
Video Tooning

Jue Wang1,2 Yingqing Xu2 Heung-Yeung Shum2 Michael F. Cohen3

University of Washington1 and Microsoft Research (Asia2 and Redmond3)

Figure 1: Two examples of Video Tooning.

Abstract

We describe a system for transforming an input video into a highly
abstracted, spatio-temporally coherent cartoon animation with a
range of styles. To achieve this, we treat video as a space-time
volume of image data. We have developed an anisotropic kernel
mean shift technique to segment the video data into contiguous vol-
umes. These provide a simple cartoon style in themselves, but more
importantly provide the capability to semi-automatically rotoscope
semantically meaningful regions.

In our system, the user simply outlines objects on keyframes. A
mean shift guided interpolation algorithm is then employed to cre-
ate three dimensional semantic regions by interpolation between the
keyframes, while maintaining smooth trajectories along the time
dimension. These regions provide the basis for creating smooth
two dimensional edge sheets and stroke sheets embedded within the
spatio-temporal video volume. The regions, edge sheets, and stroke
sheets are rendered by slicing them at particular times. A variety
of styles of rendering are shown. The temporal coherence provided
by the smoothed semantic regions and sheets results in a temporally
consistent non-photorealistic appearance.

1 Introduction

Animated imagery brings life to the screen. The stylized abstrac-
tion of reality one sees in animation adds an immediate impact that
cannot be captured by simply pointing a video camera at a scene.
But such animation is both labor intensive and requires considerable
artistic skill.

We present methods to lower these barriers by allowing video to
be transformed into a cartoon-like style. Stylized rendering of video,
which we dub Video Tooning is an active area of research in non-
photorealistic rendering (NPR). Our work was motivated in part by
the still image stylization and abstraction approach presented by De-
Carlo and Santella [2002]. Unfortunately, a direct frame-by-frame
application of this approach to stylize video results in a temporally
very incoherent result. Our goal then has been to produce temporally
coherent stylization while also allowing a user significant freedom
in choosing the final look of the video.

Generally, there are three major criteria that a successful video
tooning system should meet:

1. The result sequence should maintain spatio-temporal consis-
tency to avoid significant jumps in frame transitions.

2. The content of the video should be abstracted in such a way as
to respect the higher level semantic representation.

3. The artist should be able to express control over the style of the
result.

When NPR methods designed for static images are applied to
video sequences on a frame-by-frame basis, the results generally
contain undesirable temporal aliasing artifacts. We overcome the
coherence problem by accumulating the video frames to create a
3D data volume and directly cluster the pixels in the three dimen-
sional space (x,y,t). This avoids many of the robustness problems
of optical flow methods that track pixel or object movements only



Figure 2: The flow chart of our Video Tooning system.

between successive frames. We have developed a spatio-temporal
video segmentation technique called anisotropic kernel mean shift
[Wang et al. 2004]. It is based on the basic mean shift image seg-
mentation method [Comaniciu and Meer 2002] but is extended to
achieve better results on video segmentation. The segmentation re-
sults in clusters of pixels that have similar visual attributes and are
contiguous in space and time. These sub-volumes provide the low-
level spatio-temporal coherence information to create higher-level
semantic abstraction.

Cartoon animations are typically composed of large regions
which are semantically meaningful and highly abstracted by artists.
A region may simply be constantly colored as in most cel animation
systems, or it may be rendered in some other consistent style. To
achieve similar results, we build a rotoscoping interface that enables
the user to outline the semantic regions within the spatio-temporal
video volume. A contribution of our interface is, instead of requir-
ing the user to draw in a frame-by-frame way like the traditional
cartoon art, we leverage the low-level spatio-temporal coherence in-
formation provided by the segmentation to facilitate the user’s work
and greatly reduce the required labor. The user draws on several
keyframes which are sparsely distributed along the whole sequence.
A mean shift guided shape interpolation method then propagates the
user’s editing from keyframes to all other frames to create 3D se-
mantic regions.

Semantic 3D regions are further processed into polyhedral surface
representations and smoothed. From these, we create a set of edge
sheets from portions of surfaces. Following a similar interface, the
user is able to add strokes within regions on keyframes. These are
also propagated through time guided by the semantic regions. These
result in smooth ”stroke sheets” within the solid regions.

At this point, the video is represented as a set of 3D polyhedral
semantic regions, 2D edge sheets along the surface of the regions
and stroke sheets within the regions. These primitives, when sliced
at a frame time yield solid areas and curves along their edges and
within the interior. We present a variety of rendering options for
these primitives to construct a frame of the stylized video.

Figure 2 shows a flow chart of our system. The system to trans-
form a video sequence is summarized as follows:

• A set of volumetric objects is determined by mean shift video
segmentation;

• The user draws on a limited number of keyframes to indicate

how small segments should be merged into larger, semantic
regions;

• The user’s indications are interpolated between keyframes by
a mean shift guided interpolation technique propagating the
user’s input to all frames;

• The user can optionally draw paint strokes within regions at
keyframes. These are similarly interpolated.

• Semantic regions and surfaces are reconstructed and smoothed.
Edge and stroke sheets are determined.

• At each frame time regions and sheets are sliced to yield area
and curve primitives.

• These primitives are rendered in desired style to create final
stylized video frame and output.

2 Related Work

We are not the first to present methods to stylize video. Some
approaches apply NPR rendering methods frame-by-frame or used
simple interpolation techniques. Recent films such as A Waking Life
and Avenue Amy were painstakingly modified one or a few frames
at a time. Although the stylized look of this work has some appeal,
the jitter produced by these methods may or may not have been the
goal of the artists. In any case, the tedious workload made these
productions very expensive to complete.

In 1997, Litwinowicz [1997] proposed an automatic approach to
produce painterly animations from video clips. Optical flow fields
were used to push brush strokes from frame to frame in the direc-
tion of pixel movements. Hertzmann et. al. [2000] modified each
successive frame of the video by first warping the previous frame
to account for optical flow changes and then painting over areas of
the new frame that differ significantly from its predecessor. This
was extended in [Hertzmann 2001] by guiding paint strokes with a
general energy term consisting of both pixel color differences and
optical flow. Our mean shift based system can be thought of as a
more global optimization, similar in spirit to the optical flow em-
ployed locally in these systems.



Manual rotoscoping tools for extracting figures from video are
commercially available, for example, Commotion and Adobe Af-
ter Effects. These systems most likely use optical flow to track
individual points forward in time. The animators for Waking Life
were given some automation tools such as an ability to interpolate
individual strokes between two separate frames and/or move large
billboard-like layers [Linklater 2001]. In contrast we perform a
more global optimization to interpolate loops and curves drawn on
keyframes to provide temporal coherence and fidelity to the user’s
specification.

There is a vast literature on finding and tracking objects and fea-
tures in the vision literature. One classic approach is the Snakes sys-
tem [Kass et al. 1987] to find curves in an image and then adapted
by Hoch and Litwinowicz [1996] for tracking. There is an equally
vast literature on image segmentation in which one finds the mean
shift method [Comaniciu and Meer 2002] we have extended.

One can also view part of our work as extending the in-
betweening problem in keyframe animation. A good recent addition
to this problem for NPR is the work by Kort [2002]. The Snake-
Toonz system [Agarwala 2002] used spline-based active contours
for tracking user sketched contours of simple objects displayed in
front of solid backgrounds. The goals of this work are similar to
ours. However, our methods also work in more unconstrained envi-
ronments and provide more stylistic choices to the user through the
use of edge and stroke sheets. The active contours of SnakeToonz
are also implicitly supported by the mean shift result.

Some recent video processing techniques treat video as a space-
time volume of image data. In the Stylized Video Cubes approach
[Klein et al. 2002], a set of ”rendering solids” were created in the
volume as a function defined over an interval of time; when eval-
uated at a particular time within that interval, each rendering solid
provided parameters necessary for rendering an NPR primitive. Al-
though this system resulted in interesting abstractions of the under-
lying video it had no facilities to respect larger semantic regions as
they evolve through time. In [Collomosse et al. 2003] the authors de-
scribe aspects of their Video Paintbox which include the creation of
spatio-temporal subvolumes by associating segmentation results be-
tween contiguous frames. They also describe the creation of stroke
surfaces in much the same spirit as the edge sheets we describe later.
Our system extends 2D computer vision segmentation techniques to
directly provide 3D primitives in the video volume that maintain spa-
tial and temporal coherence. These provide the underlying structure
for the user to then define semantic regions.

Our choice to modify mean shift for video was inspired by its
success on still images as shown by DeCarlo and Santella for NPR
in their paper Stylization and Abstraction of Photographs [2002].
In their system, images were transformed into a style combining
of line-drawing and filling large regions with constant color. For
abstraction, the system used eye-tracking data to determine where
to remove extraneous details and to highlighting important objects.
We achieve a similar goal on video sequences by extending mean
shift segmentation to leverage temporal coherence. We also ren-
der video frames using line-drawing and large regions with constant
color, which are temporally consistent. In our case, the regions are
determined by an artist rather than eye tracking. We also have ex-
tended the stylistic choices by allowing the artist to embed stroke
sheets within the larger semantic regions.

3 Spatio-Temporal Coherence Analysis

Typical video contains strongly correlated frames as well as sudden
changes across shot boundaries. This paper focuses only on the finer
level, in other words, only the frames within each shot. We consider
the pixels within each shot as a 3D (spatio-temporal) lattice of color
values. We first process the video pixel data to determine discrete
3D shapes, or spatio-temporal video segments. For this purpose, we

Figure 3: A frame of the mean shift result. Each pixel is colored as
the average of the pixels within each segment.

have extended a mean shift algorithm [Comaniciu and Meer 2002]
to better address the type of features found in video data [Wang et al.
2004].

3.1 Mean Shift Segmentation

An image segmentation is simply a partition of an image into con-
tiguous regions of pixels that are similar in appearance. Mean shift
is a general nonparametric technique for the analysis of a complex
multimodal feature space and the delineation of arbitrarily shaped
clusters [Comaniciu and Meer 2002]. Although mean shift estima-
tion was developed decades before [Fukunaga and Hostetler 1975],
its properties of data compaction and dimensionality reduction have
been explored only recently for low level computer vision tasks such
as non-rigid object tracking [Comaniciu et al. 2000] and image seg-
mentation [Christoudias et al. 2002]. Its convergence on lattices
has also been proven. Recent work adopted this method for cre-
ating non-photorealistic stylization of images [DeCarlo and Santella
2002]. We extend this work to 3D video segmentation.

Pixels in an image can be thought of as lying in a 5 dimensional
space defined by the 2 image axes and 3 color components. Pixels
that lie close to each other in this multivariate feature space form
denser regions. The density measure at any point in the space is
defined by a weighted sum of nearby pixels. The contribution to
the density of the point of each nearby pixel is defined by a kernel,
which has its maximum at the point and drops off with distance.
Mean shift is an algorithm to find each pixel’s mode (local maxima)
of the density estimate. It proceeds by iteratively moving a mean
shift point associated with each pixel upwards along the gradient of
the density function until a mode is reached. All pixels associated
with points that move to the same mode are then considered part of
the same segment.

One of the most actively studied aspects of mean shift is how best
to define the kernel which implicitly defines a measure of distance
between pixels. In an associated paper [Wang et al. 2004] we discuss
the details of the mean shift method and our contribution of the use
of an anisotropic kernel to better address the types of structures seen
in video sequences.

3.2 Mean Shift Segmentation for Video

For video, one could simply perform mean shift segmentation on
each frame individually, but as noted earlier this results in a tem-
porally very noisy result (see video). Instead, we perform a video



Figure 4: Comparison of radially symmetric kernel mean shift (left)
and anisotropic kernel mean shift(right) on a spatio-temporal slice
of the monkey bars sequence. The straighter edges in vertical (tem-
poral) dimension lead to improved temporal coherence.

segmentation, a partition of the video as a whole into contiguous
volumes of pixels defined on the 3D lattice (x,y,t).

We could adopt the same radially symmetric kernels typically
used for images but extended by the one extra dimension of time.
This does, in fact, improve the temporal coherence considerably.
However, if one examines spatio-temporal slices of video data (see
Figure 4), particular features are very evident that do not arise nor-
mally in images. Many long thin features are common indicating the
motion, or lack thereof, of objects across the visual field. Radially
symmetric kernels thus do not represent well an intuitive notion of
nearby in this domain.

Figure 4(left) illustrates the problem with relying on radially
symmetric kernels for video segmentation by examining a spatio-
temporal slice (parallel to the temporal axis) of the video. Such a
slice is as representative of the underlying data as any single orig-
inal frame (i.e., a slice orthogonal to the temporal axis). Radially
symmetric kernels tend to attract pixels across the thin strips which
clearly should be kept separate. This causes a noisy result in the seg-
mentation when the segmented video is subsequently sliced in time
for rendering.

In [DeMenthon 2002], this problem was recognized and ad-
dressed by adding optical flow information to the pixel itself. How-
ever, as the author pointed out, introducing motion components into
the features will destroy the boundaries of moving regions and make
them jagged. The higher dimension also make the points much more
sparse and contributes to the noisy results.

As we show in [Wang et al. 2004], we overcome the problems
of radially symmetric kernels by creating a different kernel for each
pixel that adapts to the local density. These kernels take on a general
ellipsoidal shape in the spatio-temporal domain determined by the
local covariance of the positions of nearby pixels of similar color.
Thus the anisotropic kernels adapt to long thin shapes both in the
spatial and time dimensions leading to better temporal coherence as
can be seen in the smoother segment boundaries in Figure 4(right).

Anisotropic kernels also provide a set of handles for application-
driven segmentation. For instance, we may desire that the still back-
ground objects be more coarsely segmented while the details of the
moving objects to be preserved when segmenting a video sequence.
Details can be found in [Wang et al. 2004]. Pseudocode of the
anisotropic mean shift algorithm can be found in the appendix at
the end of this paper as well.

4 Non-photorealistic Rendering of the
Video

The mean shift segmentation results in volumes of contiguous pix-
els with similar color. The simplest abstraction of the video can
then be created by simply coloring all pixels the average color of
the segment and then slicing this in time to create a sort of ”paint-

Figure 5: Mean shift segments selectively saturated.

Figure 6: Mean shift constrained keyframe interpolation algorithm.
(a) The user outlines the trousers on the 12nd and 25th frames. (b)
Mean shift constraints on the 15th, 18th and 22nd frame, from left to
right. Black regions represent the merged volume S∗ and the bound-
aries represent the mean shift constraints Lms(t). (c) Final interpo-
lated results, Ls(t), balancing mean shift constraints and smooth-
ness.

by-number” non-photorealistic rendering (see Figure 3). Segment
colors can be changed (see Figure 5) and/or segment edges drawn
for artistic effect.

4.1 Interactive Specification of Semantic Regions

Our next goal is to allow a user to provide input to collect segments
into more semantically meaningful groups, for example, the girl’s
pants in the monkey bars video. The segments derived directly from



Figure 7: Illustration of mean shift guided interpolation on a 2D
spatio-temporal slice. Loops on keyframes appear here as yellow el-
lipses on x, y planes at times k1 and k2. The red area represents a
segment surrounded only by the loop at k1, and the blue area a seg-
ment surrounded at k2. The purple area shows a segment surrounded
by both. The region (a) is also included in the final union since the
majority of its pixels (shaded darker) lie between surrounded seg-
ments of the simple union. The boundaries of the semantic region
are smoothed in a final optimization step as indicated by the red
lines.

the mean shift procedure will typically be too low level to have such
semantic meaning.

A user interface is provided to outline semantic regions in
keyframes. The outlines drawn by the user indicate which low-level
segments should be merged together to form a high-level seman-
tic region. The mean shift results provide the temporal information
needed to spread the user’s region indication on keyframes to in-
between frames. This avoids tedious frame-by-frame rotoscoping.

The number of keyframes needed may vary according to the in-
tensity of the motion. Generally, the more intensive and complex
an object moves, the more keyframes are required to achieve satis-
fying interpolated results in in-between frames. However, even for
the girl’s legs in the monkey bars sequence which is full of complex
motions, keyframes are typically needed only every ten or fifteen
frames.

In addition to the outlines, we ask the user to indicate a few key
points on each outline to help later with interframe correspondence.

4.2 Mean Shift Guided Interpolation

Suppose the user draws two loop boundaries L(k1) and L(k2) on
two keyframes k2 > k1. Each loop encircles a set of segments,
S(k1) and S(k2), that extend forward and backward in time. A
segment is considered inside the loop if the majority of pixels on the
keyframe lie inside the user drawn outline. We can take the union of
the two sets S(k1, k2) = S(k1)∪S(k2) to get a first approximation
of the semantic region being specified between the keyframes. This
union may also encompass other segments that do not cross either
k1 or k2. These are added to the union to create the augmented
union S∗(k1, k2). A segment is considered encompassed by other
segments through the following two step process:

• For each frame, t, k1 < t < k2, pixels that are fully sur-
rounded by pixels contained in S(k1, k2) are marked.

• Each segment for which a majority of its pixels are marked is
considered encompassed and added to S∗(k1, k2).

By slicing the union, S∗, at each frame time we get a series of in-
between boundaries Lms(t), t = k1 + 1, ..., k2− 1 between L(k1)
and L(k2). Typically, the set of boundaries Lms(t) exhibit signifi-
cantly noisy boundaries. The mean shift segmentation is sensitive to
small perturbations on the surfaces of the segments. This results in
noisy boundaries between regions due to high frequency detail oc-
curring in the images or resulting from video interlacing. We thus
incorporate smoothness objectives into the interpolation procedure,
both spatially and temporally as described next.

1. The user inputs loops L(k1), L(k2), and keypoints defining
the correspondence between them, as shown in Figure 6a.

2. Compute a simple linear interpolant Ls(t), t = k1+1, ..., k2−
1 by direct linear interpolation of loops, L(k1) and L(k2),
including the keypoints between k1 and k2.

3. Compute the mean shift loops Lms(t), t = k1 + 1, ..., k2− 1
by computing the underlying merged volume S∗(k1, k2) and
slicing it successively along the time axis. This results in a
finely tesselated polygon at each frame time without keypoints.

4. Build correspondences between Ls(t) and Lms(t) by using a
shape correspondence algorithm to transfer the keypoints from
the user defined loops to the mean shift defined loops. Results
are shown in Figure 6b.

5. Using Ls(t) as a starting guess, iteratively adjust vertex posi-
tions of Ls(t) to minimize a weighted sum of the difference
from Lms(t) and a smoothness energy. Results appear in Fig-
ure 6c.

Step 4 is a general shape matching problem used to establish
which points on the mean shift defined loops correspond to the key-
points defined by the user. We use the robust ”shape context” ap-
proach [Belongie et al. 2002]. This method defines a descriptor, the
shape context, to any reference point on a polygon. The shape con-
text captures the statistical distribution of all points on the polygon
relative to the reference point. This offers a globally discriminative
characterization. Corresponding points on two similar shapes will
have similar shape contexts, and all the correspondences are solved
as an optimal assignment problem by the shortest augmenting path
algorithm proposed in [Jonker and Volgenant 1987].

In our case, at each frame time t, we compute the shape context
for each keypoint on Ls(t) relative to all points on the loop. We also
compute a shape context for all points on the mean shift defined loop
Lms(t). The algorithm then finds the mean shift loop points that
have a similar shape context to the keypoints on Ls(t) and assigns
these points as keypoints on the mean shift loops.

In step 5 we put the problem into an optimization framework and
solve it iteratively. Five points per keypoint are distributed evenly
along Ls(t) and Lms(t). This provides two finely tesselated poly-
gons with the same number of vertices. These vertices are denoted
as P i

s(t) and P i
ms(t), i = 1, ..., Np. We define a spatio-temporal

smoothness energy as:

Esmooth(t) =

Np−1
∑

i=1

{

∥

∥

∥

−−−−−−−−−−−−−−−−→
P i

s(t + 1), P i+1
s (t + 1)−

−−−−−−−−−→
P i

s(t), P i+1
s (t)

∥

∥

∥

2
}

+

Np
∑

i=1

{

∥

∥

∥

−−−−−−−−−−−→
P i

s(t), P i
s(t + 1)−

−−−−−−−−−−−→
P i

s(t− 1), P i
s(t)

∥

∥

∥

2
}

(1)



Figure 8: Illustration of the two terms of the spatio-temporal
smoothness energy in Equation 1. The diagram shows the evolu-
tion of a portion of a loop over three time steps, t − 1, t, to t + 1.
Each smoothness term is an L2-norm of the difference of two cor-
responding vectors. The first shape term is the difference between

vectors ~a and~b. The second temporal term is the difference between

vectors ~c and ~d.

The first term tries to keep the boundary shape the same from one
frame to the next. The second term tries to minimize the 2nd finite
difference of a single point through time. The two terms are illus-
trated in Figure 8.

A mean shift difference energy is defined simply as the sum of
squared offsets of the current guess, Ls, from the mean shift bound-
aries, Lms:

Ems(t) =

Np
∑

i=1

(

∥

∥P i
ms(t)− P i

s(t)
∥

∥

2
)

(2)

The complete objective function for minimization is then defined as
the weighted sum:

E =

k2−1
∑

t=k1+1

[Esmooth(t) + wmsEms(t)] (3)

where wms weights the mean shift objective relative to the smooth-
ness objective. A typical setting for wms is 3.0 as we do not want to
oversmooth the mean shift results.

The locally optimal positions for the P i
s(t) are achieved by it-

eratively perturbing each point to lower the overall smoothness en-
ergy. This continues until a local minimum is achieved. We illustrate
the constrained interpolation on a simplified diagram of a spatio-
temporal slice (see Figure 7).

5 Stylized Rendering

Given the pixelized representation of the semantic regions, we then
convert them to 3D polyhedral surfaces. The new representation
serves two purposes: we can smooth the reconstructed surfaces fur-
ther using traditional object smoothing operations; and in addition,
surface reconstruction makes the computation of edge sheets possi-
ble, which are used to render temporally coherent strokes. We also
show the use of stroke sheets within regions to allow modification of
the region interiors.

A side benefit of the continuous representation, which we do not
explore here, is that the resulting shapes are now resolution indepen-
dent in both space and time. Thus, final rendering can be performed

Figure 9: A smoothed semantic region sliced at time t.

at any spatial or temporal resolution and compression/transmission
methods no longer need to deal with discrete frame times.

5.1 Semantic Region Surface Construction

We use the marching cubes algorithm [Lorensen and Cline 1987] to
convert the pixelized data into surface data resulting in polygonal
surfaces separating the semantic regions. In addition to the surface
geometry, each semantic region is annotated with a color, and a re-
gion edge importance, Ir , supplied by the user. Ir is set between 1
and 0. The edge importance of the background in our examples is
by default set to 0 but could be set otherwise.

We then iteratively smooth the region volumes. Each vertex is
perturbed along the two spatial dimensions, x and y. One smooth-
ing step moves each vertex’s spatial position to the average of its
current position and 0.25 times the mean (x, y) position of all its
connected neighbors. Although the time component of a vertex re-
mains unchanged, all connected neighbors including those at adja-
cent frame times are considered when perturbing the spatial position.
Gaps between regions are avoided since regions share the set of ver-
tices forming their separating walls. We have also not experienced
any self intersection region surfaces, we believe due to the fact that
the original vertices are regularly spaced from the video lattice.

The smoothed regions can easily be rendered as solid colored
polygons at any time t by intersecting them with a plane perpen-
dicular to the time axis (Figure 9).

5.2 Edge Sheets

We also want to add solid strokes to the final rendering much like
inked lines in a drawing. Selecting lines and their location on a
frame-by-frame basis causes a lack of temporal coherence. To avoid
this, we construct a set of smooth two dimensional sheets, or edge
sheets embedded in the 3D video volume. We slice these sheets at
each frame time to extract a curved line for rendering.

5.2.1 Edge Sheet Construction

Edge sheets are derived from the surface representations of the 3D
semantic regions. Each pair of adjacent regions will share one or
more sections of their surfaces. Sets of contiguous shared triangles
between each pair of regions are copied into their own vertex/edge
data structure. This forms two dimensional edge sheets embedded



in the 3D video volume. Small sheets containing less than a user set
number of triangles are discarded.

The remaining polygonal sheets are smoothed in two ways: 1)
The boundaries are low pass filtered to avoid jagged edges that could
cause temporal artifacts, and 2) internal vertex positions are aver-
aged with their adjacent vertices to provide geometric smoothness.

An edge importance value denoted as Ie for each sheet is set to
either the max or the difference of the two region importance values,
Ir , of the semantic regions it separates. Ie is compared to a user set
threshold between 0 and 1 to decide if the sheet should be used to
generate edge strokes at render time.

5.3 Rendering Edge Sheets

Edge sheets are two dimensional sheets embedded in the 3D video
volume. When sliced by a plane at a particular frame time, the edge
sheets produce smooth curves that approximately follow the surfaces
of the regions. The smoothing step may pull some edges slightly
away from the exact boundary between colored regions but this pro-
vides a good balance between stroke smoothness and region shape.
Figures 11 and 12 show examples of the inclusion of edge sheets.

Rendering a sheet at some time t involves first intersecting the
sheet with a plane at time t to produce a curve. The curve can then
be drawn with a number of styles. In [DeCarlo and Santella 2002],
the overall thickness was set simply by the length of the stroke in
the 2D frame and had a profile that tapered it at its ends. We begin
in a similar way by defining a basic style for the line that defines its
profile along its length in the spatial domain parameterized by arc
length. Many drawing and sketching systems provide such a choice,
such as [Hsu and Lee 1994].

In our case, we have the added information provided by the edge
sheet as a whole that we can leverage to modify the stroke color and
thickness or other properties. In addition to an edge’s length in a
particular frame, the edge also has a limited duration in time. We
will use the current time t relative to the beginning, ts, and end, te

of an edge sheet’s existence to modify the edge thickness. More
specifically, as (t − ts)/(te − ts) varies from 0 to 1, the thickness
will grow to a maximum at 0.5 while being thinner at the beginning
and end of its lifetime.

At each vertex, the sheet also has an implied normal, N =
(Nx, Ny, Nt), taken as the average of the normals of adjacent tri-
angles. The direction of the normal is taken to point outwards from
the region with the higher Ir .

Nt indicates the rate of an edges’s motion across the frame. In
particular, a positive value of Nt indicates a trailing edge that we
will thicken during rendering, and a negative Nt indicates a leading
edge that is thinned.

Figure 10: Variables to determine edge thickness.

The sum effect on thickness of a point on an edge based on its
position along its arclength, the frame time relative to its lifetime,
and the edge’s motion is summarized as

Thickness = Tbase ∗ Tarc ∗ Ttime ∗ Tmotion (4)

Tbase is set by the user and represents the thickness of the center
of a still edge at the middle of its existence in time. The other terms
vary as shown in Figure 10. The formulas of these terms are given
in the Appendix. As the graphs imply strokes thin at their ends both
in space and time.

Finally, the spatial components of the normal (Nx, Ny) can be
used to shade the edge based on a dot product with a virtual light
direction given by the user. We’ll denote this dot product Dl. For
example, we may wish to make edges facing the upper right brighter
and those facing down and to the left darker. An example can be
seen in Figure 11(right).

Figure 11: Left: solid regions with no edges. Center: Black edges
modulated by thickness. Right: Edges further modulated by an im-
plied lighting direction and thickness modified by motion.

For those who prefer to visualize the edge sheet as whole, one can
imagine a curved sheet that is thin along all its edges. It is thickest
in the center both along its spatial and temporal extent. It also tends
to be thicker in portions that face along the time axis as opposed
to facing backwards in time. Finally, the whole sheet is lit from an
infinite point source in some (x, y, 0) direction.

5.4 Filling the Region Interiors

In addition to drawing edges, we also fill the interiors of slices of
the regions. There are three ways the interiors can get filled; by
direct pixel coloring, dividing the regions into subregions and then
coloring, or by filling the regions with paint-like strokes. In fact, all
three can be combined through standard compositing if desired.

5.4.1 Pixel Coloring

There are three colors (in RGB space) associated with each pixel;
the original pixel color, the average pixel color within a segment
as determined directly by the mean shift procedure, and a user de-
fined color for the larger semantic regions defined by the interaction
procedure. These three colors can be combined as a weighted com-
bination. Such a combination can be seen in the facial region in Fig-
ures 1 and 12. Note that a full weight on any of the three will default
to the original video, the mean shift result, or a solid colored shape
respectively. Finally, any other color space transformation could be
used to modify the result such as brightness and saturation, and hue
controls.

5.4.2 Subregions

In some cases we have found it useful to allow the user to define
their own subregions. The same interface used to define the semantic
regions is used to allow the user to draw subregions on keyframes,



Figure 12: Construction of the final frame. Top row from left to
right: original frame, regions as solid shapes, head rendered with
segmentation result, edges on all region boundaries, edges only at
important boundaries based on edge importance for each region.
Bottom image: final frame that now includes subregions within the
shirt to show shadowing.

Figure 13: User adding a paint stroke at a keyframe and the resulting
strokes in a frame of final animation.

with the only exception being that the result is constrained to lie
fully within a specified semantic region. This allows a second color
region within a larger region in the final rendering. This was used
for the shadowing within the shirt seen in Figure 12.

5.4.3 Stroke Sheets

We can also leverage the mean shift results to allow the user to lay
down paint strokes within regions at keyframes (see Figure 13) and

Figure 14: Illustration of ”flowing” a point on a stroke from one
frame to the next, as shown in (a) and (b).

have them automatically interpolated to create temporally coherent
motion of the strokes. In much the same way that the edge sheets are
created, we create 2D stroke sheets that are embedded fully within
a semantic region. A user draws strokes within semantic regions on
a keyframe, defining the stroke skeleton, color, and style [Hsu and
Lee 1994]. On subsequent keyframes intersecting the same semantic
region, the user must draw the new skeletons of each stroke.

Between keyframes, k1, k2, strokes are flowed forward in time
from k1 and backward in time from k2. We sample each stroke at
15 points along its length. Each sample, Cp, p = 1..15, is sep-
arately interpolated with the corresponding stroke points on other
keyframes. We now consider one such point Cp on the stroke (see
Figure 14). From the semantic region interpolation we have N sam-
ple points along the boundary of the semantic region in which the
stroke lies, denoted as Pi(t), i = 1, ..., N . By computing the dis-
tances di(t) between Cp(t) and the Pi(t), we get a vector of weights
< wi(t) = (1−di(t)/dmax(t))2 + ǫ >. These are then normalized
by dividing each by the sum of the weights.

For the next frame, we examine the motion of points along the
boundary. We then compute the motion of each stroke point as a
weighted average of the motion of the boundary points using the
normalized < wi(t) > as the weights. Thus

Cp(t + 1) = Cp(t) +

N
∑

i=1

wi(t) · (Pi(t + 1)− Pi(t))

Each stroke point along the stroke is processed in the same way. For
each frame time from k1 to k2 − 1, new weights are computed and
the points are iteratively flowed forward.1

In the same way the strokes are flowed backwards from k2. The
final position is a linearly weighted average of the forward and back-
ward flow, with the first weight dropping from 1 to 0 as time goes
from k1 to k2 and from 0 to 1 for the reverse.

The interpolation of the strokes creates a two dimensional stroke
sheet lying within the semantic region (although the final render-
ing of the strokes may overlap region boundaries). These sheets are
sliced at a time t to provide a skeleton for a stroke to be rendered.
Figures 1 and 13 show an example frame of rendering the stroke
sheets in a watercolor style.

5.5 The Background

The background is defined as a single semantic region including all
portions of the video lying outside the user defined semantic regions.
The background can be filled just like any other semantic region.

1The iterative radial basis weights, wi(t), could be replaced in theory by

a single set of barycentric coordinates computed at the keyframes. However,

we do not know of a general barycentric formula for irregular non-convex

polygons. Barycentric coordinates for most points within non-convex poly-

gons can be found in Floater [2003].



In our examples, the camera was still and the foreground objects
(people) moved across the field of view. In these cases it is quite easy
to extract a constant background frame with a median filter of each
pixel through time. This can then be rendered as is or modified with
a paint program or simply replaced. The foreground regions are then
rendered over this background. A number of different background
styles can be seen in our examples.

5.6 Performance and Interface Timings

The processing of a video through the mean shift procedure to op-
timizing for the semantic regions given user input, to creating the
edge sheets and rendering the final frames requires varying amounts
of processing and user time. The automated mean shift procedure
runs overnight on a ten second (300 frame) video shot (please see
the appendix for some details). The two examples required about
1 1

2
hours of user time to draw the keyframe loops. The paint strokes

required about an additional 1
2

to complete. Given the user’s loops,
and/or paint strokes on keyframes, the interpolation takes about 1
second per in-between frame thus these can be carried out iteratively
in an interactive setting. The final optimization for the semantic re-
gions and computation of the edge and stroke sheets requires about
one half hour. Rendering the final frames takes about 1-2 seconds
each.

6 Conclusions

We have presented a system for interactively transforming video to
a cartoon-like style. Our system provides a possible means to over-
come the main challenge of providing temporal stability by leverag-
ing a new mean shift method applied to video data. We have shown
how the mean shift results together with the artist’s input can provide
a variety of non-photorealistic styles.

We are currently working a number of extensions and enhance-
ments to the Video Tooning system. There are many more stylistic
choices to explore for rendering the solid regions, edges, and paint
strokes. We also hope to explore the use of layers, as were exploited
in the movie Waking Life, particularly if the source video is derived
from hand held cameras and thus subtle parallax issues are present.

As in any research system, there are many enhancements to the
user interface that should be added. Although the current system
provides methods to glue segments together to create semantic re-
gions, it is possible that a segment may need to be cut. We intend to
add this capability.

We are also working on a vectorized encoding of the result. The
monkey bars video contains about 120,000 3D vertices vs. approxi-
mately 120 million pixels in the original video, a ratio of 1:1000. We
hope to leverage mesh simplification methods to lower this ratio fur-
ther. There is clearly a lot of coherence to leverage for compression,
plus the added benefit of resolution independent encoding.

The combination of 3D segmentation, an efficient semantic ab-
straction interface, edge sheets and stroke sheets provides a very
powerful system for the stylization of video. We look forward to
experimenting on new video sources, with new styles, and tackling
many practical aspects of the Video Tooning approach.

Acknowledgements

A great thanks is due to the reviewers for helping to make this a
better paper than the one originally submitted. We also want to ac-
knowledge Lena Joesch-Cohen who performed the monkey bar mo-
tion and drew the background in the title page image.

References

AGARWALA, A. 2002. Snaketoonz : A semi-automatic approach to
creating cel animation from video. In Proceedings of NPAR 2002.

BELONGIE, S., MALIK, J., AND PUZICHA, J. 2002. Shape match-
ing and object recognition using shape contexts. IEEE Trans. on
Pattern Analysis and Machine Intelligence 24, 4, 509–522.

CHRISTOUDIAS, C., GEORGESCU, B., AND MEER, P. 2002. Syn-
ergism in low-level vision. In Porc. of 16th International Confer-
ence on Pattern Recognition, 150–155.

COLLOMOSSE, J. P., ROWNTREE, D., AND HALL, P. M. 2003.
Stroke surfaces: A spatio-temporal framework for temporally co-
herent non-photorealistic animations. University of Bath, Techni-
cal Report CSBU 2003-01 (June 2003).

COMANICIU, D., AND MEER, P. 2002. Mean shift: A robust ap-
proach toward feature space analysis. IEEE Trans. Pattern Anal-
ysis and Machine Intelligence 24, 5, 603–619.

COMANICIU, D., RAMESH, V., AND MEER, P. 2000. Real-time
tracking of non-rigid objects using mean shift. In Porc. of IEEE
Conf. on Comp. Vis. and Pat. Rec (CVPR00), 142–151.

DECARLO, D., AND SANTELLA, A. 2002. Stylization and ab-
straction of photographs. In Proceedings of SIGGRAPH 2002,
769–776.

DEMENTHON, D. 2002. Spatio-temporal segmentation of video by
hierarchical mean shift analysis. In Porc. of Statistical Methods
in Video Processing Workshop.

FLOATER, M. S. 2003. Mean value coordinates. Computer Aided
Geometric Design 20, 19–27.

FUKUNAGA, K., AND HOSTETLER, L. 1975. The estimation of
the gradient of a density function, with applications in pattern
recognition. IEEE Trans. Information Theory 21, 32–40.

HERTZMANN, A., AND PERLIN, K. 2000. Painterly rendering for
video and interaction. In Proceedings of NPAR 2000, 7–12.

HERTZMANN, A. 2001. Paint by relaxation. In Proc. Computer
Graphics International 2001, 47–54.

HOCH, M., AND LITWINOWICZ, P. C. 1996. A semi-automatic
system for edge tracking with snakes. The Visual Computer 12,
2, 75–83.

HSU, S. C., AND LEE, I. H. H. 1994. Drawing and animation
using skeletal strokes. In Proceedings Computer Graphics (ACM
SIGGRAPH), ACM Press, 109–118.

JONKER, R., AND VOLGENANT, A. 1987. A shortest augmenting
path algorithm for dense and sparse linear assignment problems.
Computing 38, 325–340.

KASS, M., WITKIN, A., AND TERZOPOULOS, D. 1987. Snakes:
Active contour models. International Journal of Computer Vision
1, 4, 321–331.

KLEIN, A. W., SLOAN, P.-P. J., FINKELSTEIN, A., AND COHEN,
M. F. 2002. Stylized video cubes. In Proceedings of SCA 2002.

KORT, A. 2002. Computer aided inbetweening. In NPAR 2002:
Second International Symposium on Non Photorealistic Render-
ing, 125–132.



LINKLATER, R. 2001. Waking Life DVD. Twentieth Century Fox
Home Video.

LITWINOWICZ, P. 1997. Processing images and video for an im-
pressionist effect. In Proceedings of SIGGRAPH 1997, ACM
Press / ACM SIGGRAPH, Computer Graphics Proceedings, An-
nual Conference Series, ACM, 151–158.

LORENSEN, W., AND CLINE, H. 1987. Marching cubes: a high
resolution 3d surface reconstruction algorithm. In Proceedings of
SIGGRAPH 1987, 163–169.

WANG, J., THIESSON, B., XU, Y., AND COHEN, M. F. 2004.
Image and video segmentation by anisotropic kernel mean shift.
In Proc. European Conference on Computer Vision, 2004.

Appendix

Formulas of variables to determine edge thickness

The formulas of three components Tarc, Ttime and Tmotion in
Eqn. 4 are given as follows:

Tarc = 1− 3.2 · (s− 0.5)2, s ∈ [0, 1]

Ttime = 1− 2 · (s− 0.5)2, s ∈ [0, 1]

Tmotion =

{

−0.5 : −1 ≤ Nt < −0.2
0.5 + sin(Nt ·

5π
2

) : −0.2 ≤ Nt < 0.2
1.5 : 0.2 ≤ Nt ≤ 1

Anisotropic Kernel Mean Shift Pseudocode

Some terms:

xi, xj pixels located in 6D space (position, time, color)
xr

i the pixel location in the 3D Luv color space
xs

i a pixel location in the 3D spatial domain (position, time)
hs

0 an initial spatial bandwidth,
i.e., the distance within space considered nearby

hr the color bandwidth,
i.e., the distance in Luv color space considered nearby

Hs
i a 3D spatial kernel that defines nearby-ness

The kernel is represented by a 3× 3 covariance matrix.
I a 3× 3 identity matrix
M(xi) the mean shift point associated with xi

Mv(xi) the mean shift vector associated with M(xi)

Initialization

1. Data and kernel initialization.

• Transfer pixels into multidimensional (5D for image, 6D
for video) feature points, xi.

• Specify initial spatial bandwidth hs
0. We used hs

0 = 6
pixels.

• Associate kernels with feature points, initialize means to
these points.

• Set all initial bandwidth matrices in the spatial domain as
the diagonal matrix Hs

i = (hs
0)

2I . Set the bandwidth in
the range domain as hr

0. We set hr
0 to be a color distance

of 6 in an Luv color space.

2. For each point xi, determine anisotropic kernel and related
color radius:

• Search the neighbors of xi to get all the points xj , j =
1, ..., n that satisfy the constraint:

|(Hs
i )−1/2 (xj − xi)| < 1 (5)

and
|xr

i − xr
j |

hr
< 1 (6)

where xr
i and xr

j are the pixel colors.

• Update the spatial bandwidth matrix Hs
i as:

Hs
i ←

Σn
j=1

∥

∥

∥

xr
i
−xr

j

hr

∥

∥

∥

2

(xs
j − xs

i )(x
s
j − xs

i )
T

Σn
j=1

∥

∥

∥

xr
i
−xr

j

hr

∥

∥

∥

2
(7)

• Optionally modulate Hs
i and color tolerance hr to create

larger segments for static objects. For details, see [Wang
et al. 2004].

3. Repeat step (2) a fixed number of times (typically 3).

The Mean Shift Procedure

4. Associate a mean shift point M(xi) with every pixel, xi, and
initialize it to coincide with that point. Repeat for each M(xi)

• Determine the neighbors, xj , of M(xi).

• Calculate the mean shift vector summing the derivative
of the Epanechnikov color kernel over the neighbors:

Mv(xi) =
Σn

j=1(xj −M(xi))

∥

∥

∥

M(xr
i
)−xr

j

hr

∥

∥

∥

2

Σn
j=1

∥

∥

∥

M(xr
i
)−xr

j

hr

∥

∥

∥

2
(8)

• Update the mean shift point:

M(xi)←M(xi) + Mv(xi) (9)

until Mv(xi) is less than a specified epsilon.

5. Merge pixels whose mean shift points are approximately the
same to produce homogenous color regions.

6. Optionally, eliminate segments containing less than a given
number of pixels.

Implementation Notes on Anisotropic Kernel Mean Shift

Mean shift segmentation is a global optimization problem and
by its definition potentially requires access to the pixels of the full
video equation 8. Memory constraints led us to approximate this
process. We load the first 15 frames of the video into memory and
allow the associated mean shift points to move within these frames.
We record the segmentation results for the first 10 of the 15 frames
and then jump forward 10 frames. Thus the second block to be pro-
cessed consists of frames 11 - 25. For this and subsequent blocks we
enforce the segmentation results for the first frame (e.g., frame 11)
to remain the same as the previous block to provide temporal consis-
tency. This results in an approximately optimal mean shift solution
with few visible artifacts.

Similar to the basic mean shift algorithm, the anisotropic kernel
mean shift also have two major parameters: the initial spatial radius
hs and the color radius hr . In our experiments, we examine one
second test cases on half resolution videos and vary hs between 4
to 7, hr from 3.5 to 6.5 to get the best results (the examples shown
used values of 6 for both). These simple tests still take a few minutes
each.


