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ABSTRACT
Video telephony requires high-bandwidth and low-delay voice

and video transmissions between geographically distributed

users. It is challenging to deliver high-quality video tele-

phony to end-consumers through the best-effort Internet. In

this paper, we present our measurement study on three popu-

lar video telephony systems on the Internet: Google+, iChat,

and Skype. Through a series of carefully designed active and

passive measurements, we are able to unveil important infor-

mation about their key design choices and performance, in-

cluding application architecture, video generation and adap-

tation schemes, loss recovery strategies, end-to-end voice

and video delays, resilience against random and bursty loss-

es, etc. Obtained insights can be used to guide the design of

applications that call for high-bandwidth and low-delay da-

ta transmissions under a wide range of “best-effort" network

conditions.

1. INTRODUCTION
The Internet has fundamentally changed the way peo-

ple communicate, ranging from emails, text-messages,
blogs, tweets, to Voice-over-IP (VoIP) calls, etc. We are
now experiencing the next big change: Video Telephony.
Video telephony was originally conceived in 1920s. Due
to its stringent bandwidth and delay requirements, for
years, business customers have been paying high prices
to utilize specialized hardware and software for video
encoding, mixing and decoding, and dedicated network
pipes for video distribution.Video telephony had little
success in the end-consumer market, until very recently.
The proliferation of video-capable consumer electronic
devices and the penetration of increasingly faster res-
idential network accesses paved the way for the wide
adoption of video telephony. Two-party video chat and
multi-party video conferencing services are now being
offered for free or at low prices to end-consumers on
various platforms. Notably, Apple iChat [15], Google+
Hangout [11], and Skype Video Calls [26] are among the
most popular ones on the Internet.
Video conferencing requires high-bandwidth and low-

delay voice and video transmission. While Skype en-

codes high-quality voice at data rate of 40kbps, a Skype
video call with good quality can easily use up bandwidth
of 900kbps [33]. While seconds of buffering delay is of-
ten tolerable even in live video streaming, in video con-
ferencing, user Quality-of-Experience (QoE) degrades
significantly if the one-way end-to-end video delay goes
over 350 milli-seconds [17]. To deliver good conferenc-
ing experience to end-consumers over the best-effort In-
ternet, video conferencing solutions have to cope with
user device and network access heterogeneities, dynam-
ic bandwidth variations, and random network impair-
ments, such as packet losses and delays. All these have
to be done through video generation and distribution
in realtime, which makes the design space extremely
tight. This motivates us to conduct a measurement s-
tudy of three existing solutions: iChat, Google+, and
Skype, to investigate how they address video conferenc-

ing challenges and how well they do it on the Internet.

Specifically, our study is focused on the following issues
about their key design choices and their delivered user
conferencing experiences.

• System Architecture: A natural conferencing
architecture is Peer-to-Peer (P2P), where users send
their voice and video to each other directly. Skype
employs P2P for VoIP and two-party video chat.
While P2P achieves low-delay, it comes short at
achieving high-bandwidth: a residential user nor-
mally cannot upload multiple high-quality video
streams simultaneously. While video conferencing
servers can be employed to relay users’ voice and
video, data relay often incurs longer delay than
direct transfer. Conferencing servers have to be
strategically located and selected to balance the
bandwidth and delay performance of voice and
video relay between geographically distributed user-
s.

• Video Generation and Adaptation: To cope
with receiver heterogeneity, a source can generate
single video version at a rate downloadable by the
weakest receiver. One-version design unnecessarily
limits the received video quality on other stronger
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receivers. Alternatively, multiple video versions
can be generated, either directly by the source or
by relay servers through transcoding. Different
video versions will be sent to different receivers,
matching their download capacities. In a simple
multi-version design, each video version is encoded
and transmitted separately. It incurs high encod-
ing and bandwidth overhead. Scalable Video Cod-

ing (SVC) encodes video into multiple layers. It is
appealing to adopt SVC in video conferencing to
realize multi-version design with greatly reduced
overhead.

• Packet Loss Recovery: To achieve reliability in
realtime streaming, the conventional wisdom is to
use Forward Error Correction (FEC) coding, in-
stead of retransmission. However, in video confer-
encing, video has to be encoded and decoded in re-
altime. To avoid long FEC encoding and decoding
delays, FEC blocks have to be short. This large-
ly reduces FEC’s coding efficiency and robustness
against bursty losses. Meanwhile, retransmission
is viable if the network delay between sender and
receiver is small. Unlike FEC, retransmission adds
redundancy only as needed, and hence is more
bandwidth-efficient. Redundant retransmissions
can also be used to protect important packets a-
gainst bursty losses. The choice between FEC and
retransmission is tightly coupled with system ar-
chitecture and video generation.

• User Quality-of-Experience: Ultimately, the
performance of a video conferencing system is e-
valuated by the delivered user conferencing expe-
riences, which are highly sensitive to various voice
and video quality metrics, such as end-to-end voice
and video delay, synchronization between voice and
video, video resolution, frame-rate and quantiza-
tion, etc. To provide stable conferencing services
to end consumers over the Internet, it is extremely
important for a conferencing system to be adaptive
to varying network conditions and robust against
random network impairments. We systematically
study the delivered user conferencing experiences
of each system in a wide range of real and emulat-
ed network scenarios. We further investigate the
implications of the design choices made by each
system on their delivered user experiences.

It is admittedly challenging and ambitious to come
up with conclusive answers for these questions. Al-
l three systems use proprietary protocols and encrypt
data and signaling messages. There is very limited pub-
lic information about their architectures and protocols.
To address these challenges, we undertake an extensive
measurement campaign and systematically measure the
three systems as black-boxes. We observe and analyze

their behaviors and performances through a set of care-
fully designed active and passive measurement exper-
iments. Extrapolating from the measurement result-
s, we are able to unveil important information about
their system architecture, video encoding and adapta-
tion, loss recovery and delivered user QoE. Our major
findings are summarized as following.

1. While P2P is promising for voice conferencing and
two-party video calls, P2P alone is not sufficient
to sustain high-quality multi-party video confer-
encing. The design choices and performance of
multi-party video conferencing systems are largely
affected by the availability of bandwidth-rich serv-
er infrastructures.

2. Conferencing server locations not only impact the
delivered user delay performance, but also affec-
t the design of loss recovery mechanism and the
achieved loss resilience. When servers are located
close to end users, retransmission is more prefer-
able than FEC to recover from random and bursty
losses. Data relays through well-provisioned server
networks can deliver low-delay and high-bandwidth
voice and video transfers between geographically
distributed users.

3. To deliver high-quality video telephony over the
Internet, realtime voice and video generation, pro-
tection, adaptation, and distribution have to be
jointly designed. Various voice and video process-
ing delays, incurred in capturing, encoding, decod-
ing and rendering, account for a significant portion
of the end-to-end delays perceived by users.

4. Compared with multi-version video coding, lay-
ered video coding can efficiently address user ac-
cess heterogeneity with low bandwidth overhead.
With layered coding, content-aware prioritized s-
elective retransmissions can further enhance the
robustness of conferencing quality against random
and bursty losses.

The rest of the paper is organized as follows. We
briefly discuss the related work in Section 2. Our mea-
surement platform is introduced in Section 3. Then we
study the application architectures of the three systems
in Section 4. Video generation and adaptation strate-
gies are investigated in Section 5. Voice and video delay
performances are measured in Section 6. In Section 7,
we investigate their loss recovery strategies, and mea-
sure their resilience against bursty losses and long de-
lays. The paper is concluded in Section 8.

2. RELATED WORK
Most of the previous measurement studies of real-

time communications over the Internet were focused
on Skype’s VoIP service. Baset et al [1] first analyzed
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Skype’s P2P topology, call establishment protocol, and
NAT traversal mechanism. Since then, a lot of paper-
s have been published on Skype’s overlay architecture,
P2P protocol, and VoIP traffic [2, 12]. Some other stud-
ies [3, 14, 32] focused on the quality of Skype’s voice-
over-IP (VoIP) calls. Huang et al. investigated Skype’s
FEC mechanism and its efficiency for voice streaming
[14, 32]. In [3], the authors proposed a user satisfaction
index model to quantify VoIP user satisfaction. Cicco
et al. [4] proposed a congestion control model for Skype
VoIP traffic.
More recently, there are some measurement work on

video telephony. Cicco et al. [5] measured the respon-
siveness of Skype video calls to bandwidth variations.
They conclude that Skype’s response time to bandwidth
increase is too long. In [33], we conducted an exten-
sive measurement study of Skype two-party video calls
under different network conditions. Based on the mea-
surement results, we propose models for Skype video
calls’ rate control, FEC redundancy, and video quality.
According to a year 2010 survey [18], most of the eigh-
teen surveyed multi-party video conferencing systems
before Skype and Google+ are sever-based. The maxi-
mum number of conferencing participants supported by
each system ranges from 4 to 24.

3. MEASUREMENT PLATFORM
Our video telephony measurement effort was initiat-

ed in December 2010, right after Skype introduced its
beta service of multi-party video conferencing. Since
then, we have been continuously taking measurement
of Skype. In June 2011, Google+ Hangout introduced
its video conferencing service for users in friend circles.
To obtain a broader view, we extended our study to
Google+, as well as Apple’s iChat.
As illustrated in Fig 1(a), our measurement platfor-

m consists of three major components: local testbed
within NYU-Poly campus network, remote machines of
friends distributed all over the world, and Planetlab [22]
and Glass Server [27] nodes at selected locations. Ex-
perimental video calls are established either only be-
tween our local machines, or between local machines
and remote friends’ machines. Planetlab and Glass
Server nodes are employed for active probing to geolo-
cate video conferencing servers. To emulate a video call,
we choose a standard TV news video sequence “Akiyo”
from JVT (Joint Video Team) test sequence pool. The
sequence has mostly head and shoulder movements. It
is very similar to a video-call scenario. We inject the
video sequence into video conferencing systems using a
virtual video camera tool [7]. This ensures the trans-
mitted video contents are consistent and repeatable.
As illustrated in Fig 1(b), to emulate a wide range of

network conditions, we install software-based network
emulator, NEWT[20], on our local machines. It emu-
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Figure 1: Testbed to Measure the Three Video
Conferencing Systems

lates a variety of network attributes, such as propaga-
tion delay, random or bursty packet loss, and available
network bandwidth. We use Wireshark [31] to capture
detailed packet-level information before and after the
network emulators. iChat, Google+ and Skype all re-
port technical information about video quality through
application window, such as video rates, frame rates,
RTT, etc. [21] We use a screen text capture tool [23] to
capture these information periodically. The sampling
interval is 1 second. Most of the measurement exper-
iments are automated. All the reported statistics in
the rest of the paper are drawn from a large number of
samples.

4. SYSTEM ARCHITECTURE
There are three main architectures for networked ap-

plications: client-server, peer-to-peer, and hybrid of the
two. Skype delivers a scalable VoIP service using P2P,
where users connect to each other directly as much as
possible. In a video conference, a source encodes his
video at a rate much higher than that of voice, and
might have to send the encoded video to multiple re-
ceivers. From the bandwidth point of view, a pure P2P
design might not be sustainable. We now investigate
the application architectures adopted by the three video
telephony systems.
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Figure 2: System Architectures of the iChat, Google+, and Skype

4.1 Methodology
For each system, we set up video calls and use Wire-

shark to capture packets sent out and received by each
computer. Each user in the conference generates voice
and video packets constantly at significant rates. In
our Wireshark trace analysis, we capture those TCP
and UDP sessions, whose durations are long enough
(at least half of the conference session time) and da-
ta rates are significant (larger than 5kbps), as voice or
video flows. To get the right topology and differenti-
ate between signaling packets, voice packets and video
packets, we conduct three stages of experiments. In
the first stage, each user sets his voice and video on
to form a video conference. In the second stage, user-
s only set voice on to form a voice conference. In the
third stage, all users shut down their videos and mute
their voices. We compare the recorded flow sessions in
the three stages. Consequently, we identify voice flows,
video flows, and signaling flows.

4.2 iChat is P2P
iChat employs a P2P architecture and users in a con-

ference form a star topology at the application layer as
shown in Fig. 2(a). The central hub is the conference
initiator, i.e., the user who initiated the conference. On-
ly the conference initiator has the right to add people
into the conference or close the entire conference. A
normal user uploads his voice and video data to the ini-
tiator through one UDP flow, and also downloads oth-
er participants’ voice and video data from the initiator
through another UDP flow. Participants use UDP port
16402. Voice and video are transported using the RTP
protocol [13]. Normal users only connect to the initia-
tor. There is no direct connection between two normal
users. iChat cannot work if UDP traffic is blocked.

4.3 Google+ is Server-centric
Google+ video calls, both two-party and multi-party,

always use server-centric topology, as illustrated in Fig.
2(b). Each user sends his voice and video to a dedicat-
ed proxy server, and also receives other users’ voice and

video from that server. There is no direct transmissions
between users. Generally, different users choose differ-
ent proxy servers. Thus, the proxy servers need to com-
municate with each other to exchange users’ voice and
video. Each user opens four connections with his proxy
server on the same server port (Port 19305). Most of the
time, these four connections all use UDP. TCP is used
only when we deliberately block UDP traffic. There is
a trick [21] to access various statistics of Google+. The
statistics show that two of the four flows carry voice
and video respectively. Google+ also uses RTP proto-
col to transmit voice and video. The other two flows’
payloads conform to the format of RTCP protocol. We
infer that those two flows carry signaling information.

4.4 Skype is Hybrid
For two-party video calls, Skype uses direct P2P trans-

mission for voice and video if the two users can establish
a direct connection [33]. When three or more users are
involved, the network topology is shown in Fig. 2(c).
Voice is still transmitted using P2P. Similar to iChat,
the conference initiator acts as the central hub. A nor-
mal user uploads his voice to the initiator and down-
loads other users’ voice from the initiator. In a con-
ference with three users, the upload flow rate from a
normal user to the initiator is around 40kbps. And the
download rate from the initiator to that user is around
50kbps, less than the total rate of two separate voice
flows. This indicates that the initiator might use sound
mixing technique to combine voices of multiple users in-
to one voice stream. For video transmission, each user
uploads his video to a Skype server, which relays the
video flow directly to all other users in the conference,
without going through another relay server. Different
users normally choose different relay servers.
Similar to Google+, Skype mostly uses UDP to trans-

mit voice and video, and only switches to TCP if UDP
is blocked. Different from Google+ and iChat, Skype
does not use RTP and RTCP. In addition to voice and
video flows, we also observe some low-rate flows between
servers and users. We conjecture that these small flows
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are for signaling.

4.5 Conferencing Server Placement
Google+ and Skype employ relay servers. If servers

are not properly located and selected for users, voice
and video relay will incur long delays that significantly
degrade users’ experience of realtime interaction in a
conference. To determine the server locations of Skype
and Google+, we set up video conferences with our
friends all over the world. Table 1 shows the Google+
server IP addresses used by our friends from differen-
t locations. When using a popular geo-location tool
Maxmind [19] to geo-locate those IP addresses, we were
surprised that all Google+ server IP addresses are geo-
located to Mountain View, CA, USA. However, this
seems incorrect. In Table 1, we also report the mea-
sured RTT between our friends’ machines and their
corresponding proxy Google+ servers. The RTT re-
sults suggest that most of our friends are assigned to
Google+ servers within short network distances, except
for the two friends in Australia. Thus, we infer that
Google+ hangout deploy conferencing servers all over
the world.

Table 1: RTT to Google+ Hangout Servers
Friend Location Server IP RTT (ms)

Hong Kong, CHN 74.125.71.127 3.49
Armagh, UK 173.194.78.127 8.88

Rio de Janeiro, BRA 64.233.163.127 9.02
New York, USA 173.194.76.127 14.2
Aachen, DE 173.194.70.127 20.00
Toronto, CA 209.85.145.127 26.76
San Jose, USA 173.194.79.127 28.89
Brisbane, AU 72.14.203.127 147
Canberra, AU 74.125.31.127 147

We did similar experiments for Skype. We found that
the server IP addresses for our friend machines are al-
l located in the subnet of 208.88.186.00/24. Maxmind
[19] reports that those servers are in Estonia. To ver-
ify this, we select Planetlab [22] and Glass Server [27]
nodes to ping Skype servers randomly picked from the
identified subnet and report the RTT results in Table
2. From nodes located in New York and Hong Kong,
we also pinged all possible IP addresses in the subnet.
The RTT results are consistent with the corresponding
values from these two locations listed in Table 2. This
suggests that those Skype servers are likely in the same
physical location. Even if the bit propagation speed
is exactly the speed of light (3 · 108 meters/sec), the
RTT between New York and Estonia is about 44.4ms
(11,314km) [16], which is even larger than the measured
RTT in Table 2. Thus, Skype servers can’t be located
in Estonia. To geolocate Skype servers, we did addi-
tional traceroute experiments from different locations.

We found that the last-hop router IP addresses are all
located near New Jersey area. This is consistent with
Table 2, where the location with the smallest RTT is
New Haven. Thus, we infer that Skype servers are lo-
cated near the New Jersey/New York area. As will
be shown in the following sections, server locations not
only directly impact users’ delay performance, but also
have implications on the design and performance of loss
recovery mechanisms of Google+ and Skype.

Table 2: RTT to Skype Video Relay Servers
PlanetLab/Glass Server RTT

Locations (ms)
New Haven, USA 17.4
New York, USA 25.9
Washington, USA 31.3
Vancouver, CA 61.41
San Jose, USA 67.5
London, UK 99.2

Guayaquil, EC 111
Saarbrucken, DE 138

Oulu, FIN 151
Rio de Janeiro, BRA 176

Tel Aviv, IL 207
Canberra, AU 222

Hong Kong, CHN 226
Brisbane, AU 266

West Bengal, IN 324

5. VIDEO GENERATION AND ADAPTATION
In a video conference, each source encodes and up-

loads his video in realtime. To cope with network band-
width variations, the encoded video rate on a source
first has to be adapted to his available uplink band-
width. Additionally, in multi-party video conferencing,
each source has multiple receivers, potentially with d-
ifferent download capacities. The source video encod-
ing rate also has to be adapted to receivers’ download
capacities. In an one-version design, a source gener-
ates single video version that can be downloaded by the
weakest receiver, and sends that version to all receivers.
This unnecessarily limits the received video quality on
stronger receivers. It is more desirable for a source to
send different receivers different video qualities, max-
imally matching their download capacities. In a sim-
ple multi-version design, a source uses different video
encoding parameters to generate multiple versions of
the same video, and simultaneously uploads those ver-
sions to the server/receivers. One obvious drawback is
that, as an end-host, a source might not have enough
bandwidth to upload multiple versions. Alternatively,
a source can send one copy of his video to a server,
which then transcodes it into multiple versions at low-
er qualities. The third option is the multi-layer design,
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where a source encodes a video into multiple layers, us-
ing the recent scalable video coding techniques, such as
SVC [25] or MDC [29]. A receiver can decode a ba-
sic quality video after receiving the base layer. Higher
video quality can be obtained as more video layers are
received. Recent advances in SVC coding has brought
down the layered video encoding overhead to 10% [30].
With multi-layer coding, a source only needs to send out
all layers using upload bandwidth slightly higher than
the one-version design, and realizes the effect of multi-
version design by allowing different receivers download
different numbers of layers, matching their download
capacities. It does not require server transcoding. It is
robust against bandwidth variations and packet losses:
a basic quality video can still be decoded as long as the
base layer is received reliably.

5.1 Methodology
Since there is no public information about their video

generation and adaptation strategies, we design experi-
ments to trigger video adaptation by manipulating source
upload bandwidth and receiver download bandwidth.
In our local testbed, for all users involved in the con-
ference, we set up one user as the sender, turn on his
video and use the other users purely as receivers. We
denote such a setting as a sub-conference, which is a ba-
sic component of the whole conference. As illustrated
in Fig. 1, the bandwidth of the sender and receivers can
all be set by the network emulator NEWT. We collec-
t video information from the application window. We
also record the packets using Wireshark [31] for offline
video payload analysis.

5.2 Video Encoding Parameters
To cope with bandwidth variations, all three system-

s encode video using a wide range of parameters, as
shown in Table 3. From the perspective of a viewer, the

Table 3: Video Rate and Resolution Ranges
System Rate (kbps) Resolutions
iChat 49 ∼ 753 640*480,320*240,160*120

Google+ 28 ∼ 890 640*360,480*270,320*180
240*135,160*90,80*44

Skype 5 ∼ 1200 640*480,320*240,160*120

perceived video quality is mostly determined by three
video encoding parameters: resolution, frame rate, and
quantization. The frame rates can vary from 1 FPS
(Frame-Per-Second) to 30 FPS for each system. In our
experiments, the ranges of the observed resolution val-
ues are also listed in Table 3. Skype and Google+ adapt
video resolution to network bandwidth. iChat’s video
resolution is determined by the number of users in the
conference. For example, the resolution is always set to
be 640× 480 in the case of two-party call. When three

or more users involved in the conference, the resolution
becomes 320×240 or 160×120. And once the resolution
is set at the beginning, it will not be changed afterward,
no matter how we change the bandwidth setting. We
cannot directly measure the quantization adaptation for
any of the three systems.

5.3 Video Adaptation
When the upload link bandwidth of a sender varies,

the video rate out of the sender changes correspond-
ingly. Generally, for these three systems, the higher
the upload link bandwidth, the larger the sending rate.
When the upload bandwidth is too small, they will au-
tomatically shutdown the video. This shows that the
three systems have their own available network band-
width probing algorithms to determine the video quality
to be encoded. To study video adaptation to receiver
bandwidth heterogeneity, we set receivers’ download ca-
pacities to different levels.

5.3.1 iChat uses One-version Encoding

We found that iChat uses one-version encoding: het-
erogenous receivers always receive the same video ver-
sion, and the receiver with the lowest download capacity
determines the video quality sent out by the sender. No
video trans-coding, nor layered coding, is employed.

5.3.2 Skype uses Multi-version Encoding

When there is a large variability in receivers’ down-
load capacities, Skype employs source-side multi-version

encoding. For example, in a video conference of one
sender and three receivers, receiver 1, receiver 2 and re-
ceiver 3’s download capacities are set to 150 kbps, 400
kbps and 2000 kbps respectively. The sender gener-
ates three video versions and uploads them to the relay
server, which distributes one of the three video versions
to the appropriate receiver. In this case, the received
video rates on receiver 1, 2, and 3 are 70 kbps, 200 kbps,
and 500 kbps, respectively. Server-side transcoding was
not observed. In our experiments, the largest number of
video versions that a sender can generate is three. When
receiver capacity variability is small, or the sender up-
load capacity is low, Skype uses one-version encoding
and sends to all receivers the same video quality.

5.3.3 Google+ uses Multi-layer Encoding

Google+ always give different video qualities to het-
erogenous receivers. For example, we only limit the
download capacity of one receiver, say receiver 2, to
500 kbps. On the sender side, the encoded video rate
is 835.7 kbps, with resolution of 640 ∗ 360 and frame
rate of 30 FPS. On receiver 1, the received video rate
is 386.9 kbps, with resolution of 640 ∗ 360, and frame
rate of 14 FPS. On receiver 2, the received video rate is
168.6 kbps, with resolution of 320 ∗ 180, and frame rate
of 14 FPS. The perceptual video quality on both receiv-
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er 1 and receiver 2 are consistent and acceptable. The
experiment environment is not fully controlled. Video
flows between our experiment machines and Google+
servers traverse the Internet, and have to compete with
cross traffic. This explains that the received quality
on receiver 1 is lower than the original video sent out
by the sender, although we didn’t add any bandwidth
constraint on receiver 1.
To gain more insight about how the two video qual-

ities are generated, we examine the packets captured
on the sender and receivers. Both Google+ and iChat
use RTP[13] protocol for voice and video transmission.
Even though video payload cannot be directly decoded
to reveal how video is generated, several fields in RTP
headers enable us to infer the video coding strategy em-
ployed by Google+. According to RTP header format
specification [24], “Sequence Number” field increments
by one for each RTP data packet sent, and can be used
by the receiver to detect packet loss and restore pack-
et sequence. In Google+, video packets generated by
one source form a unique sequence. “Timestamp” field
records the sampling instant of the first octet in the RT-
P data packet. In Google+ RTP packet traces, we ob-
serve that a flight of packets with consecutive sequence
numbers carry the same timestamp. We infer that those
packets belong to the same video frame. The common
timestamp is indeed the generation time of the frame.
If a packet is the last one in a frame, then its “Marker”
field is set to 1; otherwise the value is 0. Thus, we in-
fer that the “Marker” field can be used to identify the
boundary between two adjacent video frames. Since
different machines use different initial sequence num-
bers, to match video frames between the sender and
receivers, we instead use the “Timestamp”, “Marker”
and “Length” fields.
In Table 4, we match the RTP packets sent out by

the sender and received by the two receivers based on
their Timestamps, Marker (labeled ‘M’) and Length.
(Packets in the same row have the same values in these
three fields.) In the aligned table, the sender sent out
five video frames, both receiver 1 and receiver 2 only re-
ceived two frames. While receiver 1 received all packets
of those two frames, receiver 2 only received the first t-
wo packets of those two frames. It should be noted that
sequence numbers in receiver 1 and receiver 2 are con-
secutive. The lost packets/frames are not due to packet
losses. Instead, it is the video relay server who decides
not to send those frames/packets to receivers based on
their bandwidth conditions.
Both receivers can decode the video with decent qual-

ity. This suggests that Google+ employs multi-layer
coding. Since receiver 1 can decode the video even
though some frames are missing, the layered coding
used by Google+ achieves temporal scalability: video
frames are temporally grouped into layers, such that a

high frame-rate video generated by the sender can still
be decoded at a lower frame-rate by a receiver even if
a subset of frames/layers are dropped. Since receiver 2
can decode video even though it lost some packets with-
in each frame, the layered coding used by Google+ also
achieves spatial scalability: a video frame is encoded in-
to spatial layers at the sender, such that even if some
spatial layers are lost, the receiver can still decode the
frame at lower resolution and larger quantization. In
the experiment, we observe that no matter how low the
download bandwidth of a receiver is, the received video
resolution is at least one quarter of the resolution of the
original video. This shows that the encoded video only
has two spatial layers. This is reasonable, because s-
patial layers incur much higher encoding overhead than
temporal layers. Thus, the number of spatial layers
could not be too large.
We also developed a script and analyzed other RTP

packet traces of Google+. It is verified that Google+
employs layered video coding with temporal and spatial
scalability. Different layers have different importances
for video decoding. Consequently, one should use differ-
ent realtime transmission and protection strategies for
different layers. As will be shown in the later section-
s, prioritized loss recovery scheme can be designed for
layered video coding to achieve high robustness against
packet losses.

Table 4: RTP Packet Headers in Google+
M Timestamp Length Sequence Number

(bytes) Sender Receiver1 Receiver2

0 2063696701 1269 61603 44445 52498

0 2063696701 1113 61604 44446 52499

0 2063696701 1278 61605 44447

0 2063696701 1234 61606 44448

0 2063696701 1283 61607 44449

0 2063696701 1277 61608 44450

0 2063696701 1077 61609 44451

1 2063696701 989 61610 44452

0 2063699269 621 61611

1 2063699269 560 61612

0 2063703362 1086 61613

0 2063703362 485 61614

0 2063703362 1167 61615

1 2063703362 1048 61616

0 2063706604 543 61617

1 2063706604 914 61618

0 2063709620 1276 61619 44453 52500

0 2063709620 1067 61620 44454 52501

0 2063709620 1272 61621 44455

0 2063709620 1267 61622 44456

0 2063709620 1279 61623 44457

0 2063709620 1276 61624 44458

1 2063709620 736 61625 44459

6. VOICE AND VIDEO DELAY
To facilitates realtime interactions between users, video

conferencing systems have to deliver voice and video
with short delays. User conferencing experience de-
grades significantly if the one-way end-to-end video de-
lay goes over 350 milli-seconds [17]. In this section, we
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study the delay performance of the three systems.

6.1 Methodology
The end-to-end voice/video delay perceived by a us-

er is the sum of delays incurred by realtime voice/video
capturing, encoding, transmission, decoding, and ren-
dering. We can divide the end-to-end delay into four
portions. Let Te be the voice/video capturing and en-
coding delay at the sender, Tn be the one-way trans-
mission and propagation delay on the network path be-
tween the sender and the receiver, Ts be the server or
super-node processing time (Ts = 0, if there is no server
or super-node involved), and Td be the video or voice
decoding and playback delay at the receiver. Thus, the
one-way voice (video) delay is:

T = Te + Tn + Ts + Td. (1)

Obviously, it is not sufficient to just measure the net-
work transmission delay Tn. We therefore measure end-
to-end delay by emulating a real user’s experience.

6.1.1 One-way Voice Delay

(a) One-way Voice Delay

(b-1)  Recorded Voice Wave 

(b-2)  Enlarged Two Adjacent 
Voice Waves  

(b) Voice Waves Detail

Figure 3: Testbed to Measure Vioce Delay

To record one-way voice delay, we employ a repeat-
able “Tick” sound as the voice source and inject it to
the sender using a virtual microphone [28]. In our local
testbed, we set up three computers side by side, as illus-
trated in Fig. 3(a). One computer is the voice sender,
another one is the voice receiver. The sender repeatedly
sends the “Tick” sound to the receiver. The third com-

puter emulates a user and “hears” (records) the sound
injected to the voice sender and the sound coming out of
the receiver using a sound recording software [10]. 1 We
can visually analyze the captured sound signal in that
software. Fig. 3(b) shows a recorded sound wave sam-
ple. In the upper subfigure, we observe two sequences of
impulses at different amplitudes. Since we set the vol-
ume of the sender’s speaker significantly lower than the
receiver’s speaker, the impulses with smaller amplitudes
correspond to the repeated “Ticks” sent by the sender,
the impulses with larger amplitudes are the received
“Ticks” on the receiver. On the sender, we set the time
interval between two “Tick”s to be 1,000 ms, larger than
the expected voice delay, so that we can match a large
impulse with the preceding small impulse. The lower
subfigure is the zoom-in view of the two adjacent sound
impulses. Each impulse is indeed a waveform segment
with rich frequency components. We use the time-lags
between the first peaks of two adjacent segments as the
one-way voice delays.

6.1.2 One-way Video Delay

(a) One-way Delay

(b) Round-trip Delay

Figure 4: Testbed to Measure Video Delay

To measure video delay, we similarly emulate a user’s
video experience by simultaneously “viewing” (recod-
ing) the original video on the sender and the received
video on the receiver using a video capturing program.
As illustrated in Fig. 4(a), we set up two computer-

1The sender uses a virtual microphone to inject the “Tick”
sound to conferencing system. Consequently, the received
sound on the receiver will NOT be looped back to system.
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s side-by-side in our local testbed, one as the sender,
the other as the receiver. We run a stopwatch pro-
gram [8] on the receiver side, and focus the sender’s
video camera on the stopwatch window on the receiver’s
screen. The sender transmits the stopwatch video cap-
tured from the receiver screen back to the receiver using
one of the three conferencing systems. There are two
stopwatch videos on the receiver’s screen: the original
stopwatch video, and the copy captured by the sender
then transmitted back through the video conferencing
system. At any given time, the difference between the
two stopwatches is the one-way end-to-end video de-
lay perceived by the receiver. For the example in Fig.
4(a), the original stopwatch shows time “00:00:02.72”
second and the received copy of the stopwatch shows
time “00:00:01.46” second. Thus, the video delay in this
case is 1, 260 ms. We use a software program running
on the receiver to capture the snapshots of the receiver
screen 10 times every second. We then use a software [6]
to convert the captured pictures into mono-color, and
extract stopwatch images from the mono-color pictures.
Finally, the stopwatch readings will be decoded from
stopwatch images using an Optical Character Recogni-
tion (OCR) software [9]. It should be noted that if the
received video quality is bad, the OCR software cannot
decode the stopwatch readings correctly. We skip those
undecodable samples in our delay calculation. The un-
decodable picture ratio can also be used to infer the
received video quality.

6.1.3 Round-trip Video Delay

The previous method does not work if the sender and
the receiver are not in the same location. We develop
another method to measure the round-trip video delay

between two geographically distributed computers. As
illustrated in Fig. 4(b), we run a stopwatch program
on user A. A uses his camera to capture the stopwatch
as its source video, and transmits it to user B using
one of the three conferencing systems. The received
stopwatch video is now displayed on B’s screen. Then
B focuses his camera on the received video from A,
and sends the captured video back to A by using the
same conferencing system. Then on A’s screen, we can
observe two stopwatch videos: the original one, and
the one that is first sent to B, then recaptured and
sent back to A by B. The clock difference between the
two stopwatches on A reflects the summation of one-
way video delay from A to B, and the one-way video
delay from B back to A, in other words, the round-

trip video delay. If we assume the two directions are
symmetric, then the one-way video delay is roughly half
of the round-trip delay. After the cameras on A and B

are properly positioned, we only need to take screen
shots on A. We can further use the same approach as
in the one-way video delay case to process the data and
get a large number of delay samples.

6.2 One-way Voice and Video Delay
We first test the one-way delay between users in our

local testbed. All user computers are connected to the
same router. The network delay along the direct con-
nection between them is almost negligible.

Table 5: One-way Delay Performance (ms)
Systems Video Voice
Google+ 180 100

Skype Two-Party 156 110
Skype initiator to normal 230 130

Multi-party normal to normal 230 190
iChat Two-Party 220 220

iChat initiator to normal 220 220
Multi-party non-initi. to non-initi. 270 270

The voice delay and video delay performances for
three systems are listed in Table 5. For Google+, the
average video delay is 180ms, larger than the voice de-
lay of 100ms. As studied in Section 4.3, Google+ uses
server-centric architecture. The round trip network de-
lay between our local testbed and the allocated Google+
server is 14ms. The addition delays are due to voice and
video processing on both ends. It takes longer to process
video than voice. Skype two-party calls use direct P2P
transmissions for voice and video. Since network delays
between machines in local testbed are almost zero, the
measured one-way delays are mostly due to voice/video
processing. This suggests that voice and video process-

ing can take a significant portion of the delay allowance

of good-quality video conferencing.

As studied in Section 4.4, Skype multi-party call em-
ploys different overlay topologies for voice and video
transmissions. The voice flow from a non-initiator to
another non-initiator has to be transmitted to the ini-
tiator first. The initiator will do some processing, like
voice mixing and recoding. Thus, the voice delay be-
tween an initiator and a non-initiator is shorter than the
voice delay between two non-initiators. Since video has
to be first sent to Skype servers then relayed to receiver-
s, Skype video delay is larger than voice delay. Video
and voice are unsynchronized. The voice and video de-
lay gap is as large as 100ms when we consider the case
from an initiator to a normal user.
iChat transmits video and voice in one RTP flow. For

two-party calls, video and voice are synchronized. For
multi-party conferences, when voice and video flows are
transmitted from the initiator to non-initiators, delay
performance is the same as the two-party case. The
voice and video delays between two non-initiators are
longer than those between the initiator and non-initiators.
Since the network delays are negligible, the additional
delays are mostly for the initiator to combine packets
generated by different sources into one RTP flow before
sending it to a receiver.
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6.3 Round-trip Video Delay
We also measure the round-trip video delays (video

RTTs) between New York City and Hong Kong, New
York City and Singapore when using Google+ Hang-
out and Skype Multi-party conferencing systems respec-
tively. From Figure 5, in both cases, video RTTs of
Google+ are much smaller than those of Skype. For
the case between New York and Singapore, Google+’s
mean video RTT is only about 579ms, with standard
deviation of 44ms. We can approximate the one-way
video delay by half of the video RTT. Google+’s one-
way video delay is about 290ms, within the 350ms delay
allowance. To the contrary, Skype’s mean video RTT
is about 1, 048ms, with standard deviation of 239ms.
The corresponding one-way delay is over the delay al-
lowance. Between New York City and Hong Kong, the
average one-way video delay of Google+ is 374ms, again
much shorter than Skype’s average delay of 788ms.
From the topology study in Section 4, in Skype, video

generated by a source is directly relayed by a server to
all receivers. Video flows from a source to its assigned
Skype relay server and from the relay server to the re-
ceivers all have to traverse the public Internet. They
have to compete with background network traffic. To
the contrary, Google+ deploy relay servers located all
around the world, and a user is mostly connected to
a close-by server. The transmission between Google+
relay servers likely traverse their own private backbone
network with good QoS guarantee. This way Google+
voice and video relays incur much less random network
losses and delays than Skype’s voice and video relays
over the public Internet. Additionally, as will be shown
in the following section, Google+’s loss recovery scheme
is more efficient than Skype, which also leads to shorter
end-to-end video delay.

7. ROBUSTNESS AGAINST LOSSES
One main challenge of delivering video telephony over

the best-effort Internet is to cope with unpredictable
network impairments, such as congestion delays, ran-
dom or bursty packet losses. To achieve reliability in
realtime streaming, the conventional wisdom is to use
packet-level forward error correction (FEC) coding, in-
stead of retransmissions, which would incur too much
delay. Unfortunately, in video conferencing, to avoid
long FEC encoding and decoding delays, FEC blocks
have to be short. This largely reduces the FEC coding
efficiency and its robustness against bursty losses. If the
network delay between the sender and the receiver is
short, e.g. RTT of 20ms between our local testbed and
Google+ servers, retransmissions might be affordable
within an end-to-end delay allowance of 350ms. Unlike
FEC, retransmission adds in redundancy only as need-
ed, and hence is more bandwidth-efficient. Redundant
retransmissions can also be used to protect important

packets against bursty losses. In this section, we investi-
gate how the three systems recover from packet losses,
and how robust they are against random and bursty
losses.

7.1 Methodology
We set up multi-party conferences using machines in

our local testbed. We conduct two sets of experiments
by injecting packet losses using network emulators. In
the first set of experiments, we add upload losses on
the video sender side. In the second set, we add down-
load losses on only one of the receivers. Because we
capture packets before and after the loss module, we
can figure out which packets are lost. Through packet
trace analysis, we can also search for packets that have
similar payloads as the lost ones to check whether re-
transmission is employed or not. At the same time, we
monitor the application window to collect statistics on
video rates and total data rates to calculate redundant
transmission ratios.

7.2 Skype uses FEC
In our Skype experiments, we never found any re-

transmission of lost packets. From Skype’s technical
window, we can easily observe gaps between the total
data rates and video rates. Previous studies [32, 33]
suggest that Skype employs aggressive Forward Error
Correction (FEC) coding for VoIP and two-party video
calls. We infer that the observed rate gaps are also due
to FEC. Let rv be the actual video rate, rs be the actu-
al sending rate. FEC redundancy ratio ρ is calculated
as the ratio between the redundant traffic rate and the
total sending rate:

ρ =
rs − rv

rs
(2)

The experiment results of adding random upload loss-
es are shown in Table 6. The reported video rates are
the same on the sender and two receivers. Surprisingly,
the sender always adds significant redundancy even if
we don’t introduce any additional packet losses. (Note
that, since the upload flow traverses the Internet to
reach Skype server, the sender might still incur some
packet losses. Since we don’t know the actual loss rate,
we can’t get a precise FEC model for Skype’s multi-
party calls similar to the model for the two-party call-
s in [33].) On the other hand, the redundancy ratios
on the two receivers are pretty low, even though the
download flows also have to traverse the Internet. One
possible explanation is that Skype tries hard to protect
video uploaded by a source, because any lost video dur-
ing the upload has quality implications on all receivers.
As we introduce additional losses, the video rate goes
down significantly, and the FEC ratio increases. Howev-
er, due to the initial high FEC ratio, the increase trend
is not obvious when we further increase the loss rate.
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Figure 5: Round-trip Video Delays of Google+ and Skype

Table 6: FEC Adaptation at Skype Sender Side
Video Video Sender Side Video Receiver 1 Video Receiver 2
Rate Upload Loss Upload Rate FEC Received Rate FEC Received Rate FEC
(kbps) Ratio (kbps) Ratio ρs (kbps) Ratio ρr (kbps) Ratio ρr

513.48 0 974.00 0.47 542.62 0.05 542.56 0.05
474.26 0.02 1108.00 0.57 519.61 0.09 522.05 0.09
460.37 0.05 1019.50 0.55 487.84 0.06 488.19 0.06
225.05 0.08 496.57 0.55 241.80 0.07 241.32 0.07

When the loss rate is really high, Skype significantly
drops its video rate and the total sending rate. This
is consistent with the observation for Skype two-party
call in [33].
The results for download losses are shown in Table

7. Again, the reported video rates are the same on the
sender and two receivers. We only add random down-
load losses to receiver 1. The FEC ratio is much less
aggressive than in the upload loss case. But there is
still a trend that as the loss rate increases, more FEC
packets are added into the video flow of receiver 1. In
Table 6, we can also observe that quite often the down-
load flow rates on the two receivers are lower than the
upload rate of the sender. This suggests that the relay
server first removes FEC packets from the received da-
ta, and then adds new FEC packets to each download
flow. Results of Table 7 shows that the two receivers
in different conditions receive the same video rate with
different FEC ratios. Thus, we infer that relay server
monitors network conditions of receivers and calculate
different FEC ratios for different receivers.

7.3 Google+ uses Selective Persistent Retrans-
mission

As shown in Section 4.3, a Google+ user only inter-
acts with a Google+ server for video upload and down-
load. In our experiments, we only focus on one video
sender and one video receiver. We first set up a ma-
chine as a video sender and inject random packet losses
to its uplink. Then we capture the packets before and
after the network emulator so that we can identify the
lost packets. In our packet trace analysis, if two pack-
ets have the same “Timestamp” and “Sequence Num-
ber”, we treat them as redundant transmissions of the
same packet. (Payload analysis shows that the bit in-
formation of those matched packets are almost the same
except for several bits). Thus, we can identify retrans-
missions of lost packets. Detailed results are presented
in Table 8. As more losses are injected, more retrans-
missions appear in the flow. However, the sender video
FPS doesn’t change too much when we increase up-
load loss from 0% to 20%. We calculate video rate as
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Table 7: FEC Adaptation at Skype Relay Server Side
Video Sender Side Video Receiver 1 Video Receiver 2

Video Rate Upload Rate FEC Download Relay Send FEC Received Rate FEC
(kbps) (kbps) Ratio ρs Loss Ratio Rate (kbps) Ratio ρr (kbps) Ratio ρr

513.48 974.00 0.47 0 542.62 0.05 542.56 0.05
478.52 1163.87 0.59 0.02 653.40 0.27 505.43 0.05
440.94 955.72 0.54 0.05 949.73 0.54 465.82 0.05
343.73 821.43 0.58 0.08 824.39 0.58 363.88 0.06

total rate minus retransmission rate. Google+ strives
to maintain a high video upload rate even under high
packet losses. This is similar to Skype’s high FEC pro-
tection for video uploading. The recovery ratio is de-
fined as the fraction of lost packets that are eventually
received by the receiver. It shows that Google+ im-
plements selective retransmission, only half of the lost
packets are recovered. The persistent ratio defines the
fraction of packets retransmitted at least once that are
eventually received by the receiver. A persistent ratio of
1 means that if Google+ attempts to retransmit a pack-
et, it will persistently retransmit the packet until it is
received successfully. Since Google+ uses layered video
coding, where packets from the lower video layers are
more important for decoding. We conjecture Google+
applies selective persistent retransmission to packets of
the lower video layers first. In all experiments, Google+
consistently offers good video quality, even under 20%
uplink loss.

Table 8: Google+ Retransmission: Uplink
Loss Video Total Retran. Rcvry. Persis.
Rate FPS Rate Rate Ratio Ratio

(kbps) (kbps)

0 29.97 826.0 0.9 - -
0.05 29.98 836.9 24.2 0.46 1.00
0.10 29.97 885.7 52.1 0.46 1.00
0.20 29.98 857.2 101.4 0.45 1.00

The results of adding download losses on the receiver
is shown in Table 9. It shows a different trend. The
received video frame rate, the total rate, and video
rate inferred from retransmission rate all decrease as
the download loss rate increases. This suggests that
Google+ servers use packet loss as a signal to infer net-
work congestion. As packet loss rate increases, it not
only retransmits important lost packets, but also proac-
tively reduces the number of video layers to be sent
to a receiver. The recovery ratio and persistent ratio
are more or less the same as the upload loss case. Be-
cause we cannot control packet loss outside of our local
testbed, we still observe packet retransmissions even if
the injected packet loss rate is zero. We also tried down-
link loss rate of 40%. Surprisingly, Google+ still offers
reasonably good perceptual video quality.

Table 9: Google+ Retransmission: Downlink
Loss Video Total Retran. Rcvry. Persis.
Rate FPS Rate Rate Ratio Ratio

(kbps) (kbps)

0 27.91 810.8 4.4 - -
0.05 27.07 827.3 35.2 0.51 1.00
0.10 20.158 744.3 67.4 0.60 1.00
0.20 19.231 677.7 116.4 0.64 1.00

To gain more insights about Google+’s loss recov-
ery strategy, we collect more statistics about its packet
retransmissions. Table 10 lists how many retransmis-
sions Google+ attempted to reliably transfer a packet
at different packet loss rates. Most of the time, retrans-
mission is done within one or two tries. Sometimes, a
packet is retransmitted many times, with the highest up
to 18 times. We define the k-th retransmission interval

as the time lag between the kth retransmission and the
(k−1)th retransmission of the same packet (the original
transmission is considered as the 0th retransmission).
Table 11 presents the mean and standard deviation of
retransmission intervals. For reference, the RTT be-
tween our machines and Google+ server is 14 ms. And
the CDFs of retransmission intervals are plotted in Fig-
ure 6. In general, the retransmission intervals on the u-
plink are longer than the downlink. On the uplink side,
60% of the first retransmissions happen within 70ms af-
ter the first original packet transmission, which is about
3.75 times of the RTT. The retransmissions on the video
uploader side all need to wait for such a long time. This
is to avoid wasting valuable user upload bandwidth in
retransmitting delayed, instead of lost, packets. On the
downlink side, Google+ servers retransmit lost packets
more aggressively with shorter intervals. Aggressive re-
transmissions might waste some server bandwidth, but
recover faster from losses. Many of the N-th (N ≥ 5) re-
transmissions are attempted within 5ms after the previ-
ous retransmission. This batch retransmission strategy
is likely used to deal with severe and/or bursty packet
losses.

7.4 iChat’s Retransmission Strategy
iChat also uses retransmission to recover from pack-

et losses. We did similar measurement for iChat as for
Google+. The results for its retransmissions are shown
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Figure 6: CDF of Retransmission Time Intervals for Google+ Hangout

Table 10: Retransmission Probability in Google+
Loss Rate 1st 2nd 3rd 4th 5th 6th k-th (k ≥ 7)

Uplink: 0 1.00
Uplink: 0.05 0.9492 0.0477 0.0023 0.0008
Uplink: 0.10 0.8963 0.0947 0.0090
Uplink: 0.20 0.7996 0.1620 0.0293 0.0080 0.0009 0 0.0002
Downlink: 0 0.8058 0.1311 0.0146 0.0097 0.0049 0.0146 0.0194

Downlink: 0.05 0.8845 0.0958 0.0101 0.0032 0.0032 0.0005 0.0027
Downlink: 0.10 0.8677 0.1125 0.0140 0.0027 0.0003 0.0003 0.0024
Downlink: 0.20 0.7691 0.1793 0.0376 0.0100 0.0023 0.0008 0.0010

in Table 12 and Table 13. Unlike Skype and Google+,
video FPS decreases when upload losses are induced.
However, that value doesn’t change too much under
download loss. Different from Google+, iChat does not
do selective retransmission. It always retransmit lost
packets. But, its retransmission is not persistent. Most
of the time, it just tries to retransmit lost packet once
as shown in Table 14. There is no guarantee that a lost
packet will be successful recovered. Even though the
recovery ratios reported in Table 12 and Table 13 are
higher than those reported in Table 8 and Table 9, since
iChat does not employ layered coding and prioritized re-
transmission, a lost video packet may prevent decoding
of multiple video frames. Consequently, iChat’s video
quality under losses is much worse than Google+, even
though they both use retransmissions to recover from
packet losses. This suggests that layered video coding
not only adapts to user heterogeneity well, but also en-
hances video quality resilience against losses.

Table 12: iChat Retransmission: Uplink

Upload Video Sending Retrans. Rcvry.

Loss FPS Rate Rate Ratio

0 25.1 365.7 0 -

0.02 19.8 363.0 7.0 0.95

0.10 19.6 411.5 34.4 0.81

The CDFs of retransmission intervals are shown in
Fig. 7. The mean retransmission intervals are reported
in Table 15. Since we set machines in the same sub-
network, the RTTs between them are only about 2− 4
ms. Even though iChat waits for 30+ ms for the first
retransmission, the second retransmission happens only
3ms after the first retransmission.

7.5 Robustness of Conferencing Quality
We use end-to-end video delay defined in Section 6

as a measure of the delivered conferencing quality. If
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Table 11: Mean and Standard Deviation(SD) for Retransmission Intervals in Google+
Loss 1st 2nd 3rd 4th 5th 6th k-th (k ≥ 7)
Rate Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

(ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)

Uplink: 0 90.14 68.66

Uplink: 0.05 64.69 31.12 70.47 14.90 61.56 9.13 56.88 0

Uplink: 0.10 60.28 26.82 79.62 30.05 89.63 39.44

Uplink: 0.20 77.49 38.00 89.63 36.00 90.15 36.32 90.89 34.34 93.72 27.15 79.83 0 101.08 0

Downlink: 0 39.35 27.52 15.97 21.55 5.54 4.47 4.86 3.87 3.41 1.11 3.40 1.08 3.91 0.85

Downlink: 0.05 80.35 122.62 40.72 36.66 16.33 34.32 4.56 2.70 4.76 6.00 2.69 1.18 2.17 0.90

Downlink: 0.10 66.03 34.10 45.14 42.45 32.36 36.21 6.70 6.37 3.41 1.39 3.44 0.89 2.64 0.83

Downlink: 0.20 77.84 57.05 58.59 57.97 53.16 64.31 35.14 31.59 20.86 22.85 23.06 28.58 6.87 14.83
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Figure 7: Retransmission Time Interval under Loss Variation for iChat

Table 13: iChat Retransmission: Downlink
Loss Video Total Retrans. Rcvry.

Rate FPS Rate Rate Ratio

0 25.1 365.8 0 -

0.02 24.3 401.7 7.8 0.95

0.10 24.2 447.3 37.7 0.81

the video can be continuously delivered to the receiver
in realtime, the measured video delay from the stop-
watch video should be consistently low. Since the o-
riginal stopwatch continuously advances, losses of video
frames on the receiver side will lead to large measured
video delays. Additionally, if the received stopwatch
video quality is bad, the text recognition tool, OCR,
cannot decode the clock reading. The recognition ra-
tio of OCR is an indirect measure of the received video
quality. In this section, we compare the robustness of
the three systems against bursty losses and long delays.
Packet losses can be bursty, especially on wireless

Table 14: Retransmission Probability in iChat
Case 1st 2nd

Downlink loss 0.02 1.00
Downlink loss 0.10 1.00
Uplink loss 0.02 0.9960 0.0040
Uplink loss 0.10 0.9975 0.0025

links. We use the network emulator to generate bursty
losses on the download link. For each loss burst, 4 ∼ 5
packets are dropped in batch. Table 16 compares the
stopwatch recognition probabilities of the three systems
under different bursty loss rates. The stopwatch video
transmitted in iChat quickly become uncodable, this is
consistent with our own video perception. The recog-
nition probability remains high in Google+ and Skype,
indicating that their delivered quality is stable up to 4%
bursty losses.
Figure 8 compares the one-way video delay perfor-

mances of Google+ and Skype. When we don’t intro-
duce any additional loss, both Google+ and Skype are
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(a) Google+ Bursty Loss 0%
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(b) Google+ Bursty Loss 2%
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(c) Google+ Bursty Loss 4%
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(d) Skype Bursty Loss 0%
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(e) Skype Bursty Loss 2%
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(f) Skype Bursty Loss 4%

Figure 8: One-way Video Delay For Google+ and Skype under Different Bursty Loss Probabilities

Table 15: Mean Time and Standard Devia-
tion(SD) for Retransmission in iChat

Case 1st 2nd
Mean SD Mean SD
(ms) (ms) (ms) (ms)

Downlink loss 0.02 39.06 26.31

Downlink loss 0.10 35.27 26.66

Uplink loss 0.02 40.09 29.79 4.45 0.15

Uplink loss 0.10 39.20 31.69 6.86 9.05

Table 16: Digital Clock Recognition Probability
Case iChat Google+ Skype

No Loss 0.90 0.86 0.88
2% Bursty loss 0.46 0.90 0.90
4% Bursty loss 0.10 0.76 0.92

able to maintain a low and stable video delay, with av-
erage about 200 ms. As we introduce additional bursty
losses, Skype incurs large and highly-variable one-way
video delays, as shown in Figure 8(e) and Figure 8(f).
This suggests that the FEC scheme adopted by Skype
cannot efficiently recover from bursty losses. At frame
rate of 30 frames/second, each lost frame leads to an ad-
ditional video delay of 33ms. Consecutive lost frames
leads to delay pikes in the figures. Google+’s selective
and persistent retransmissions can recover from bursty
losses well. It can always do batch retransmissions for
packets of the base layers upon bursty losses. The re-
ceiver can decode video as long as all packets of the
base layer are received. As a result, Google+ is able
to maintain low video delays up to 4% bursty losses in
Figure 8(b) and Figure 8(c).
Compared with employing FEC, one main drawback

of using retransmission is that it does not work well
when the network delay between the sender and the re-
ceiver is large. To investigate the impact of network
delay on the efficiency of retransmission, we set con-
stant random loss to the download link of Skype and
Google+, then we change RTT by introducing propa-
gation delay on the access link of our local machines us-
ing the network emulator. Figure 9 compares the mean
and variance of one-way video delay of both systems at
different RTTs. Skype’s one-way video delay curves are
almost the same at no loss and 8% random losses. As
RTT increases by ∆, the one-way video delay increases
by roughly ∆

2
. This suggests that Skype’s FEC effi-

ciency is almost independent of RTT. To the contrary,
when no loss is induced, Google+’s one-way video delay
curve is almost the same as Skype’s curve. Almost no
retransmission is needed. When the random loss is set
to be 8%, the video delay curve ramps up quickly, with
increasingly higher variances. This suggests that FEC
is preferable over retransmissions if RTT is large, loss
is random, and loss rate is not too high.

8. CONCLUSION
In this paper, we present our measurement study of

three popular video telephony systems for end-consumers.
Through a series of carefully designed active and pas-
sive measurements, we were able to unveil importan-
t information about their design choices and perfor-
mances. Our study demonstrated that pure P2P archi-
tecture cannot sustain high-quality multi-party video
conferencing services on the Internet, and bandwidth-
rich server infrastructure can be deployed to signifi-
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Figure 9: Google+ and Skype Delay Perfor-
mances under Different Network Delays

cantly improve user conferencing experiences. We also
demonstrated that, in the extremely tight design space
of video conferencing system, video generation, pro-
tection, adaptation and distribution have to be jointly
considered. Various voice/video processing delays, in-
curred in capturing, encoding, decoding and rendering,
account for a significant portion of the end-to-end delays
perceived by users. Compared with multi-version video
coding, layered video coding can more efficiently ad-
dress user access heterogeneity. When relay servers are
well-provisioned and selected, per-hop retransmission
is more preferable than FEC to recover from random
and bursty losses. With layered video coding, priori-
tized selective retransmissions can further enhance the
robustness of conferencing quality against various net-
work impairments. Our findings can be used to guide
the design of new video conferencing solutions, as well
as an increasing array of network applications that cal-
l for high-bandwidth and low-delay data transmissions
under a wide range of “best-effort” network conditions.
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