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Abstract

MoCo [11] is effective for unsupervised image repre-

sentation learning. In this paper, we propose VideoMoCo

for unsupervised video representation learning. Given a

video sequence as an input sample, we improve the tem-

poral feature representations of MoCo from two perspec-

tives. First, we introduce a generator to drop out several

frames from this sample temporally. The discriminator is

then learned to encode similar feature representations re-

gardless of frame removals. By adaptively dropping out

different frames during training iterations of adversarial

learning, we augment this input sample to train a tempo-

rally robust encoder. Second, we use temporal decay to

model key attenuation in the memory queue when comput-

ing the contrastive loss. As the momentum encoder updates

after keys enqueue, the representation ability of these keys

degrades when we use the current input sample for con-

trastive learning. This degradation is reflected via temporal

decay to attend the input sample to recent keys in the queue.

As a result, we adapt MoCo to learn video representations

without empirically designing pretext tasks. By empower-

ing the temporal robustness of the encoder and modeling the

temporal decay of the keys, our VideoMoCo improves MoCo

temporally based on contrastive learning. Experiments on

benchmark datasets including UCF101 and HMDB51 show

that VideoMoCo stands as a state-of-the-art video represen-

tation learning method.

1. Introduction

Unsupervised (i.e., self-supervised) feature representa-

tion learning receives tremendous investigations along with

the development of convolutional neural networks (CNNs).

This learning scheme does not require cumbersome man-

∗T. Pan and Y. Song contribute equally. Y. Song is the corresponding

author. The code is available at https://github.com/tinapan-

pt/VideoMoCo.

Figure 1. VideoMoCo improves MoCo [11] temporally from two

perspectives. First, by taking a video sequence as a training sam-

ple, we introduce adversarial learning to augment this sample tem-

porally. Second, we use a temporal decay (i.e., ti) to attenuate the

contributions from older keys in the queue. To this end, the en-

coder is learned via temporal augmentation within each sample

and temporally contrastive learning across different samples.

ual label collections and produces deep features represent-

ing general visual contents. These features can be fur-

ther adapted to suit downstream visual recognition scenar-

ios including image classification [21, 53], object detec-

tion [48, 20], visual tracking [44, 45], and semantic seg-

mentation [33]. Among various unsupervised represen-

tation learning studies, contrastive learning [9] is devel-

oped extensively. By treating one sample as positive and

the remaining ones as negative (i.e., instance discrimina-

tion), contrastive learning improves feature discrimination

by considering the massive sample storage [48, 11, 40, 28]

and data augmentation [2]. To effectively handle large-scale

samples, MoCo [11] builds an on-the-fly dictionary with a

queue and a moving-averaged encoder. The learned fea-

ture representations have significantly improved a series of

downstream recognition performances to approach those by

using supervised feature representations.

The evolution of contrastive learning heavily focuses
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on feature representations from static images while leav-

ing the temporal video representations less touched. One

of the reasons is that large-scale video data is difficult to

store in memory. Using a limited number of video sam-

ples leads to inadequate contrastive learning performance.

On the other hand, attempts on unsupervised video repre-

sentation learning focus on proposing pretext tasks related

to a sub-property of video content. Examples include se-

quence sorting [23], optical flow estimation [5], video play-

back rate perception [52], pace prediction [43], and tem-

poral transformation recognition [14]. Different from these

pretext designs, we aim to learn a task-agnostic feature rep-

resentation for videos. With effective data storage and CNN

update [11] at hand, we rethink unsupervised video repre-

sentation learning from the perspective of contrastive learn-

ing, where the features are learned naturally to discriminate

different video sequences without introducing empirically

designed pretext tasks.

In this work, we propose VideoMoCo that improves

MoCo for unsupervised video representation learning.

VideoMoCo follows the usage of queue structure and a

moving-averaged encoder of MoCo, which computes a con-

trastive loss (i.e., InfoNCE [31]) efficiently among large-

scale video samples. Given a training sample with fixed-

length video frames, we introduce adversarial learning to

improve the temporal robustness of the encoder. As shown

in Fig. 2, we use a generator (G) to adaptively drop out sev-

eral frames. The sample with remaining frames, together

with the original sample with full frames, are sent to the

discriminator / encoder (D) for differentiating. Their dif-

ference is then utilized reversely to train G. As a result, G

removes temporally important frames based on the current

state of D. And D is learned to produce similar feature rep-

resentations regardless of frame removal. During different

training iterations, the frames removed by G are different.

This sample is then augmented adversarially to train a tem-

porally robust D. After adversarial learning only D is kept

to extract temporally robust features.

The adversarial learning drops out several frames of an

input video sample. We treat its remaining frames as a

query sample and perform contrastive learning with keys

in the memory queue. However, we notice that the mo-

mentum encoder updates after keys enqueue. The feature

representation of the keys is not up-to-date when we com-

pute the contrastive loss. To mitigate this effect, we model

the degradation of these keys by proposing a temporal de-

cay. If a key stays longer in the queue, its contribution is

less via this decay. To this end, we attend the query sam-

ple to recent keys during the contrastive loss computation.

The encoder is thus learned more effectively without being

heavily interfered by the ’ancient’ keys. The temporally ad-

versarial learning and the temporal decay improve the tem-

poral feature representation of MoCo. The experiments on

several action recognition benchmarks verify that our pro-

posed VideoMoCo performs favorably against state-of-the-

art video representation approaches.

We summarize our main contributions as follows:

• We propose temporally adversarial learning to improve

the feature representation of the encoder.

• We propose a temporal decay to reduce the effect

from historical keys in the memory queues during con-

trastive learning.

• Experiments on the standard benchmarks show that

our VideoMoCo extends MoCo to a state-of-the-art

video representation learning method.

2. Related Work

In this section, we perform a literature review on self-

supervised video representation learning, contrastive learn-

ing, and generative adversarial learning.

2.1. Video Representation Learning

Investigations on video representation learning focus on

exploiting temporal coherence among consecutive video

frames. In [3, 46], cycle consistency is explored for fea-

ture learning. The future frame prediction is proposed

in [38] to learn coherent features. A set of studies propose

empirical and unsupervised feature learning pretext tasks

including future motion and appearance prediction [42],

video pace prediction [43], and frame color estimation [41].

In addition to future frame prediction, video frame sort-

ing [23, 50, 19, 4] is popular. In [12], contrastive loss is

applied to learn video representations by comparing frames

from multiple viewpoints. A consistent frame representa-

tion of different sampling rates is proposed in [51]. Four dif-

ferent temporal transformations (i.e., speed change, random

sampling, periodic change, and content warp) of a video are

investigated in [14] to build video representations for ac-

tion recognition. In addition, multi-modality methods in-

troduce text [39], optical flows [5], and audios [22, 46, 3]

for cross-modal supervised learning. Different from exist-

ing video representation learning methods, our VideoMoCo

utilizes color information and performs instance discrimi-

nation without bringing empirical pretext tasks.

2.2. Contrastive Learning

There are wide investigations in contrastive learning for

static image recognition. They follow the principle that the

feature distances between positive sample pairs are mini-

mized while those between the negative sample pairs are

maximized during the training stage. The distance mea-

surement is proposed in [9]. The instance discrimination

is proposed in [48] for feature learning. This scheme is im-

proved in MoCo [11] where there is a momentum encoder to

build dynamic dictionaries to support contrastive learning.
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In SimCLR [2], different combinations of data augmenta-

tion methods are evaluated for sample pairs. Only positive

samples are introduced in BYOL [7] during training while

achieving superior performance. Its effectiveness is justi-

fied by the theoretical analysis [32]. The objectives utilized

in contrastive learning are to maximize the lower bound of

mutual information between the input feature and its aug-

mented representation [24]. Different from existing meth-

ods that focus on static image representations, we improve

MoCo temporally to gain robust video representations.

2.3. Generative Adversarial Learning

The adversarial learning is developed in [6] where CNN

is introduced to generate realistic image appearances from

random noises. There are two subnetworks in a typical

generative adversarial network (GAN). One is the gener-

ator and the other is the discriminator. The goal of the

generator is to synthesize images that can fool the dis-

criminator, while the discriminator is learned to distinguish

between the real images and the synthetic ones from the

generator. The generator and the discriminator are trained

simultaneously by competing with each other. This un-

supervised training mechanism outperforms traditional su-

pervised training scheme to produce realistic image con-

tent. There are tremendous investigations on analyzing the

GAN training [27, 30, 8]. Meanwhile, there are many com-

puter vision applications of GAN including image genera-

tion [13, 25, 47], object tracking [35, 34, 16], and seman-

tic segmentation [37]. Different from major GAN meth-

ods for generator learning, we augment training data in an

adversarial form to train a temporally robust discriminator.

This learning process is specially integrated into contrastive

learning. The discriminator is our intended encoder to cap-

ture video representations.

3. VideoMoCo

Our VideoMoCo is built upon MoCo for unsupervised

video representation learning. We first briefly review MoCo

and then present our temporally adversarial learning and

temporal decay. Furthermore, we visualize the temporal ro-

bustness of the feature by showing the entropy values of the

classifier and the network attentions.

3.1. MoCo Overview

Momentum Contrast (MoCo) provides a dictionary look-

up for contrastive learning. Given an encoded query q and

encoded keys {k0, k1, k2, ...} in a dictionary queue, the con-

trastive loss of MoCo can be written as:

Lq = − log
exp(q · k+/τ)∑K

i=0 exp(q · ki/τ)
(1)

where τ is a scalar. The sum is over one positive and K
negative samples. This loss tends to classify q as k+ via a

softmax classification process. The query q is the represen-

tation of an input sample via the encoder network, while the

keys ki are the representations of the other training samples

in the queue.

The core of momentum contrast is to dynamically main-

tain the queue. The samples in the queue are progressively

replaced following an FIFO (first in, first out) scheme. After

computing the contrastive loss in Eq. (1), the encoder is up-

dated via gradients while the momentum encoder is updated

as a moving-average of the encoder weights. We denote the

parameters of an encoder as θq and those of a momentum

encoder as θk. The momentum encoder is updated as:

θk ← mθk + (1−m)θq (2)

where m ∈ [0, 1) is a momentum coefficient. The momen-

tum encoder is updated slowly based on the encoder change,

which ensures stable key representations.

VideoMoCo improves MoCo by introducing temporally

adversarial learning and temporal decay. Given an input

video clip with a fixed number of frames, we send it to a

generator and the encoder to produce q. Meanwhile, we

reweigh exp(q · ki/τ) by using ti where t ∈ (0, 1). Then,

we follow MoCo to train the encoder and update the mo-

mentum encoder accordingly. During inference, we remove

G and only use the encoder for feature extraction.

3.2. Temporally Adversarial Learning

We propose adversarial learning as a temporal data

augmentation strategy to improve feature representations.

Fig. 2 shows an overview. We have an input sample x where

there are a fixed number of frames. The generator G takes x
as input and produces a temporal mask. The architecture of

G follows ConvLSTM [49]. The output of ConvLSTM pre-

dicts the importance of each frame. We drop out 25% of the

frames with high importance values by using the temporal

mask. We denote the output of G as G(x). Then the query

sample xquery can be written as:

xquery = G(x)⊗ x (3)

where⊗ indicates the temporal dropout operation. The fea-

ture map size of xquery is the same as that of x while the

content of the 25% of its frames is removed.

We regard the encoder of MoCo as the discriminator. Af-

ter obtaining xquery, we send both xquery and x to the dis-

criminator D (i.e., the encoder). The feature representations

of D(xquery) and D(x) are expected to become similar. We

use L1-norm as the loss function to train G, which can be

written as:

max
G

L(G) = Ex∼Px
(|D(xquery)−D(x)|1) (4)

where Px is the data distribution of x. When training D, we

use the contrastive loss akin to Eq. (1), which can be written
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Figure 2. Temporally adversarial learning. The input sample x is a video clip. The generator G containing LSTM dropouts several frames

of x to generate xquery. The discriminator D (i.e., encoder) extracts features from both x and xquery and compute their similarity loss. We

use this loss term reversely to train G. During training iterations, G is learned to continuously attack D by removing different frames of x

(i.e., temporal data augmentation), and D is learned to defend this attack by encoding temporally robust features. We use xquery to perform

contrastive learning to train D as shown in Fig. 3.

Figure 3. Temporally contrastive learning. We follow MoCo to use

a memory queue to store keys. Besides, we introduce a temporal

decay ti (t ∈ (0, 1)) to model the attenuation of each key in this

queue during contrastive learning.

in the form of adversarial loss as:

min
D

L(D) = − log
exp(D(xquery) · k+/τ)∑K

i=0 exp(D(xquery) · ki/τ)
(5)

where the discriminator / encoder is learned to encode tem-

porally robust feature representations.

We take turns to train G and D during each iteration of

adversarial learning. After training D, we update the mo-

mentum encoder by using Eq. (2). Initially, we train D

without using G and only use contrastive learning shown

in Eq. (1). When D is learned to approach a semi-stable

state, we train D via Eq. (5) by involving G. We empirically

observe that utilizing adversarial learning at the initial stage

makes D difficult to converge.

3.3. Temporal Decay

The adversarial learning illustrated in Sec. 3.2 operates

on a mini-batch input following MoCo. When computing

the contrastive loss, we notice that MoCo treats the contri-

bution of keys from the queue only based on their repre-

sentations as shown in Eq. (1). In practice, the momentum

encoder evolves after keys entering the queue. The longer

the keys in the queue, the more different their representa-

tions are compared to those of the current input samples.

In order to mitigate the discrepancy brought by momen-

tum encoder evolvement, we propose a temporal decay to

model key degradations. For each key ki in the queue, we

set its corresponding temporal decay as ti where t ∈ (0, 1).
Note that this key moves towards the end of the queue dur-

ing each training iteration. Thus i gradually increases by 1

and ti decreases correspondingly. We can rewrite Eq. (5) by

involving the temporal decay as:

min
D

L(D) = − log
exp(D(xquery) · k+/τ)∑K

i=0 t
i · exp(D(xquery) · ki/τ)

(6)

where keys contribute to the current sample differently ac-

cording to their existence time in the queue. In practice, we

use Eq. (6) and Eq. (4) alternatively to train G and D. The

remaining training procedure follows those of MoCo.
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Figure 4. Visualizations of CNN predictions between MoCo and VideoMoCo. Given a video sequence, we compute the entropy of the

CNN predictions and the classification results. A higher entropy value indicates the CNN classifier is more uncertain about the current

predictions. Although both MoCo and VideoMoCo classify video sequences correctly as shown in (a) and (c), the entropy of VideoMoCo

is lower than that of MoCo. Meanwhile, if video sequences are partially occluded as shown in (b) and (d), the entropy of VideoMoCo does

not increase as much as that of MoCo. The temporally robust feature representations empower VideoMoCo to make correct predictions.

3.4. Visualization

VideMoCo improves the temporal feature representation

of MoCo by incorporating temporally adversarial learning

and temporal decay. In this section, we show some visu-

alizations on how temporal feature representations improve

the video classification process. Given an input video se-

quence, MoCo and VideoMoCo both produce a set of clas-

sification scores. We use entropy to measure the classifier’s

confidence when making the prediction. The entropy com-

putation can be written as follows:

H = −
N∑

i=1

p(xi) log p(xi) (7)

where p(xi) is the predicted probability of the i-th category.

When the entropy value is high, it indicates that the classi-

fier is more uncertain on making the current predictions.

We show two input video sequences Billiards and Bal-

anceBeam in Fig. 4. The complete Billiards video is shown

in (a), both MoCo and VideoMoCo predict correctly. When

we compute the entropy values of these two methods, we

observe that VideoMoCo achieves a lower value than that

of MoCo. This indicates that although both VideoMoCo

and MoCo accurately predict the input video sequence,

VideoMoCo is more confident about the current predic-

tion. On the other hand, we increase the difficulty of (a)

by partially occluding several frames as shown in (b). To

this end, the entropy value of MoCo increases significantly

while the value of VideoMoCo does not. This indicates that

even though both MoCo and VideoMoCo can resist tempo-

rally occluded video sequences, the feature representation

of MoCo has become very fragile while that of VideoMoCo

does not degrade significantly.

Besides the Billiards video sequence, we show the Bal-

anceBeam sequence in (c) where these two methods pre-

dict correctly. We notice that the entropy values of MoCo

and VideoMoCo in (c) are much higher than those in (a).

This indicates that compared to the Billiards sequence, the

BalanceBeam sequence is more challenging. When we

partially occlude several frames in (d), MoCo predicts in-

correctly as IceDancing. In contrast, VideoMoCo predicts

well. This accurate prediction indicates that the feature rep-

resentation of VideoMoCo is temporally robust. The en-

tropy values computed based on these two sequences in-

dicate that feature representations in VideoMoCo are more

robust than those of MoCo in the temporal domain.

Besides entropy computation, we compute the attention

maps of MoCo and VideoMoCo to visualize network at-

tentions. Fig. 5 shows the visualization result. Two input

frames are in (a). The attention maps from MoCo are in (b),

and the attention maps from VideoMoCo are in (c). We note

that on the first row, VideoMoCo focuses more on the region

where eyebrow pencil tip largely moves. This indicates that

the features learned from VideoMoCo attend the network

to the temporal motions. In comparison, the attention map

of MoCo shows that the network does not pay much atten-
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(a) Video frame (b) MoCo (c) VideoMoCo

Figure 5. Attention visualization of MoCo and VideoMoCo. We

show video frames in (a), the attention maps from MoCo in (b),

and the attention maps from VideoMoCo in (c). In the attention

visualization maps, pixels marked as red indicate that the network

pays more attention to the current region.

tion. In the second row, the attention map from VideoMoCo

contains higher attention values at the hand region than that

of MoCo. The attention map visualization indicates that

VideoMoCo is more effective in concentrating on the video

motion areas.

4. Experiments

In this section, we introduce implementation details

and training configurations of VideoMoCo on the K-400

dataset. To analyze the positive effects brought by the tem-

porally adversarial learning and temporal decay, we con-

duct an ablation study to show the performance improve-

ment by using each of them. Also, we compare Video-

MoCo with state-of-the-art self-supervised video represen-

tation methods on two standard action recognition bench-

marks UCF101 and HMDB51.

4.1. Benchmark Datasets

We illustrate the details of benchmark datasets used for

the training and inference stages.

Kinetics-400 Dataset. Kinetics-400 (K-400 [18]) is a large-

scale action recognition dataset. There are 400 human

action categories in total and the whole video sequence

amount is 306k. This dataset is split as training, valida-

tion, and inference parts. We use the video sequences of the

training part to train VideoMoCo. The number of training

video sequences is about 240k.

UCF101 Dataset. The UCF101 dataset [36] is widely used

for action recognition. This video sequence is collected

from the Internet with predefined 101 action categories.

There are over 13k video clips consuming 27 hours. The

whole dataset is divided into three training and testing splits.

We use the training split 1 to finetune the feature backbone

and use the testing split 1 for performance evaluation.

HMDB51 Dataset. There are 101 video clips in the

HMDB51 dataset [15] with 51 action categories. This

dataset is divided into three training and testing splits. We

use the training split 1 to finetune the feature backbone and

use the testing split 1 for performance evaluation.

4.2. Implementation Details

We illustrate the details of how to integrate the generator

G into the pretext contrastive learning process. The discrim-

inator D is the encoder to be utilized for feature extraction.

After contrastive learning, we remove G and only use the

encoder for downstream finetuning. The downstream fine-

tuning is the same as existing unsupervised video represen-

tation learning methods.

Pretext Contrastive Learning. Our generator is based on

ConvLSTM [49] where there is one LSTM with 256 hid-

den units for temporal feature extraction. After taking in-

put video sequences, ConvLSTM first uses several convo-

lutional layers to extract features and reshapes these fea-

tures into vector forms. The vector is then sent to the

LSTM to predict the temporal importance of each video

frame. We follow prior work to utilize the small variant

of the C3D architecture as our encoder. When training on

the K-400 dataset, we consecutively sample 32 frames as

a training sample. Note that we sample 32 frames densely

within one video sequence to create multiple training sam-

ples. After obtaining these training samples, we perform

a randomly spatial crop for a fixed size of the input (i.e.,

32× 112× 112× 3). Meanwhile, we apply horizontal flip-

ping, color jittering, and random decolorization with each

frame. During the training process, we send each sample

into G and drop out k frames with high importance values.

Then, this sample is regarded as the query to train D as il-

lustrated in Eq. 3. We use an SGD solver to iteratively opti-

mize both G and D with an initial learning rate of 0.02. The

momentum is set as 0.9 and the batch size is 128. In prac-

tice, we first take 100 epochs to train D for initialization,

and then train G and D via adversarial learning for the re-

maining 100 epochs. We find this empirical design effective

to train the encoder.

Downstream finetuning. We use two datasets, UCF101

and HMDB51, to finetune the learned feature backbone.

The discriminator is kept after pretext training and we re-

gard it as the encoder. The weights of the fully-connected

layer are randomly initialized during the finetuning stage.

On each dataset, we train the whole network for 10 epochs

and then evaluate their performance on the testing data. The

experimental setups and data pre-processing method are the
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Table 1. Ablation analysis on adversarial learning and dropout

amount k on UCF101 and HMDB51 datasets. We set k = 8 for

the random dropout. Adversarial learning improves the baseline

while random dropout decreases. k = 8 is optimal to achieve

balanced adversarial learning.

Experimental Setup Downstream Tasks

Decay Adv. Network Method UCF101 HMDB51

× × R(2+1)D baseline 75.9 46.2

× × R(2+1)D random 74.1 43.6

× X R(2+1)D k = 4 76.4 48.6

× X R(2+1)D k = 8 77.8 49.1

× X R(2+1)D k = 12 77.1 45.6

× X R(2+1)D k = 16 75.2 40.3

× X R(2+1)D k = 24 73.4 39.0

× X R(2+1)D k = 8 77.8 49.1

X X R(2+1)D k = 8 78.7 49.2

X X R3D k = 8 74.1 43.6

same as those of the pretext stage except that the batch size

is set as 32 and the learning rate is 0.05.

Evaluation. We adopt the standard evaluation proto-

col [50, 26] during testing. To predict each video sequence,

we take 10 video clips uniformly from each testing video

sequence and average these prediction results. The top-1

accuracy in the action recognition metric is utilized to mea-

sure recognition accuracies.

4.3. Ablation Studies

We improve MoCo by integrating temporally adversar-

ial learning and temporal decay. In this section, we analyze

how these two modules improve the original performance of

MoCo. The analysis is based on the configuration that we

first train MoCo via pretext and downstream finetuning by

using video data. Then, we integrate temporally adversarial

learning and temporal decay independently into MoCo dur-

ing the pretext training. Finally, we combine both of them

within MoCo during pretext training. The downstream fine-

tuning is the same for all the configurations. The feature

backbone we use is R(2+1)D. UCF101 is used as the train-

ing and testing dataset.

4.3.1 Temporally Adversarial Training

We validate the effectiveness of temporally adversarial

learning by showing the performance improvement upon

the baseline. We first implement the baseline by not us-

ing the generator G during training. The standard memory

queue from MoCo is also adopted. Second, we train the en-

coder by randomly dropping out several frames and use the

remaining frames for adversarial learning. Third, we train

the encoder by using the generator to adaptively drop out

Table 2. Analysis on different values of temporal decay t. We

experimentally find that t = 0.99999 achieves the best.

Configuration Evaluation

Adv. Decay Method UCF101

X × t=1 77.8

X X t = 0.999 73.4

X X t = 0.9999 75.2

X X t = 0.99999 78.7

X X t = 0.999999 78.3

X X t = 0.9999999 77.9

X X t = 0.99999 78.7

× X t = 0.99999 76.1

several frames. Besides training configurations, we analyze

how the amount of dropout frames influences the down-

stream recognition performance. We choose to drop out

k frames (k ∈ [4, 8, 12, 16, 24]) and show the recognition

performance accordingly.

Table 1 shows the analysis results. We notice that by us-

ing a random dropout scheme, the recognition performance

degrades compared to the baseline performance. This is

because random dropout does not enable VideoMoCo to

learn temporally robust features. By introducing adversar-

ial learning, the recognition performance is improved (i.e.,

75.9%/46.2% v.s 77.8%/49.1%) on both datasets. This in-

dicates the effectiveness of our adversarial learning. Mean-

while, we analyze how the dropout amount influences the

recognition performance by using different k. The results

show that the highest performance is achieved when k = 8.

This is because a small k (i.e., k = 4) does not make the

sample adversarial enough to train D, while a large k (i.e.,

k = [12, 16, 24]) breaks the balance between G and D dur-

ing adversarial learning. Furthermore, the performance of

VideoMoCo is further improved by using temporal decay.

This indicates that adversarial learning and temporal de-

cay are effective to improve the baseline recognition per-

formance.

4.3.2 Temporal Decay

We analyze how temporal decay influences the

recognition performance of VideoMoCo. We fol-

low MoCo to set the size of the memory queue as

65536, and the momentum value of the encoder up-

date is 0.999. The temporal decay t we choose is

[0.999, 0.9999, 0.99999, 0.999999, 0.9999999]. These val-

ues reflect how the increase of t influences the recognition

performance.

Table 2 shows the analysis results where t = 0.99999
achieves the premier performance. When there is no tempo-
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Table 3. Comparison with the state-of-the-art self-supervised learning methods on UCF101 and HMDB51 datasets. Our method Video-

MoCo performs favorably against existing methods with a relatively small feature backbone.

Method Network Input size Params Dataset UCF101 HMDB51

Shuffle&Learn [29] Alexnet 256× 256 62.4M UCF101 50.2% 18.1%

Deep RL [1] CaffeNet 227× 227 - UCF101 58.6% 25.0%

OPN [23] VGG-M-2048 80× 80 8.6M UCF101 59.8% 23.8%

O3N [4] AlexNet 227× 227 62.4M UCF101 60.3% 32.5%

Spatio-Temp [42] C3D 112× 112 58.3M UCF101 58.8% 32.6%

Spatio-Temp [42] C3D 112× 112 58.3M K-400 61.2% 33.4%

VCOP [50] C3D 112× 112 58.3M UCF101 65.6% 28.4%

RTT [14] C3D 112× 112 58.3M UCF101 69.9% 39.6%

DPC [10] 3D-ResNet34 224× 224 32.6M K-400 75.7% 35.7%

RotNet3D [17] 3D-ResNet18 224× 224 33.6M K-400 62.9% 33.7%

ST-puzzle [19] 3D-ResNet18 224× 224 33.6M K-400 65.8% 33.7%

DPC [10] 3D-ResNet18 128× 128 14.2M K-400 68.2% 34.5%

Ours 3D-ResNet18 112× 112 14.4M K-400 74.1% 43.6%

VCP [26] R(2+1)D 112× 112 14.4M UCF101 66.3% 32.2%

VCOP [50] R(2+1)D 112× 112 14.4M UCF101 72.4% 30.9%

PRP [52] R(2+1)D 112× 112 14.4M UCF101 72.1% 35.0%

RTT [14] R(2+1)D 112× 112 14.4M UCF101 81.6% 46.4%

Pace Prediction [43] R(2+1)D 112× 112 14.4M K-400 77.1% 36.6%

Ours R(2+1)D 112× 112 14.4M K-400 78.7% 49.2%

ral decay (i.e., t = 1), keys in the queue contribute equally

during contrastive learning. If t is not relatively large (i.e.,

t = 0.999), only the latest 8000 keys contribute to the learn-

ing process (i.e., t8000 ≈ 0.0009). To this end, we set

t = 0.99999 to ensure that the contributions are from all

keys while the contribution from the oldest key halves (i.e.,

t65536 ≈ 0.52).

4.4. Comparison with state­of­the­art Approaches

We compare our approach with several state-of-the-art

self-supervised video representation learning methods in

both UCF101 and HMDB51 datasets. Table 3 shows the

evaluation results where the architectures, input size, num-

ber of parameters and pretrained dataset are illustrated as

well. The second block in Table 3 indicates that our method

performs favorably against existing approaches under the

3D-ResNet18 backbone on both UCF101 and HMDB51

datasets. We notice that DPC uses R3D-34 as a feature

backbone whose parameter amount is 3× more than ours.

Also, the input size of DPC is larger than ours. Nev-

ertheless, we achieve similar recognition performance on

UCF101 and exceeds DPC on HMDB51. When using

the same architecture (i.e., 3D-ResNet18) and similar in-

put size, VideoMoCo outperforms DPC by a large margin

(i.e., 5.9% gain in UCF101 and 9.1% gain in HMDB51).

We also evaluate our method using the R(2+1)D architec-

ture and achieve the premier performance as shown in the

third block of Table 3. Specifically, VideoMoCo improves

the existing method [43] under the same configuration. We

note that even though VideoMoCo is trained using K-400

while other methods are trained using UCF101, the perfor-

mance of VideoMoCo is still premier on both UCF101 and

HMDB51 test sets. These evaluations indicate the favorable

performance of VideoMoCo.

5. Concluding Remarks

We propose VideoMoCo for self-supervised video repre-

sentation learning. Different from empirical pretext task in-

vestigation, we delve into MoCo and empower its temporal

representation by introducing temporally adversarial learn-

ing and temporal decay. We treat the encoder as the discrim-

inator and use a generator to perform adversarial learning.

The generator augments training samples to robustify dis-

criminators to capture temporally robust feature representa-

tions. The training process of the discriminator is from con-

trastive learning. Meanwhile, we propose temporal decay to

model the attenuation of older keys in the queue. These keys

ought to contribute less to the current input sample during

the learning process. Our adversarial learning improves the

temporal robustness of contrastive learning and the learned

feature backbone is effective for downstream recognition

tasks. The extensive experiments on the standard action

recognition datasets UCF101 and HMDB50 demonstrate

that our VideoMoCo has sufficiently improved MoCo and

performs favorably against state-of-the-art self-supervised

video representation learning approaches.

11212



References

[1] Uta Buchler, Biagio Brattoli, and Bjorn Ommer. Improving

spatiotemporal self-supervision by deep reinforcement learn-

ing. In European Conference on Computer Vision, 2018.

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learn-

ing of visual representations. In International Conference on

Machine Learning, 2020.

[3] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre

Sermanet, and Andrew Zisserman. Temporal cycle-

consistency learning. In IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2019.

[4] Basura Fernando, Hakan Bilen, Efstratios Gavves, and

Stephen Gould. Self-supervised video representation learn-

ing with odd-one-out networks. In IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2017.

[5] Chuang Gan, Boqing Gong, Kun Liu, Hao Su, and

Leonidas J Guibas. Geometry guided convolutional neural

networks for self-supervised video representation learning.

In IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2018.

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Neural In-

formation Processing Systems, 2014.

[7] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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