. SSIM is usually only taken on

luminance channel. The larger the SSIM is, the better the image is super-resolved.
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2.2 Neural networks

Neural networks refer to a family of computer programs with biological neural network

inspired architectures. As the quintessential deep learning models, the neural networks

aim to approximate some function f(·). For instance, an image SR function can be defined

as

ISR = f(ILR; θ), (2.7)

where ILR is the low-resolution image and ISR is the super-resolved image. The parameter

θ is learned to be the value which results in the best function approximation. With properly

designed architectures and enough training data, neural networks can learn to approximate

complex function mappings.

2.2.1 Neuron

Neurons are elementary units in a neural network. They are mathematical functions which

receive one or more inputs xi and produce an output y. Usually, each xi is assigned with

a corresponding weight wi. Then the weighted sum of all inputs, added with an optional

bias b, is passed to an activation function f(), which performs a non-linear transformation

to generate the output. The output is sometimes called activation as well. The behavior

of a neuron with k inputs can be formulated as

y = f

(

k
∑

i=1

wixi + b

)

. (2.8)

An illustration of a neuron is given in Figure 2.1. In addition, when the inputs and the

output are represented as vectors, the neuron can also be defined as

y = f
(

w⊤x+ b
)

. (2.9)
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Figure 2.1: A basic neuron with k inputs.

2.2.2 Neural network

The output generated by a neuron can be passed to multiple other neurons as an input.

Multiple neurons can thus be connected together to form a network. From the functional

view, neuron connection is equivalent to function composition and a neural network is

a function composited by smaller functions. Inside the network, neurons are aligned in

hierarchy which is referred as layers in neural network context. The layers are functions as

well. For example, there might be three layers cascaded together, denoted as f1(·), f2(·)

and f3(·). The equivalent function of the network f(x) can be formulated as

f(x) = f3(f2(f1(x))). (2.10)

This chain-like structure is the most commonly used architecture of neural networks. The

neurons in the first layer, which is the f1(·) in this case, receive inputs directly from the

inputs of the network. Therefore the first layer is also called input layer. The layer f2(·) is

named the second layer intuitively and the last layer f3(·) is the third layer, also called the

output layer. The neurons of the output layer generate outputs as the output of the whole

9



network. The layers between the input layer and the output layer, like f2(·), are called

hidden layers. The number of layers gives the depth of a network. It is this terminology

from which the name “deep learning” comes. Figure 2.2 illustrates a 4-layer neural network

with 2 hidden layers.

Input layer

Hidden layer 1 Hidden layer 2

Output layer

Figure 2.2: A 4-layer neural network.

2.2.3 Activation function

Assuming we have a 3-layer neural network formulated as f(x) = f3(f2(f1(x))), if f1(·),f2(·)

and f3(·) were all linear functions, then the whole network f(x) would remain a linear func-

tion, which makes the composition meaningless. To approximate more complex functions,

non-linearity must be introduced. As we mentioned in Section 2.2.1, the weighted sum of

the inputs of a neuron is passed through an activation function. The activation function

10



plays an important role in neural network, because it brings the non-linearity.

Quite an amount of activation functions have been invented. In this section, we will

give a brief introduce to three of the most commonly used activation functions: sigmoid,

tanh and ReLU.

Sigmoid function. A sigmoid function, also called a logistic function or a logistic curve,

is a “S” shape function which has applications in a wide range of fields, including proba-

bility, machine learning, statistics and so on. In the context of neural network, it is usually

defined as

Sigmoid(x) =
1

1 + e−x
. (2.11)

The corresponding graph is illustrated in Figure 2.3. The function takes a real number

input x in the range of [−∞,∞] and outputs a real number value between 0 and 1. Besides

introducing non-linearity, the sigmoid function is used to clamp outputs to within [0, 1] as

well. For example, when a neural network is supposed to work as a binary classifier, its

target class is often denoted as 0 or 1. Hence a sigmoid activation function will probably

be used on the last layer to ensure the output values fall in a valid range.

Hyperbolic tangent function. The hyperbolic tangent function, or tanh function for

short, is an old mathematical function which was first used in 1774. It is defined as the

ratio between the hyperbolic sine and hyperbolic cosine function, as the formulation below

tanh(x) =
sinh(x)

cosh(x)
, (2.12)

where sinh(x) and cosh(x) are defined as

sinh(x) =
1− e−2x

2e−x
, (2.13)

cosh(x) =
1 + e−2x

2e−x
. (2.14)

11



10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

Figure 2.3: The sigmoid function.

Therefore the formulation of tanh(x) can be simplified as

tanh(x) =
ex + e−x

ex + e−x
. (2.15)

The graph is shown in Figure 2.4. Similar to the sigmoid function, the tanh function takes

a real number input within [−∞,∞], but outputs a real number value between −1 and 1.

Actually, the tanh function is a rescaled sigmoid function as the equation below

tanh(x) = 2 · sigmoid(2x)− 1. (2.16)

Although the tanh function and the sigmoid function seem to be interchangeable, practical

differences do exist, especially when the training data is normalized.

• Because of the larger output value range than the sigmoid function, the tanh function

has stronger gradients around x = 0 which might help network converge faster.

• The tanh function can reduce bias in the gradients due to being symmetric with

respect to the origin.
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Explanation in detail can be found in [70].
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Figure 2.4: The tanh function.

Rectified linear unit. A rectified linear unit (ReLU) is defined as

ReLU(x) = max(0, x), (2.17)

which means it outputs the positive part of its argument as shown in Figure 2.5. ReLU is

currently the default recommended activation function for use with most neural network

[48]. Although ReLU applies non-linear transformation, the function remains very close

to linear ones. It can be viewed as a concatenation of two linear functions. Due to ReLU

is almost linear, it has properties which make both linear and non-linear models easy

to optimize. The ReLU(x) has zero gradient for x < 0 and is non-zero centered, non-

differentiable at x = 0. These properties can lead to problem in some specific situations.

Therefore, some variants of the ReLU are introduced.

The leaky ReLU is a variant which allows a small, non-zero gradient when the unit is
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Figure 2.5: ReLU function.

not active. It is formulated as

LeakyReLU(x) =















x if x > 0

0.01x otherwise

. (2.18)

Illustration can be found in Figure 2.6.

The exponential linear units (ELUs) [13] make the mean of its outputs closer to zero

and have been shown to be able to obtain higher classification accuracy than the standard

ReLU. The ELU is defined as

ELU(x) =















x if x ≥ 0

a(ex − 1) otherwise

, (2.19)

where a is a positive hyper-parameter to be tuned. Its graph is shown in Figure 2.7.
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Figure 2.6: The leaky ReLU function.
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Figure 2.7: The ELU function.
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2.3 Training neural networks

Neural networks is a family of machine learning models. The machine learning is defined

by Mitchell [47] as

“ A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P , if its performance at tasks in T , as measured by P ,

improves with experience E. ”.

Machine learning methods can typically be classified into two categories: supervised

learning and unsupervised learning. In supervised learning, example inputs and corre-

sponding desired outputs (labels) are shown to the model. For unsupervised learning, no

label is given. In this thesis, we only focus on supervised learning.

2.3.1 Parameter and hyper-parameter

The behavior of a machine learning model is usually parameterized by a set of tunable

parameters. The procedure to train the model is to find the optimal parameters with the

help of the training dataset. Besides the parameters, there are other configurations which

control behaviors of the model but are not adapted by the learning process. To distinguish

from the parameters, these configuration are call hyper-parameters.

2.3.2 Dataset

Machine learning models learn and make predictions on data. The data used to support

this work-flow are usually split as three datasets: training, test and validation datasets.

Initially, the training dataset is shown to model. Learning algorithm tunes the model

parameters to make it fit to the training data. The fitted model then makes prediction
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on the validation dataset. The validation dataset gives an unbiased estimation on the

training progress. Finally, the test dataset is used to measure the performance of the

trained models.

2.3.3 Loss function

A loss function is a function that maps one network evaluation to a real number, rep-

resenting a loss value associated with this specific evaluation. The network training or

optimization task seeks to minimize the loss value by tuning parameters. We will intro-

duce several commonly used loss functions in this section.

MSE and L2 loss. MSE is short for the mean squared error, which is defined as

MSE(Î , Igt) =
1

MN

M−1
∑

i=0

N−1
∑

j=0

[

Igt(i, j)− Î(i, j)
]2

, (2.20)

where Î is the predicted image, Igt is the ground truth. Both of them are of size m × n.

MSE loss is usually used when the outputs are images and the PSNR is the primary metric.

L2 loss is the square of the L2 norm of the difference. In brief, it is just the sum of squared

errors whose definition is

L2(Î , Igt) =
M−1
∑

i=0

N−1
∑

j=0

[

Igt(i, j)− Î(i, j)
]2

. (2.21)

However, due to pixel values are mostly normalized within [0, 1], the quadratic property of

MSE/L2 loss may impede the convergence speed.

MAE and L1 loss. MAE, short for the mean absolute error, is formulated as

MAE(Î , Igt) =
1

MN

M−1
∑

i=0

N−1
∑

j=0

∣

∣

∣
Igt(i, j)− Î(i, j)

∣

∣

∣
, (2.22)
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where | · | denotes the absolute value. Similarly, L1 loss is the sum of absolute errors,

defined as

L1(Î , Igt) =
M−1
∑

i=0

N−1
∑

j=0

∣

∣

∣
Igt(i, j)− Î(i, j)

∣

∣

∣
. (2.23)

Because their linear property, large errors have relatively smaller influence than MSE and

L2 loss. Therefore, MAE and L1 loss is more robust to outliers.

Cross entropy. The cross entropy is a measurement of the divergence between two

probability distributions in information theory. It can be used as the loss function for

classification tasks. Let pi be the true probability distribution and qi is the predicted one.

Considering a binary classification task, we assume p ∈ {y, 1− y} and q ∈ {ŷ, 1− ŷ}. The

cross entropy loss is then defined as

CrossEntropy(p, q) = −ylogŷ − (1− y)log(1− ŷ). (2.24)

Cross entropy is the most popular loss function for classification tasks, but not commonly

used for image processing problems.

2.3.4 Optimization

Optimizing a neural network aims to minimize the loss function L(x). The absolute lowest

value of L(x) is a call global minimum. Single or multiple global minima may exist for L(x).

It is also possible that there are local minima which are not globally optimal. Moreover,

the input of L(x) is multidimensional, which means the optimization task will be quite

challenging. In the context of neural network, we are usually satisfied with finding a value

of L(x) which is very low, but not necessarily a minimum.

Almost all neural network optimizations are powered by the stochastic gradient decent

(SGD) algorithm [6]. The SGD is an extension of gradient decent algorithm. In brief,
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the gradient decent algorithm treats each tunable parameter as one dimension of a high-

dimensional space. The graph of the loss function will be a surface in this high-dimensional

space. The algorithm drives an imaginary particle to move down the loss surface from a

random-initialized position according to the gradient at its position. The iterative update

procedure can be formulated as

w := w − η∇Qi(w), (2.25)

where w denotes the parameters, Qi(w) is the value of loss function at i-th iteration, η

is the step size of update operation and is more frequently called the learning rate. The

coordinates where the particle finally settles will be the optimized parameters.

In SGD, the true gradient is approximated by a gradient of a batch of sampled data.

Thus it is possible to make several passes over the training dataset. For each pass, the data

can be shuffled to prevent periodic arrangements. The SGD algorithm can be presented in

pseudo-code as below.

Input: Training data, learning rate η

Output: Model parameters w

Choose an initial vector of parameters w and learning rate η;

repeat

Randomly shuffle examples in the training set;

for = 1, 2, ..., n do

w := w − η∇Qi(w);

end

until an approximate minimum is obtained ;

In machine learning, the learning rate of SGD has been considered problematic. Set-

ting learning rate too high makes the training diverge; setting it too low slows down the

convergence. Because of these issues, several extensions of SGD have been proposed.
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SGD with momentum. SGD with momentum [57] determines the next update as a lin-

ear combination of the gradient and the previous update. The behavior can be formulated

as

∆w := w + α∆w − η∇Qi(w). (2.26)

The name momentum derives from an analogy to momentum in physics. The particle in

the parameter space gains acceleration from the gradient. Compared with classical SGD,

SGD with momentum prevents oscillations by attempting to keep traveling in the same

direction.

AdaGrad. AdaGrad (short for adaptive gradient) algorithm [21] introduces per-parameter

learning rate to classical SGD. This property potentially decreases the learning rate for

less sparse parameters and increases the learning rate for sparse ones. For each parameter

wj, the update procedure is defined as

wj := wj −
η

√

Gj,j

gj, (2.27)

where η is a base learning rate, Gj,j is defined as

Gj,j =
t
∑

τ=1

g2τ,j, (2.28)

where gτ is the gradient at iteration τ .

RMSProp. RMSProp (for Root Mean Square Propagation) [61] is another per-parameter

adaptive learning rate algorithm. The learning rate of a weight is divided by a running

average of its recent gradients. The initial running average is defined as

v(w, t) := γv(w, t− 1) + (1− γ)(∇Qi(w))
2, (2.29)

where γ is a factor to control forgetting. The parameters are then updated as

w := w − η
√

v(w, t)
∇Qi(w). (2.30)
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Adam Adam [36] is short for adaptive moment estimation and is an update to the

RMSProp method. In Adam, the running averages is calculated on both the gradients and

the second moments of the gradients. For the t-th iteration, the update procedure is given

by

m(t+1)
w ← β1m

(t)
w + (1− β1)∇wL

(t), (2.31)

v(t+1)
w ← β2v

(t)
w + (1− β2)(∇wL

(t))2, (2.32)

m̂w =
m

(t+1)
w

1− βt
1

, (2.33)

v̂w =
v
(t+1)
w

1− βt
2

, (2.34)

w(t+1) ← w(t) − η
m̂w√
v̂w + ǫ

, (2.35)

where ǫ is a small number used to prevent division by 0, β1 and β2 are the forgetting

factors. Adam is currently the default recommended optimizer for most neural networks.

2.3.5 Back-propagation

When a neural network is evaluated, it receives an input x and produces an output ŷ. The

information flows forward through the input layer, hidden layers and finally the output

layer. This procedure is called forward propagation. When the network is being trained, the

outputs are fed to the loss function to produce a scalar loss value. The back-propagation [70]

refers to the algorithm which allows the information flows from the loss value backwards

through the network in order to calculate the gradient efficiently.

The back-propagation algorithm is based on the chain rule of calculus. The chain

rule aims to compute the derivatives of functions composed of other functions of which

derivatives are known. As an example, let f and g both be functions in real number

domain and satisfy y = g(x) and z = f(g(x)) = f(y). The chain rule states that

dz

dx
=

dz

dy
· dy
dx

. (2.36)

21



Based on the chain rule, the back-propagation algorithm can be clearly demonstrated

with the help of computational graphs. Assuming we are trying to calculate the derivatives

for a function f , defined as

f(x, y, z) = (x+ y) · z.

The function can be expressed as a computational graph as illustrated in Figure 2.8.

Assuming the training data we are using is x = −2, y = 5, z = −4, the forward propagation

computes the results for each operation node as shown in the figure to the left. The

back-propagation algorithm starts from the end and recursively computes the gradients

conditioned on the property of each operation node all the way to the inputs, as shown in

the figure to the right.
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Figure 2.8: Forward and backward propagation.

The back-propagation term is often misunderstood as the optimization of networks.

Actually it only refers to the procedure of calculating the gradients. The SGD-family

algorithms described in Section 2.3.4 optimize the network according to the gradients.

2.4 Convolutional neural network

Over recent years, the research on computer vision has been drastically altered and pushed

forward through the adoption of the convolutional neural networks (CNNs) [37] [39]. In
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this section, we will give a brief introduction to the concept of CNN and its related termi-

nologies.

2.4.1 Convolutional layer

As we described in Section 2.2.1, the behavior of a neuron can be expressed as a function

of vectors as Equ. (2.9). Similarly, a neural network layer can be formulated as

y = f
(

W ·X+ b
)

, (2.37)

where W and X are matrices representing weights and inputs respectively, b and y are vec-

tors for bias and output, the symbol · represents matrix multiplication. The convolutional

layer, which is the core component of CNNs, is quite similar to regular neural network

layer. The input, weight, bias and activation function remain unchanged. While instead

of matrix multiplication, the input and weight are combined with convolution operation in

convolutional layers. Its behavior can be expressed as

y = f
(

W ∗X+ b
)

, (2.38)

where ∗ is convolution operation.

CNN is invented for computer vision task and its inputs are assumed to be images.

Regarding the weights are convolved to images, they can be viewed as coefficients of filters

as well. Therefore the terminology weight in the context of CNN is usually called kernels as

well. Processing images by CNNs is equivalent to extracting features from input images by

filters. Therefore, CNN is actually a filter-based image processing system with self-learned

filter coefficients.

Compared with regular neural network layers, convolutional layers have several unique

concepts. We will describe them in the following paragraphs.
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Input and output channel. Convolutional layers are commonly used to extract various

features from multi-channel images. The channels of the input image/feature are called

input channels. Similarly, the channels of output are called output channels. In a CNN,

convolutional layers are commonly aligned in cascading style, which means the output

channel number of the previous layer should match with the input channel number of the

current one.

Kernel size. Because the weights of convolutional layers are just filter coefficients, the

size of the filter, also known as kernel size, is a key hyper-parameters for convolutional

layers. To simplify the calculation of output shape, the kernel size is usually made of odd

number. For computation efficiency, the size is commonly set to 3 × 3, 5× 5 or 7× 7.

Padding. For most of convolutional layers, the input is zero-padded before it is fed to

the layer. Without this operation, the size of outputs will be shrunk. For example, let the

input be a H ×W pixels image, the convolutional layer have a kernel of kH × kW pixels.

The size of the output image will be

(H − 2(kH\2))× (W − 2(kW\2)), (2.39)

where \ denotes integer division. Zero padding the input enables the kernel size and the

output size to be controlled independently, so that the users do not need to balance between

the kernel size and the network depth.

Stride. Convolution operation slides the kernel across the image. Stride of a convolu-

tional layer is the step of sliding. For most cases, the stride is 1, which means the kernel

is moved one pixel at a time. In some cases, stride 2 is used to reduce the output size. We

will discuss more about this configuration in Section 2.4.2. Stride larger than 3 is rarely

used in practice.
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Let us use a concrete example to demonstrate the behavior of a convolutional layer in

detail. Assume that 2 different features, denoted as Y1 and Y2, are needed to be extracted

from a 3-channel image. The three channels are denoted by I1, I2 and I3. So the con-

volutional layer will have 3 input channels and 2 output channels. Three sets of weight,

W11,W12,W13, are needed to extract the first feature as below

Y1 = W11 ∗ I1 +W12 ∗ I2 +W13 ∗ I3. (2.40)

Similarly, another three weights, W21,W22,W23, are needed for the second feature,

Y2 = W21 ∗ I1 +W22 ∗ I2 +W23 ∗ I3. (2.41)

If the kernel size is set to 3×3, a 1-pixel padding is probably needed as well. An illustration

of such a convolutional layer is provided in Figure 2.9.
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Figure 2.9: A convolutional layer.

As described previously, there might be several sets of weight involved for a multi-

channel convolutional layer. To simplify the expression, these weights can be stacked
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together as a tensor with multiple dimensions. The shape of the weight tensor can be

denoted as

oC × iC × kH × kW, (2.42)

where oC and iC denote the number of output channels and the number of input channels

respectively. kH and kW denote kernel height and kernel width respectively. For the

previous example, the shape of the weight tensor W will be 2× 3× 3× 3,

If we reshape the size of an input tensor from iC×H×W to H×W×iC×kH×kW and

transpose the weight tensor to iC×kH×kW × oC, a multi-channel convolution operation

can be expressed as a tensor multiplication,

YH×W×oC = XH×W×iC×kH×kW ·WiC×kH×kW×oC . (2.43)

In practice, the tensor multiplication can be calculated in parallel and be significantly

faster than regular convolution. Therefore it is used by most of recent neural network

implementations [3] [11] [51].

2.4.2 Pooling layer

Pooling layers are frequently used with convolutional layers in typical CNNs. A pooling

layer receives the output of its previous layer and substitutes the value at a certain position

with its nearby summary. For example, the max pooling layer produces the maximum value

within a rectangular neighborhood and the average pooling layer reports the average value.

Pooling layers help the representations learned by the network to be more invariant to

small translations of the inputs. Being invariant to translation means that if the input is

shifted by a small amount, the output is not changed. When existence detection is preferred

rather than location detection, the property of translation invariance can be quite useful.

The concepts of kernel size, padding and stride in convolutional layers also apply to

pooling layers. It has to be noted that the kernel size in pooling layers refers to the size
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of the rectangular support area. There is no learnable kernel existing in max and average

pooling layers. Illustrations of a max pooling and an average pooling layer are given in

Figure 2.10.
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Figure 2.10: Pooling layers.

As shown in Figure 2.10, the output size of pooling layers will shrink when stride is

greater than 1. Therefore, pooling layers are also used for down-sampling to reduce the

computational cost.

In recent works, convolutional layers with increased stride are often used to replace

pooling layers. It is argued that the replacement has the following advantages.

• The learnable kernels in convolutional layers provide more flexibility than regular

pooling layers.

• The gradients of convolutional layers are less sparse than pooling layers (especially

max pooling). This property might be helpful for the convergence of some networks,

such as the generative adversarial networks (GANs).
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2.4.3 Common CNN architectures

Most of neural network architectures on computer vision have one or more feature extrac-

tion components. Input images are converted to high-level abstracts by these components

for classification or synthesis. In this section, we will describe several commonly used

feature extraction components.

VGGnet refers to the family of network configurations proposed by Simonyan et al. in

their work [55]. VGG is short for Visual Geometry Group which is the organization the

authors belong to. Its variants, VGG-19 and VGG-16, won the first and second place of

ImageNet Large Scale Visual Recognition Competition (ILSVRC) in 2014. Because VGG-

16 achieves a good balance between performance and efficiency, it is commonly employed

by other works as components. As illustrated in Figure 2.11, VGG-16 has 16 layers with

learnable weights. The 13 convolutional layers work for feature extraction and the 3 fully

connected layers are for classification. VGG-16 achieves fairly good performance while

using a limited number of parameters. Therefore, although better performing components

exist, VGG-16, especially its 13 convolutional layers, are still frequently employed as parts

of larger networks.
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Figure 2.11: A VGG-16 network.
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Residual block. As the CNN networks go deeper, problems appear and impede further

increase of the performance. One of them is the vanishing/exploding gradients problem

[4] [24] which may stop the network from further training. As an example, tanh activation

function has gradients in the range (0, 1]. When the gradients of a deep network are

computed by back-propagation with chain rule, a large amount of such small numbers

are multiplied together to produce gradients for the front layers. This effect makes the

error signal decrease exponentially. The front layers will be trained very slowly. The other

problem is the degradation of accuracy. When the depth of network increases, accuracy

gets saturated and then degrades rapidly, but not due to over-fitting.

To address these issues, He et al. proposed the deep residual learning network (ResNet)

[28] . A ResNet is formed by stacking multiple residual blocks. Each residual block

explicitly guides the layers to learn residual functions with reference to the layer inputs,

instead of directly learning target functions. A typical residual block is shown in Figure

2.12. The residual learning architecture makes extreme deep networks easier to optimize.

Due to the significantly increased depth, the ResNet achieves outstanding performance.
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Figure 2.12: Residual block.

Autoencoder is also known as encoder-decoder architecture. In the context of neural

network, it refers to a network which is trained to attempt to copy its input to its output.
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The network aims to learn data representation via an encoding function h = f(x) and

a decoding function r = g(h). The architecture of a typical autoencoder is shown in

Figure 2.13. If the network learns to always satisfy g(f(x)) = x, it will not be especially

useful. Instead, only approximate copy is permitted in autoencoders. The dimensionality

of internal layers are smaller than external ones. Therefore, the network is forced to

prioritize which parts should be copied. Thus autoencoders often learn useful high level

representations from training data.
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Figure 2.13: Autoencoder.

2.4.4 Spatial invariance components

A desirable computer vision system should be able to disentangle object pose and part

deformation from texture and shape in images. To provide more flexible mechanism to

deal with variations in the spatial arrangement of data, several architectures have been

proposed and will be discussed in this section.

Pooling layer. As we have mentioned in Section 2.4.2, conventional CNNs introduce

pooling layers to make networks spatially invariant to the position of features. Small

translations of the input will not impact the output. However, due to the fact that pooling
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summarizes a local rectangular area, spatial information is inevitably damaged. Moreover,

because the kernel size of pooling layers are usually small (e.g. 2 × 2 pixels), only slight

translations can be tolerated. A deep hierarchy has to be used to realize more general

spatial invariance.

Localization
Network

 Transform
Matrix

Grid
Generator

⨂

Sampler

Figure 2.14: Spatial transform network.

Spatial transform network. The spatial transform network (STN) proposed by Jader-

berg et al. [31] provides an active approach to make networks spatial invariant. STN

employs a localization network to estimate a transformation matrix on each input sample,

including scaling, cropping, rotations and so on. Then the matrix is used to generate a

sampling grid. Finally the input is re-sampled according to the grid. The sampled result

will be a transformed version of the input. Unlike pooling layers, whose receptive fields are

fixed and local, the STN is dynamic and is performed globally. The dynamic here means

the behavior of the network will change along with its input.

Dynamic filter network In conventional convolutional layers, the filter kernels are

learned via training and fixed for evaluation. Brabandere et al. [67] proposed a new frame-

work called dynamic filter network, where the network generates a set of filter kernels which

is associated to a specific input. The dynamic filter network has similarities with the STN.

Both of them employ a designated network to dynamically report an estimation of the

31



 Input A
Filter-generating

Network

 Input B

Filters
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Figure 2.15: Dynamic filter network.

input. Then the estimation is applied somehow to the input. For the STN, the estimation

is a transform matrix and for the dynamic filter network, it is filter kernel. Figure 2.15

gives an illustration of the framework. In a dynamic filter network, different variants of the

input can be used for estimation and kernel application. Besides conventional convolution,

the dynamic filter network can also be extended as locally connected layers, called dynamic

local filter layer. The generated kernels are translation variant to the input. Different fil-

ters are applied to different positions. As a key component of our proposed network, the

dynamic local filter layer will be described in detail in Chapter 4.
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Chapter 3

Literature review

3.1 Single image super-resolution

Single image super-resolution (SISR) aims to recover an underlying HR image from a given

LR image, assuming the original image is not available. In recent years, neural network

techniques have provided numerous new possibilities for SISR and pushed the research

much forward. We will review several important neural network based SISR methods in

this section.

The super-resolution convolutional neural network (SRCNN) proposed by Dong et

al. [19] is considered to be one of the first works which introduces CNN to SR tasks.

The authors summarized conventional sparse coding based SR methods [69] as a 3-stage

framework:

1. Patch extraction: various features are extracted from LR images in the form of high-

dimensional vectors which are called feature maps;

2. Non-linear mapping: the feature maps are non-linearly transformed to another set

of feature maps;
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3. Reconstruction: the feature maps produced by the non-linear mapping are aggregated

to the final HR images which are expected to be similar to the ground truths.

The authors found that all of the three stages can be described as convolutional layers.

The first convolutional layer performs feature extraction on the bicubic up-sampled input

images. The second one applies non-linear transformation to the feature maps with its

activation function. The third one averages the transformed feature maps to an HR image,

where the average behavior can also be realized as convolution. The architecture of the

SRCNN is illustrated in Figure 3.1. With such a lightweight structure, the SRCNN outper-

formed most of traditional SR algorithms. Moreover, it provided a reasonable theoretical

interpretation on its inherent mechanism.

responses

of patch of
neighbouring

patches

 Patch extraction 

and representation

Non-linear 

 mapping
Reconstruction 

Figure 3.1: The architecture of the SRCNN (adopted from the original paper [19].)

The efficient sub-pixel convolutional neural network (ESPCN) proposed by Shi et al. [54]

can be considered as an improvement of the SRCNN. In the SRCNN, the input to the net-

work is bicubic up-sampled LR images, hence the SR operation is performed in HR space.

The authors of the ESPCN proposed to process the input images by convolutional layers

in LR space. Then the extracted feature maps are mapped to the HR space via a novel

sub-pixel convolutional layer. The sub-pixel convolutional layer, also called pixel-shuffle
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layer, arranges multiple LR features as sub-pixels in the HR space as illustrated in Figure

3.2. Convolution in LR spaces can substantially reduce the complexities of computation

and memory. In addition, compared with the predefined interpolation, the network may

implicitly learn better LR-to-HR mapping. Nowadays, the sub-pixel convolutional layer in

the ESPCN has been accepted as a standard up-sampling layer in neural network research.

Figure 3.2: The architecture of the ESPCN (adopted from the original paper [54]).

Ledig et al. proposed two SISR networks in their work [40], the super-resolution residual

network (SRResNet) and the super-resolution generative adversarial network (SRGAN).

The SRResNet is a 16-block ResNet [28] based SR network optimized for MSE loss. The

ResNet structure makes training very deep network much easier than conventional CNNs.

This advantage helps the SRResNet to employ 32 convolutional layers which improve the

network performance significantly. The architecture of the SRResNet is exactly the same

with the generator network of SRGAN, which can be found in Figure 3.3.

The SRGAN is built on SRResNet and is probably the first generative adversarial net-

work (GAN) [25] based SISR network. In the SRGAN, the MSE loss of the SRResNet is

replaced by a perceptual loss which is calculated by a VGGnet [55], as shown in Figure

3.3. The VGG network, as a discriminator network, is trained to differentiate between the

original photo-realistic images and the super-resolved images. The perceptual loss moti-

vates the network to recover photo-realistic textures from heavily down-sampled images

and generate natural super-resolved images.
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Figure 3.3: The architecture of SRResNet and SRGAN (adopted from the original paper

[40]).

The enhanced deep super-resolution network (EDSR) and the multi-scale deep super-

resolution (MDSR) proposed by Lim et al. [42] improve the SRResNet. The authors

optimized the residual block of the ResNet for SR tasks by removing unnecessary batch

normalization layers and ReLUs. With the trimmed residual block, the size of the EDSR

has been expanded significantly in terms of both depth and filter number, compared with

SRResNet. The architecture of the EDSR is shown in Figure 3.4.

When the authors trained the EDSR at scale factor 3× and 4×, they found initializing

the network with parameters of pre-trained 2× network will accelerate the training and

improve the final performance. This observation indicates that SR tasks at various scale

factors are inter-related. The MDSR enhances the EDSR with the ability to take advan-

tage of such inter-scale correlation. In the MDSR, HR images at multiple scales can be

reconstructed in a single network. The architecture of the MDSR is shown in Figure 3.5.
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Figure 3.4: The architecture of the EDSR (adopted from the original paper [42]).
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Figure 3.5: The architecture of the MDSR (adopted from the original paper [42]).
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3.2 Video Super-Resolution

Different with the SISR where only single LR image is provided, the VSR assumes that

various observations of one particular scene are available. These various observations usu-

ally appear as the video frames which align along the time dimension. A high degree of

correlation exists among the observations and can be exploited to recover lost information.

The advent of CNN techniques has pushed the SISR much forward and also benefited the

VSR. In this section, we will review three important CNN based VSR methods.

The Video SR network (VSRnet) proposed by Kappeler et al. [33] is one of the first

attempts to solve the VSR problem by CNNs. The method contains three stages:

1. The motion in the video is estimated by the Drulea’s [20] optical-flow algorithm;

2. The input frames are compensated to be similar to the target frame according to the

optical-flow;

3. The compensated frames are fed to a post-processing network to perform SR opera-

tion.

The authors proposed three variants of SR network where features are concatenated at

different stages, as shown in Figure 3.6. The architecture (b) is proved to be the best-

performing one.

It is quite creative for the VSRnet to introduce the CNN techniques to the VSR tasks.

However problems still exist. The performance of the VSRnet is still sub-optimal to the

traditional VSR algorithms. Moreover, the optical-flow computation and motion compen-

sation are done outside the network, hence can not be optimized together with the neural

network.
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Figure 3.6: Three variants of the VSRnet (adopted from the original paper [33]).

The video efficient sub-pixel convolutional neural network (VESPCN) proposed by Ca-

ballero et al. [7] is a VSR network which combines the ESPCN with a novel motion com-

pensation module. The motion compensation network employs the spatial transformer

network (STN) [31] to encode motions. A multi-scale design as shown in Figure 3.8 is

adopted to represent the flow. The compensated frames are then fed to an ESPCN based

SR network. A high-level diagram of the VESPCN is illustrated in Figure 3.8.

Figure 3.7: The motion compensation module in the VESPCN (adopted from the original

paper [7]).
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Figure 3.8: The top-level architecture of the VESPCN (adopted from the original paper [7]).

The proposed motion compensation module is a neural network with tunable parame-

ters, hence can be trained together with the SR network as a whole. In addition, the ES-

PCN is known to have lower computation and memory cost than the SRCNN. Therefore,

the VESPCN achieves state-of-the-arts performance while being capable to do real-time

processing.

As introduced previously, most recent VSR methods align all other frames to the ref-

erence one in LR space to compensate the inter-frame motion. The authors of [58], Tao et

al., argued that the compensation in the LR space is suboptimal and proposed a novel sub-

pixel motion compensation (SPMC) layer to perform compensations in the HR space. The

SPMC layer utilizes the motion compensation module in the VESPCN to estimate flow

information and warps pixels from the LR space directly to the HR space, as illustrated in

Figure 3.9.

Due to the fact that the provided LR frames may be insufficient for the SPMC layer

to integrate a complete HR image, a Detail Fusion module is proposed to fuse the infor-

mation in the HR draft and generate the final HR image. A high-level illustration of the

architecture is provided in Figure 3.10.
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Figure 3.9: The structure of the SPMC layer (adopted from the original paper [58]).
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Figure 3.10: The architecture of the detail-revealing deep VSR network (adopted from the

original paper [58]).
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3.3 Video frame interpolation

Video frame interpolation or motion interpolation is a classic computer vision task which

shares common requirements with the VSR. It aims to generate intermediate animation

frames between existing ones. This procedure performs similar transformations with the

motion compensation in VSR tasks. The difference is that the transformation in frame

interpolation is motivated to make animation look more fluid, but the compensation in

VSR is used to improve the super-resolved results.

Niklaus et al. proposed a novel video frame interpolation method in their recent work

[49]. In the method, the interpolation operation is considered as local convolution over

neighbor frames. A CNN takes a sequence of frames as input and estimates a set of

spatially-adaptive convolution kernels. The kernels are then applied to the input frames

to synthesize the interpolated frame. Thus the motion can be captured and compensated

in a single operation. An illustration of this procedure is provided in Figure 3.11.

R1

P1

R2

P2

ConvNet K

∗

Î(
x,

y)

Figure 3.11: Illustration of video frame interpolation via adaptive convolution (adopted

from the original paper [49]).

One issue of this method is that the dynamic kernels generally have very limited support
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region due to the computation cost. Niklaus et al. then proposed another method [50]

which replaces the regular convolution in [49] by separable convolution. In this work,

a regular 2D convolution kernel is represented as the inner product of two 1D kernels.

Thus the equivalent kernel size can be expanded to 51× 51 with no significant increase of

computation cost. The network architecture is illustrated in Figure 3.12.

I1 I2
: convolution layer

: skip connection

: average pooling layer

: bilinear upsampling layer

32
64

128
256

512
512

256
128

64

51
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,v

k1
,h

k2
,v

k2
,h

∗̇

I2

∗̇

I1

+ Î

Figure 3.12: Illustration of video frame interpolation via adaptive separable convolution

(adopted from the original paper [50]).
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Chapter 4

Video super-resolution via dynamic

local filter network

The motion of objects among the video frames increases the difficulty of VSR tasks. Recent

VSR works usually address this issue by a procedure consisting of the following three stages:

1. A flow-like information is achieved by estimating the motion of the LR input frames

with respect to an LR target frame.

2. The motion is compensated according to the flow-like information. After the com-

pensation, all frames have contents similar to the target frame.

3. An HR image is generated by integrating the compensated frames using CNNs. The

HR image is expected to be a super-resolved version of the target frame.

In most of recent VSR works, the compensation is performed by manipulating pixels in spa-

tial domain according to the motion estimation. The motion estimation is usually achieved

by optical flow or affine-transform based techniques. For optical flow based methods, the fi-

nal performance largely depends on the accuracy of flow data. However, estimating optical
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flow is commonly considered computation-expensive and error-prone. Moreover, when the

flow data involves non-integer coordinates, the compensated pixels have to be re-sampled.

The re-sampling operation usually averages pixels with fixed coefficients and makes edges

blurry. Details in the image may not be preserved well. Affine-transform based methods,

on the other hand, model the motion in terms of translation, scale, rotation and shearing.

All of these transformations can be represented as a transformation matrix as below.




θ11 θ12 θ13

θ21 θ22 θ23





Obviously, the affine-transform based methods will be more efficient than the optical flow

methods because only 6 parameters are involved. However, the diversity of motion patterns

which can be expressed will also be significantly limited by the small number of parameters.

Compensation in spatial domain will inevitably damage the valuable information in the

original frames. However, if the compensation happens in convolution kernels, the inter-

frame motion can also be canceled. Furthermore, the learned convolution kernels can offer

more flexible re-sampling strategies. If the convolution is replaced by locally connected

layer, non-rigid transformation may also be handled well.

Based on these ideas, we propose a novel VSR method, Video Super-Resolution via Dy-

namic Local Filter Network (DLVSR), and its upgraded edition, Video Super-Resolution

with Compensation in Feature Extraction (VSR-CFE). Both proposed methods use a dy-

namic filter network with a locally connected layer for compensation. The DLVSR utilizes

a progressive up-sampling work-flow which focuses on 4× SR and an encoder-decoder based

refinement module. In the VSR-CFE, a residual block based network is used for feature

extraction and fusion and a multi-scale up-sampler is introduced to help the network work

for 2×, 3× and 4× SR simultaneously. Both of the proposed methods generate superior

results over the current state-of-the-art algorithms, in terms of PSNR and SSIM and visual

quality. In the rest of this chapter, we will first introduce the proposed motion compensa-

tion via dynamic local filter network. Then we will describe the DLVSR and the VSR-CFE
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in Section 4.2 and Section 4.3 respectively.

4.1 Motion compensation

Most of conventional convolutions are not spatial invariant, which means that if the input

is translated by a small amount, the feature map will be translated as well, as shown in

Figure 4.1(a). For the VSR tasks, this property means that the inconsistencies in the input

frames will remain in the feature maps, increasing the difficulty of subsequent fusion and

synthesis. Therefore extracting the temporal correlation features among the input frames

became a key challenge in VSR.

One straightforward solution is to introduce pooling layers as we discussed in Section

2.4.2. But this may not be an optimal solution for VSR because a pooling layer will discard

most of the input pixels, possibly making the problem even more challenging than before.

Input Frames

Conv Kernel

Extracted Features

(a) Convolution

Input Frames

Compensated Frames

Conv Kernel

Extracted Features

(b) Compensation

Input Frames

Conv Kernels

Extracted Features

(c) Proposed

Figure 4.1: Motion compensation.
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Recent VSR methods choose to compensate the motion of the input frames before they

are fed into the SR network, as illustrated in Figure 4.1(b). However, as we discussed

previously, motion compensation in spatial domain may damage the valuable information

in the input frames.

In our work, we propose to make the compensation happen in the convolution kernels.

As shown in Figure 4.1(c), if the content in the input frames is translated by a small

amount and the corresponding convolution kernel is translated accordingly, then there will

be no inconsistency in the extracted feature maps.

To realize this idea, some issues need to be addressed. Most video clips contain non-

rigid body transformation, as shown in Figure 4.2. This kind of transformation can not be

simply estimated as a single direction movement. In such situations, the processing should

be performed in a position-specific manner. A locally connected layer fits such situations

well and we will describe it in Section 4.1.1. Another issue is that the objects may move in

arbitrary directions in the input frames, as illustrated in Figure 4.3, and a CNN with fixed

kernels will not be able to handle all possible situations efficiently. A per-sample feature

extraction mechanism is needed. We introduce a dynamic local filter network to fulfill

this requirement. To our best knowledge, this is the first time that a dynamic local filter

network is employed to solve the VSR problem. Details will be described in the following

sections.

Figure 4.2: Non-rigid body transformation.

4.1.1 Locally connected layer

A locally connected layer can be viewed as a convolutional layer with position-specific
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Figure 4.3: Arbitrary direction movement.

kernels. It applies different kernels to patches centered at different positions in an image.

Let I be a single channel input image and P (i,j) be a square patch of size (2K+1)×(2K+1)

centered at position (i, j) in I. P (i,j) can be formulated as

P (i,j) =

























Ii−K,j−K · · · Ii+K,j−K

. . .

... Ii,j
...

. . .

Ii−K,j+K · · · Ii+K,j+K

























. (4.1)

For each P (i,j), a corresponding kernel is defined as

θ(i,j) =
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. (4.2)

The locally connected layer f is defined as

f(θ, I) =













θ(1,1) ⊙ P (1,1) · · · θ(W,1) ⊙ P (W,1)

...
. . .

...

θ(1,H) ⊙ P (1,H) · · · θ(W,H) ⊙ P (W,H)













, (4.3)
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where W , H are width and height of I. The operator ⊙ is the summation of element-wise

product of two matrices, which is defined as

A⊙ B =
M
∑

i=1

N
∑

j=1

Aij · Bij, (4.4)

where A and B are two M ×N matrices.

4.1.2 Dynamic filter network

The dynamic filter network is a spatial invariant framework proposed by Jia et al. [67],

where the network generates a set of filter kernels which is associated to a specific input.

The dynamic filter network consists of two parts, a kernel generation network (KGN) and

an application layer, as illustrated in Figure 4.4. The KGN produces filter kernels based

on the input and the generated kernels are applied to the input via an application layer.

⨂
c n

Kernel 
Generation 
Network

Filter Kernels

Locally
Connected

Layer

s⨉s⨉n⨉c

Figure 4.4: The structure of a dynamic (local) filter network.

Unlike conventional CNN, the filter kernels produced by the KGN are sample-specific,

which means they are not fixed after training. For the VSR tasks, the KGN takes a sequence

of frames as input and generates a set of filters which is associated with this sequence of
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frames. Then the generated filters will be able to compensate the motion among the input

frames.

The shape of the generated kernels depends on the type of the application layer. In our

work, the application layer is a locally connected layer which has been described in Section

4.1.1. As illustrated in Figure 4.4, the KGN takes an input I ∈ R
c×h×w, where c is the

number of input frames, h and w are height and width of the input image I respectively,

and generates a group of filter kernels θ ∈ R
s×s×n×c×h×w, where s is the kernel size of the

generated filters, and n is the number of output channels. The output of the application

layer will be of size n× h× w.

A dynamic filter network which employs locally connected layer as the operation layer

is called a dynamic local filter network. This sample-specific and position-specific structure

should be able to perform the motion compensation for the VSR task.

4.2 Video Super-Resolution via Dynamic Local Filter

Network

In this section, we will describe the proposed network architecture of DLVSR. The DLVSR

consists of two components, an SR module and a refinement module, as illustrated in Figure

4.5. First, the input LR frames are converted to YCbCr color space and only luminance

channels are kept for subsequent processing. Then the frames are stacked and input to the

network for super-resolving. The SR module compensates the motion and super-resolves

the feature maps progressively to synthesize a draft HR image. Then the HR draft is

enhanced by the refinement module to obtain the final result.

50



MC
SP

Conv

SP

Conv
MC

H⨉W H⨉W

2H⨉2W 2H⨉2W

4H⨉4W

N 4⨉N N 4 1

2H⨉2W

H⨉W

2H⨉2W

4H⨉4W 4H⨉4W 4H⨉4W

64 128 256 64128 1

Super-resolution Module Refinement Module

Bicubic Upsampling

Motion Compensation Module

Convolution (Stride 2)

Sub-Pixel Convolutional Layer

Transposed Convolution (Stride 2)Skip Connection

SP

Conv
MC

Figure 4.5: The architecture of the DLVSR.

4.2.1 Super-resolution module

In our proposal, the SR module focuses on 4× scale factor. It employs dynamic local filter

networks for motion compensation and sub-pixel convolutional layers [54] for upscaling.

The motion compensation block is a dynamic local filter network, where an autoencoder [46]

is used as the KGN which is shown in Figure 4.6. The number of input channels is c and

the number of the output channels is s × s × n × c, where s = 3, c = 3, n = 4 for our

configuration. All the convolutional layers use a kernel size of 3 × 3. Larger kernel sizes

could provide better performance, but would take longer computation time and occupy

more memory than the size of 3 × 3. Considering the available computation resource at

the time of this writing, filters with kernel size larger than 3× 3 are impractical. Inspired

by the work of [50], the average pooling layers are used in the KGN with kernel size of

2× 2 and stride 2. ReLUs are used for all convolutional layers except the last one. Other

parameters are noted in Figure 4.6.

With the motion compensation block, common features can be extracted from the input

frames without distractions caused by inter-frame differences. The feature maps can then

be super-resolved via up-sampling layers, which are sub-pixel convolutional layers in our
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Figure 4.6: The KGN of the motion compensation module in the DLVSR.

proposed method. However, since the KGN-generated filters have fixed kernel size, the

maximum motion magnitude they can adapt to is limited. Increasing the kernel size can

be one solution, but the network would rapidly become impractical because of the growing

computation cost. Separable convolution [50] is another reasonable solution. However,

since the separable convolution aims to reduce the number of parameters of a 2D filter by

using the inner-product of two 1D filters, it is inevitable to lose representation flexibility

and make performance suboptimal.

In our proposed method, we use two cascaded motion compensation blocks and sub-

pixel convolutional layers to increase the image resolution progressively as illustrated in

Figure 4.5. Each sub-pixel convolutional layer performs a 2× up-sampling. With the cas-

cading structure, the receptive field of the generated kernels is enlarged to an acceptable

size. We also equip the module with skip connections [28], which add bicubic up-sampled

target frames to the outputs of sub-pixel convolutional layers, to explicitly guide the net-

work to learn residual contents.

4.2.2 Refinement module

Although the SR module has the capability to generate satisfactory results, we observed

that blur and noise still exist in the results. An additional refinement stage is supposed

to be beneficial. We introduce a refinement module, inspired by the detail fusion network
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in [58]. The module adapts an encoder-decoder style architecture [46] which is commonly

used for image deblurring and denoising. The first and last layer use a kernel size of 5× 5.

The other convolutional layers have a kernel size of 3 × 3. The transposed convolutional

layers are with a kernel size of 4 × 4. ReLUs are used for every layer. Other parameters

are illustrated in Figure 4.5.

4.3 Video Super-Resolution with Compensation in Fea-

ture Extraction

In this section, we will introduce the VSR-CFE, which is an upgrade of the DLVSR. The

proposed network consists of two components: a motion compensation module and an

SR module. A high-level illustration is provided in Figure 4.7, where colored rectangles

represent neural network layers, circles represent input and output images. Note that the

input is a sequence of normalized low-resolution images. 2×, 3× and 4× represent bilinear

up-sampled target frames in 2, 3 and 4 scale factors respectively. I2×, I3×, I4× are the

corresponding SR results. ⊗ denotes locally connected layer and ⊕ denotes element-wise

summation.

4.3.1 Compensation Module

The compensation module is a dynamic local filter network whose internal architecture is

shown in Figure 4.8, where the c in the last two convolutional layers denote the number of

input frames, ⊗ denotes locally connected layer.

The KGN takes an input I ∈ R
c×h×w, where c is the number of input frames, h and

w are height and width of the input image I respectively, and generates a group of filter

kernels θ ∈ R
c×s×s×h×w, where s× s is the kernel size of the generated filter. Note that the
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Figure 4.7: The architecture of the VSR-CFE.
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application here is a depthwise [12] locally connected layer. The depthwise means that the

θ for the i-th channel, denoted as θi ∈ R
1×s×s×h×w, will only be applied to Ii which is the

corresponding channel of I. The output of the application will be of size c× h× w.

In the VSR-CFE, the KGN is an autoencoder whose encoder part is the first 13 layers

of the VGG-16 network which is smaller than the one in the DLVSR. Like the VGG-

16 network, the KGN also uses the max pooling layers. Skip connections are used with

element-wise summation. Other parameters can be found in Figure 4.8. As we discussed,

the generated filters have fixed kernel size, hence the maximum adaptable motion mag-

nitude is limited. The kernel size has to be selected carefully to balance coverage and

efficiency. Thanks to the reduced number of parameters in the KGN, the kernel size in the

VSR-CFE can be increased to 9× 9 with affordable resource consumption.

4.3.2 Super-Resolution Module

While the compensation module can extract features while ignoring inter-frame differences,

some extra components are still needed to integrate these features to complete the SR task.

Most of recent SISR methods focus on integrating features and serve as inspiring examples

for designing our SR module. Recently, ResNets [28] based SISR method SRResNet [40]

and EDSR [42] exhibited excellent performance. The MDSR proposed by Lim et al. [42]

can even perform multi-scale SISR in a single network.

Inspired by the works mentioned above, we propose a residual block based multi-scale

SR module which works for 2×, 3× and 4× super-resolving simultaneously. The architec-

ture of the proposed SR module is illustrated in Figure 4.7. First, a convolutional layer

converts the output of the compensation module to a 64-channel feature map to make the

subsequent network adaptive to inputs with various numbers of channels. Then the fea-

ture map is processed by 32 cascaded residual blocks. The processed feature map is then

passed to a multi-scale up-sampler. For 2×, 3× and 4× scales, the up-sampler converts the
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64-channel feature map to 4, 9 and 16-channel feature maps respectively. The sub-pixel

convolutional layers convert each feature map to an SR residual. The SR residuals are then

added to corresponding bilinear up-sampled target frames to generate the final SR results.

4.4 Improvements from the DLVSR to the VSR-CFE

The VSR-CFE introduces a smaller KGN than the DLVSR and uses depthwise locally

connected operation instead of regular one. These upgrades significantly reduce the number

of parameters used by the VSR-CFE compared with the DLVSR. A detailed comparison

will be provided in the following paragraphs. To simplify the calculation, the number of

bias parameters will be ignored because bias parameters are much less than weights.

In the DLVSR, a KGN has 25,112,160 kernel parameters. However, due to the fact

that two KGNs are used in the SR module, the number of parameters used is 50,224,320.

Additionally, the refinement module has 1,660,032 parameters. Therefore the DLVSR

contains about 51,884,352 parameters. On the other side, the VSR-CFE employs only one

KGN whose number of parameters is 18,441,585. The SR module has 2,377,728 parameters.

So the VSR-CFE totally has 20,819,313 parameters which is about 40% of the DLVSR.

Although the VSR-CFE has much less parameters than the DLVSR, it achieves slightly

better performance than the DLVSR. Moreover, the training dataset used by the VSR-CFE

is only about 30% of the one used by the DLVSR. The detailed experimental setup and

performance comparison will be discussed in the next section.
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Chapter 5

Experimental results

5.1 Environment setup

The hardware used for the experiments is an Intel-based PC equipped with NVIDIA GPU.

The system has an Intel Core i7-7700K CPU, 16 GB system memory and 512 GB Solid

State Disk. The graphical adapter is NVIDIA Geforce GTX 1080Ti which is an high-end

GPU based on Pascal micro-architecture. There is 11 GB GPU-dedicated memory installed

on this adapter to enable training of large neural network.

The software framework we used is PyTorch [51] version 0.3 which is a popular deep

learning framework backed by Facebook, Inc. Another popular deep learning framework is

Tensorflow [3] backed by Google LLC. Different with Tensorflow which focuses on industrial

applications, PyTorch places more efforts on research purposes. It has concise syntax and

flexible architecture. Therefore, in recently published works, PyTorch is more frequently

used than Tensorflow by researchers. We deployed our implementations on an operating

system of Debian GNU/Linux version 9.4. NVIDIA proprietary driver and CUDA toolkit

are installed to support GPU accelerated computation.
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5.2 Evaluation strategy

5.2.1 Test datasets

We compared our methods with four recent VSR methods for reference.

• BayesSR [44] is a Bayesian approach to adaptive VSR and is considered the best-

performing traditional VSR algorithm.

• VSRnet [33] is one of the first works which employs CNN for VSR.

• VESPCN [7] is an CNN based real-time VSR method which focus on the balance

between efficiency and performance.

• SPMC [58] is considered the latest and best-performing VSR method at the time of

writing.

According to the original papers, all the four VSR methods have been tested on the VID4

dataset [44]. The VID4, also known as Videoset4, consists of four test videos with various

features as below.

• Calendar has plenty of hand-drawn texture and text content.

• City has buildings with rich details at different scales.

• Foliage has fast-moving vehicles and thin tree branches.

• Walk contains a large number of human faces and clothes.

It should be noted that the VID4 dataset is not used as training data in any form.

Although the VID4 has been tested on the methods [44] [33] [7] [58], the experiment

setups of these tests still have minor differences. The first difference is the number of
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the frames used for reconstruction. BayesSR used 30 frames to reconstruct an HR frame.

VSRnet, VESPCN and SPMC receive 3 consecutive frames. Another issue is the number

of the frames to be tested. The input frames are selected by a sliding window in which

the middle frame is used as the target frame, as illustrated in Figure 5.1. Let the width

of the sliding window be N, which means a set of N consecutive frames is needed. When

any of the first N\2 frames or the last N\2 frames are chosen as the target frame, where

\ denotes integer division, there will not be enough consecutive frames available around

the target frame. VSRnet and VESPCN avoid to use the first two frames or last two

frames as target frame to ensure a set of 3 or 5 consecutive frames is always available for

experiments. BayesSR and SPMC did not provide description about how they handled

the boundary cases. According to the published experimental results, the numbers of

frames super-resolved by various methods are shown in Table 5.1. We followed the setup

of VSRnet and VESPCN and skipped the first three frames and the last three frames to

guarantee that up to 7 consecutive frames are always available.

Input Frames

Video F1 F2 F3 F4 F5 F6 F7 F8 F9 F10     ...    

Target Frame

Figure 5.1: The input frames in the video.

The last factor to be clarified is the dimension of the frames. As we discussed in Section

2.4.1, zero-padding is frequently included in convolutional layers to let the kernel size and

the output size be controlled independently. However, the introduction of these zeros also

inevitably bring distortion to the image boundaries. Therefore, VSRnet and VESPCN

chose to discard a 8-pixel border on each side while BayesSR and SPMC just use the
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Table 5.1: The numbers of frames super-resolved by various methods

Calendar City Foliage Walk

Original 41 34 49 47

BayesSR 40 33 48 46

VSRnet 37 30 45 43

VESPCN 37 30 45 43

SPMC 41 34 49 47

Proposed 35 28 43 41

original dimensions, as shown in Table 5.2. We use the original dimensions of each video

to test our methods.

Table 5.2: The dimensions of input frames (pixel × pixel) used by various methods

Calendar City Foliage Walk

Original 720× 576 704× 576 720× 480 720× 480

BayesSR 720× 576 704× 576 720× 480 720× 480

VSRnet 704× 560 688× 560 704× 464 704× 464

VESPCN 704× 560 688× 560 704× 464 704× 464

SPMC 720× 576 704× 576 720× 480 720× 480

Proposed 720× 576 704× 576 720× 480 720× 480

5.2.2 Blur and noise

One of the differences between the traditional algorithms and the neural work based meth-

ods is the assumption of the blur and noise. Traditional algorithms, like the BayesSR, will
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simultaneously estimate the underlying motion, blur kernel and noise level while recon-

structing the HR frames. On the other hand, most of the neural network based methods

assume that no blur or noise exists in the input frames. One explanation on this approach

is that the neural network can learn to reduce the blur and noise without too much effort.

For example, random blurs and noises can be applied on-the-fly to the input frames in

training to make the network robust to these attacks. The existence of the blur and noise

will not alter the design of neural network methods very much. Therefore they are mostly

not considered in the test of neural network methods. We will follow this convention in

the experiments on our methods.

5.2.3 Color space

Another important factor should be considered is which color space to use for measure-

ments. Recent SISR methods are mostly trained and tested on RGB color space. However,

the papers on VSR barely state this setup clearly. We took an experiment on the official

experimental results of the reference methods to infer the measurements they used. We

found that the PSNR and SSIM in these works are measured on the luminance channel

which is obtained via the RGB-YCbCr conversion defined in ITU-R BT.601 standard.

There are two mainstream RGB-YCbCr conversion standards frequently used in com-

puter implementations. The first is the one defined in the ITU-R BT.601 standard. It can

be formulated as

Y ′ = 16 +
65.738 ·R′

D

256
+

129.057 ·G′

D

256
+

25.064 · B′

D

256
, (5.1)

CB = 128− 37.945 ·R′

D

256
− 74.494 ·G′

D

256
+

112.439 · B′

D

256
, (5.2)

CR = 128 +
112.439 ·R′

D

256
+

94.154 ·G′

D

256
+

18.285 · B′

D

256
, (5.3)
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where the R′

D, G
′

D, B
′

D are 8-bit digital representations, Z ∈ [0, 255], of the R, G, B value.

The inverse conversion is defined as

R′

D =
255

219
· (Y ′ − 16) +

255

112
· 0.701 · (CR − 128), (5.4)

G′

D =
255

219
·(Y ′−16)− 255

112
·0.886 · 0.114

0.587
·(CB−128)− 255

112
·0.701 · 0.299

0.587
·(CR−128), (5.5)

B′

D =
255

219
· (Y ′ − 16) +

255

112
· 0.886 · (CB − 128). (5.6)

In this standard, the Y ′ ranges from 16 to 235 even though it is stored as 8-bit binary

which ranges from 0 to 255. The extra room below 16 and over 235 are called footroom

and headroom respectively. They are reserved for possible overshooting in analog video

equipments. The ITU-R BT.601 standard is used in Matlab and scikit-image library of

Python.

The other standard is JPEG conversion standard which is defined as

Ŷ ′ = 0 + 0.299 ·R′

D + 0.587 ·G′

D + 0.114 · B′

D, (5.7)

ĈB = 128− 0.168736 ·R′

D − 0.331264 ·G′

D + 0.5 · B′

D, (5.8)

ĈR = 128− 0.5 ·R′

D − 0.418688 ·G′

D − 0.081312 · B′

D. (5.9)

In this standard, the Y ′ covers the full range of [0, 255]. This standard is used in the

Python Imaging Library (PIL) which is widely utilized by Python based neural network

frameworks. Therefore, the images generated by these frameworks have to be converted to

the ITU-R BT.601 standard.

Because only the luminance channel is involved in the measurement, the chroma com-

ponents, CB and CR, are constantly assumed to be 128. The Equ. (5.4) (5.5) (5.6) can

then be rewritten as

R′

D =
255

219
· (Y ′ − 16), (5.10)

G′

D =
255

219
· (Y ′ − 16), (5.11)
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B′

D =
255

219
· (Y ′ − 16), (5.12)

which can be incorporated into Equ. (5.7). We then obtain

Ŷ ′ = 0.299 · 255
219
· (Y ′ − 16) + 0.587 · 255

219
· (Y ′ − 16) + 0.114 · 255

219
· (Y ′ − 16)

=
255

219
· (Y ′ − 16).

(5.13)

Therefore, the luminance conversion from JPEG standard to ITU-R BT.601 standard can

be formulated as

Y ′ =
219

255
· Ŷ ′ + 16. (5.14)

5.3 Training strategy

5.3.1 Training datasets

One of the most significant factors which influence the performance of a trained neural

network is the selection of its dataset. The test dataset should be able to provide an

objective estimation of the network performance. The training dataset should be sufficient

in terms of quality and quantity to realize the capability of the network. Moreover, the test

and training dataset should be correlated but not too similar to preserve the generality. In

this section, we will discuss the dataset selection for the VSR task and introduce our own

setup.

For the VSR task, the training dataset is supposed to be video clips of high quality.

The frames of the clips should be images of high resolutions with fine details but no obvious

blur, noise or other flaws. The contents are supposed to be consecutive without sudden

scene change. The amount of the clips should be sufficient with respect to the capacity of

the models.

To our best knowledge, there is no public available resource which satisfy all above

requirements well. The datasets used in recent methods differ from each other.
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• VSRnet [33] uses the Myanmar video [2] as the dataset. The video has 4K resolution

(3840×2160 pixels) and is down-sampled to 960×540 pixels as ground truths. There

are 59 scenes in the video, of which 53 scenes are used for training.

• VESPCN [7] employs the Consumer Digital Video Library (CDVL) [1] as the training

dataset. There are totally 100 full HD (1920 × 1080 pixels) videos and 30 random

clips are sampled from each video. Therefore, 3000 samples are used for training.

• SPMC [58] collects 975 full HD video clips shot with high-end cameras. Each of

the clips has 31 frames which are down-sampled to 960 × 540 pixels for use. 945 of

them are used as training data and the rest are for testing. To compare with other

methods, the method is also tested on VID4.

According to the training datasets used by recent works, we can infer that a large

dataset is preferred for VSR tasks, especially for modern networks which are much deeper

than previous ones. Therefore, we setup our training dataset as below.

DLVSR. We collected 17 videos from the Internet to train the DLVSR. 8 of them are 4K

commercial videos from [2] and the rest are full HD urban tour videos downloaded from

YouTube. All the 17 videos are then analyzed by PySceneDetect [9] and cut to 3022 scenes.

We used the first 30 frames of each scenes as the training dataset and down-sampled them

to 1280× 720 pixels.

VSR-CFE. We used 945 video clips to train the VSR-CFE. These clips are randomly

selected from the 3022 clips used in DLVSR. We still only used the first 30 frames of each

clip and down-sampled them to 1280× 720 pixels. Although the two methods share parts

of their training datasets, the designs of them do have a few differences. For example, the

two methods use different scale factors, loss functions, etc. Correspondingly, their training
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strategies will not be the same and will be described separately in the rest parts of this

section.

5.3.2 Training the DLVSR

The SR scale factor for DLVSR is fixed to 4. The HR targets are 384× 384 pixels patches

which are randomly cropped from frame sequences. The LR input frames are 96×96 pixels

patches which are down-sampled by bilinear interpolation from corresponding HR frames.

The frame sequences are sets of 3, 5 or 7 consecutive frames which are randomly chosen

from the training video clips.

As we discussed in Section 2.2.3, most activation functions expect their the inputs to

have a zero mean. However, the original pixel values of our training frames are within

[0, 1]. Therefore, we normalized the pixel values to range [−1, 1] with the formula

pnorm = porigin × 2− 1, (5.15)

where porigin and pnorm are the original pixel value and normalized pixel value respectively.

We use Adam [36] optimizer with β1 = 0.9, β2 = 0.999. Due to the fact that the

DLVSR contains a large number of parameters, the mini-batch size for training has to be

fixed to 1 due to our hardware limitations.

Because the DLVSR consists of a SR module and a refinement module. To explicitly

guide the refinement module to learn the desired behavior, the two modules have to be

trained separately. Therefore, the training procedure is divided to 3 stages: the SR training

stage, the refinement training stage and the joint training stage.

• Firstly, only the SR module is trained with learning rate 1 × 10−4 for about 200

epochs. The loss function is MAE, which is defined as

MAE(Isr, Igt) =
1

MN

M−1
∑

i=0

N−1
∑

j=0

|Isr(i, j)− Igt(i, j)|. (5.16)
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• Then the parameters of the SR module are fixed. The refinement module is attached

and trained with learning rate 1×10−4 for about 50 epochs. The loss function remains

MAE.

• Finally, the whole network is trained jointly with learning rate 1 × 10−5 for 150

epochs. The loss function is changed to MSE, as defined below.

MSE(Isr, Igt) =
1

MN

M−1
∑

i=0

N−1
∑

j=0

[Isr(i, j)− Igt(i, j)]
2. (5.17)

Figure 5.2 illustrates the PSNR changes during the training of the DLVSR. As shown,

the addition of the refinement module significantly expands the network capacity and

improves the training PSNR by about 0.5 dB. The F3, F5 and F7 in the figure denotes

the results with 3, 5 and 7 input frames respectively. The stage1 refers to the exclusive

training of the SR module. The stage2&3 refers to the exclusive training stage of the

refinement module and the joint training stage. We can see that results with more input

frames are constantly better than the ones with less input frames. This observation agrees

with our theoretical inferences.

5.3.3 Training the VSR-CFE

The VSR-CFE is trained with a subset of the DLVSR training dataset. However, because

there is a multi-scale up-sampler in this proposal, the data has to be preprocessed accord-

ingly. We first randomly select a position in a frame sequence and use it as the top-left

corner to crop patches. The patches are of 192 × 192, 288 × 288, 384 × 384 pixels, corre-

sponding to 2×, 3×, 4× scale factors. Figure 5.3 illustrates of the patch cropping strategy.

The frame in the middle of the sequence is used as the HR target. Then all of the patches

are down-sampled to 96 × 96 pixels with bilinear interpolation to serve as the LR input

frames.

66



0 50 100 150 200 250 300 350 400

Epoch

27.5

28.0

28.5

29.0

29.5

30.0

30.5

31.0

T
ra

in
in

g
 P

S
N

R

F3-stage1

F3-stage2&3

F5-stage1

F5-stage2&3

F7-stage1

F7-stage2&3

Figure 5.2: The PSNR changes during the training of the DLVSR.
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Figure 5.3: Cropping strategy.

To train the sampler for multiple scale factor simultaneously, we used an alternative

sequence to input the training data. For every 3 iterations, patches for 2×, 3×, 4× are fed

to the network separately with a random sequence as follows as an example.

I
(1)
×2 , I

(1)
×4 , I

(1)
×3 ; I

(2)
×3 , I

(2)
×2 , I

(2)
×4 ; I

(3)
×4 , I

(3)
×2 , I

(3)
×3 ; ...

Thus three iterations of optimization can be taken on the network parameters per batch

and accelerate the convergence.

For the VSR-CFE, we use the Adam optimizer with β1 = 0.9, β2 = 0.999 which is the

same as the DLVSR. The learning rate is set to 1.0× 10−4 for all experiments. As we have

discussed in Section 4.4, the VSR-CFE employs much less parameters than the DLVSR.

Therefore it is possible for us to train the network with mini-batch size larger than 1.

Smith et al. discovered a phenomenon in their recent work [56] that the same test

accuracies can be obtained by both decaying learning rate and increasing mini-batch size

68



after the same number of training epochs. But increasing mini-batch size can lead to fewer

parameter updates, resulting in greater parallelism and shorter training times. Inspired by

this discovery, we initialized the mini-batch size as 1 and increased it to 2, 4, 8 and 16 every

50 epochs. The network is therefore trained for about 250 epochs. The loss function is the

MAE. We also added another 20 epochs training with the MSE loss function to achieve

higher PSNR. However, no significant improvement was observed in this procedure. The

training PSNR changes are illustrated in Figure 5.4.
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Figure 5.4: The PSNR changes during the training of the VSR-CFE.
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5.4 Experimental results

5.4.1 Comparisons with other VSR methods

The quantitative comparisons with other VSR methods are shown in Table 5.3. It has to

be noted that the BayesSR is tested with 30 adjacent frames and the others, including

ours, are tested with 3. The data of the reference methods are from [58]. From the data,

we can see that the DLVSR with refinement module outperforms the others by at least

0.86 dB at 4× scale factor. The VSR-CFE outperforms the other methods by at least 1.08

dB and 0.87 dB in terms of PSNR for 3× and 4× SR respectively. The visual comparisons

are shown in Figure 5.5 through 5.8. For visual comfort, bicubic up-sampled chrominance

channels are used with the super-resolved luminance channel. For Calendar , the inner edge

of the roof is recovered by BayesSR and our methods, but lost by the others. Our methods

achieve more smooth results. For City, our proposed method super-resolves the corner of

the building with more accurate edges than the others. For Foliage and Walk , only our

methods are able to recover the shape of the car in the back and the string on the outwear

respectively.

5.4.2 Comparisons with input frames of various lengths

For the VSR tasks, the multiple input frames can be viewed as various degraded obser-

vations of the ground truth. A proper VSR method should be able to generate superior

results when extra observations are provided. To prove that our proposed method can ex-

ploit information from additional input frames, we evaluate our methods with input frames

of various lengths. The DLVSR is tested on 3, 5 and 7 input frames and the VSR-CFE is

tested on 3 and 7 frames. The quantitative comparison is shown in Table 5.4, where we can

see that the additional frames improve the results effectively for all scenarios. The visual

comparison is illustrated in Figure 5.9 and 5.10, where the first row is for video Calendar
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Table 5.3: Comparison with other VSR methods (PSNR / SSIM)

Method 3x 4x

BayesSR(F30) 25.64 / 0.80 24.42 / 0.72

VSRnet(F3) 26.64 / 0.82 22.81 / 0.65

VESPCN(F3) 27.25 / 0.84 25.35 / 0.76

SPMC(F3) 27.49 / 0.84 25.52 / 0.76

DLVSR(F3) - 26.04 / 0.80

DLVSR-refine(F3) - 26.38 / 0.81

VSR-CFE(F3) 28.57 / 0.89 26.39 / 0.81

Full Image BayesSR VSRnet VESPCN

SPMC DLVSR VSR-CFE Ground Truth

Figure 5.5: Visual comparison on Calendar with various VSR methods.
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Full Image BayesSR VSRnet VESPCN

SPMC DLVSR VSR-CFE Ground Truth

Figure 5.6: Visual comparison on City with various VSR methods.

Full Image BayesSR VSRnet VESPCN

SPMC DLVSR VSR-CFE Ground Truth

Figure 5.7: Visual comparison on Foliage with various VSR methods.
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Full Image BayesSR VSRnet VESPCN

SPMC DLVSR VSR-CFE GroundTruth

Figure 5.8: Visual comparison on Walk with various VSR methods.

and the second row is for video Foliage. For Calendar , we can see the texture of the wood

wall in the result with more frames is clearer than the one with less frames. For Foliage,

the separator between the two windows of the car is recovered in the 5-frame and 7-frame

versions but lost in the 3-frame ones. Experimental results show that more input frames do

lead to results with more details and sharper edges as well as higher PSNR/SSIM values.

Table 5.4: Comparison on results with input frames of various lengths (PSNR / SSIM)

Method F3 F5 F7

DLVSR(×4) 26.04 / 0.80 26.17 / 0.81 26.20 / 0.81

DLVSR-refine(×4) 26.38 / 0.81 26.51 / 0.82 26.52 / 0.82

VSR-CFE(×4) 26.39 / 0.81 - 26.45 / 0.82

VSR-CFE(×3) 28.57 / 0.89 - 28.64 / 0.89
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DLVSR (F3) DLVSR (F5) DLVSR (F7)

VSR-CFE (F3) VSR-CFE (F7) Ground Truth

Figure 5.9: Visual comparison on Calendar with input frames of various length.

DLVSR (F3) DLVSR (F5) DLVSR (F7)

VSR-CFE (F3) VSR-CFE (F7) GroundTruth

Figure 5.10: Visual comparison on Foliage with input frames of various length.
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5.4.3 Evaluation with additional test data

The VID4 video set, which was first introduced to VSR by Liu et al. [44] in 2011, is

considered to be unable to represent modern videos whose quality and resolution have been

improved significantly in recent years. Tao et al. [58] proposed several new test videos in

their work to provide better estimations of the performance of their method SPMC. The

test videos, together with their experimental results have been published on their website.

We tested our method VSR-CFE on a part of these test videos and compared our results

with the results of SPMC.

The newly proposed test video set consists of 15 video clips. 4 of them are the videos in

VID4 and another 4 of them have been used as training data in our proposals. Therefore we

tested our method on the rest 7 video clips, which are hdclub 003 001, hitachi isee5 001,

HKVTG 004, jvc 009 001, NYVTG 006, PRVTG 012 and RMVTG 011. Each of these

clips has 31 frames with 960 × 540 pixels. The results of SPMC are generated with 5

consecutive frames as the input. We followed this configuration and obtained 27 super-

resolved frames for each clip. The visual and quantitative comparisons are illustrated in

Figure 5.11 through 5.17. The PSNR and SSIM are measured on the total 27 frames of

each test video.

As shown in the figures, our method has better results in terms of SSIM on 6 out

of 7 clips. In terms of PSNR, our method outperforms the others on 3 out of 7 clips.

Moreover, our results consistently have sharper edges and less artifacts than the others in

visual comparisons.
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Bicubic (PSNR 19.40 dB / SSIM 0.5346) SPMC (PSNR 21.04 dB / SSIM 0.7185)

VSR-CFE (PSNR 21.10 dB / SSIM 0.7304) Ground Truth

Figure 5.11: Comparison on video hdclub 003 001. The vertical textures on the building

are better recovered by our method than the others.
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Bicubic (PSNR 19.60 dB / SSIM 0.6192) SPMC (PSNR 23.75 dB / SSIM 0.8482)

VSR-CFE (PSNR 22.76 dB / SSIM 0.8232) Ground Truth

Figure 5.12: Comparison on video hitachi isee5 001. The flower patterns are recovered

with less artifacts by our method.
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Bicubic (PSNR 27.46 dB / SSIM 0.7012) SPMC (PSNR 28.78 dB / SSIM 0.7889)

VSR-CFE (PSNR 28.67 dB / SSIM 0.7906) Ground Truth

Figure 5.13: Comparison on video HKVTG 004. The curve on the back of the chair is

more smooth in our result than the others.
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Bicubic (PSNR 25.40 dB / SSIM 0.7645) SPMC (PSNR 28.21 dB / SSIM 0.8722)

VSR-CFE (PSNR 28.30 dB / SSIM 0.8815) Ground Truth

Figure 5.14: Comparison on video jvc 009 001. The fence in the back is clearer in our

result than the others.
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Bicubic (PSNR 28.40 dB / SSIM 0.8119) SPMC (PSNR 31.40 dB / SSIM 0.9019)

VSR-CFE (PSNR 31.28 dB / SSIM 0.9121) Ground Truth

Figure 5.15: Comparison on video NYVTG 006. Windows have sharper edges in our result

than the others.

80



Bicubic (PSNR 25.54 dB / SSIM 0.7275) SPMC (PSNR 27.00 dB / SSIM 0.8171)

VSR-CFE (PSNR 27.04 dB / SSIM 0.8222) Ground Truth

Figure 5.16: Comparison on video PRVTG 012. The windows in our result have clear

square shapes.
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Bicubic (PSNR 23.99 dB / SSIM 0.6835) SPMC (PSNR 26.43 dB / SSIM 0.8018)

VSR-CFE (PSNR 26.39 dB / SSIM 0.8037) Ground Truth

Figure 5.17: Comparison on video RMVTG 011. The text ‘Expedia’ is better recovered

by our method than the others.

82



Chapter 6

Conclusion

Neural network techniques open numerous new possibilities for solving the video super-

resolution (VSR) problem. In this thesis, we first introduced basic concepts of the neural

network and reviewed several recent methods on single image super-resolution (SISR) and

VSR. Then we proposed our own methods.

Motion compensation is commonly used in recent works to cancel the inconsistencies

among the input frames. Different with other methods which manipulate pixels to compen-

sate the motion, we proposed to cancel the motion during feature extraction procedure. We

employed a dynamic local filter network as the motion compensation module. The module

generates sample-specific filter kernels and applies the kernels via a position-specific opera-

tion. Based on this module, we proposed two VSR networks. The first one is DLVSR which

compensates and super-resolves the input frames in a progressive manner and then refines

the result with an autoencoder based module. The second one is VSR-CFE which is an

upgrade of the DLVSR. It compensates the motion during feature extraction in LR space

and generate super-resolved result with a residual block based module. Multi-scale SR

structure is also introduced to the VSR-CFE to make the network work for multiple scale

factors simultaneously. In our experimental results, both proposed methods outperform
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the state-of-the-art methods in terms of PSNR and SSIM and generate superior results over

the others in visual comparison. As an upgrade edition, the VSR-CFE achieves slightly

better results than the DLVSR while employs about 40% parameters and 30% training

samples.

Traditional image processing algorithms commonly estimate specific parameters based

on the samples provided. However the parameters of convolutional neural network (CNN)

are mostly fixed after being trained. This difference potentially results in the fact that

CNNs usually introduce much more parameters than traditional algorithm to handle a

large number of various situations. The dynamic local filter network reduces the number

of required parameters and keeps the superior modeling capability of CNN simultaneously.

It has the sample-specific and position-specific properties together with the power of CNN.

In this thesis, we proved that the dynamic local filter network works well for VSR tasks.

More applications of it are still left to be explored in the future work.
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