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Abstract

View-based recognition methods, such as those using eigenspace techniques,
have been successful for a number of recognition tasks. Currently, however, such
approaches are relatively limited in their ability to recognize objects which are
partly hidden from view or occur against cluttered backgrounds. In order to
address these limitations, we have developed a new view matching technique
based on an eigenspace approximation to the generalized Hausdorff measure.
This method achieves the compact storage and fast indexing that are the main
advantages of previous eigenspace view matching techniques, while also being
tolerant of partial occlusion and background clutter.

Our approach is based on comparing features extracted from views, such as
intensity edges, rather than directly comparing the views themselves. The un-
derlying comparison measure that we use is the Hausdorff fraction, as opposed
to the sum of squared differences (SSD) which is employed by most eigenspace
matching techniques. The Hausdorff fraction is quite insensitive to small varia-
tions in feature location as well as to the presence of clutter or partial occlusion.
In this paper we define an eigenspace approximation to the Hausdorff fraction
and present some simple recognition experiments which contrast our approach
with prior work on eigenspace image matching. We also show how to efficiently
incorporate our technique into an image search engine, enabling instances from
a set of model views to be identified at any location (translation) in a larger
image.



1 Introduction

Appearance-based approaches to object recognition have been successtul in a number
of tasks (e.g. [7, 13, 11, 10]). The central idea underlying such methods is to represent
objects as collections of views, and to use an efficient encoding scheme for storing and
retrieving the views. The most common encoding scheme is based on representing
each view using a relatively low-dimensional space which captures important char-
acteristics of the entire set of views. This low-dimensional space is generally formed
using an eigen-decomposition (or principal components analysis) to define a subspace
which provides a reasonable approximation to the set of stored views. Each stored
model view is represented in terms of its projection into this subspace, which is quite
compact in comparison with the number of pixels in each view. An unknown object
is recognized by projecting its image into the subspace and then finding the closest
model view(s) in the subspace using some similarity measure.

Subspace methods are attractive when there is a relatively large database of model
views, because the set of model views can be represented using a small number of
coefficients each, rather than the thousands of pixels in each image. This both saves
storage and speeds the process of finding the closest matching images in the database.
Moreover, when the subspace is relatively low-dimensional (e.g. 25 — 30 dimensions)
there are methods for finding approximate closest matches in time logarithmic in the
number of items in the database (e.g. [1]). Subspace methods can also be viewed
as a form of generalization or learning. To the extent that a subspace captures the
important characteristics of a given set of images while omitting the unimportant
characteristics, it can be insensitive to unimportant variations in the images.

The most effective applications of subspace methods have been limited to tasks
where the objects that are to be recognized appear fully visible (i.e. not partially
occluded), are against a uniform background and where the images are nearly cor-
rectly registered with each other in advance. For example, a particularly successtul
application is the recognition of faces from mugshots, where the head is generally
about the same size and location in the image, and the background is a fixed color
(e.g., [11]). The main reason for these limitations is that when extraneous informa-
tion from the background of an unknown image is projected into the subspace, it
tends to cause incorrect recognition results. This is analogous to the problem that
occurs with template matching techniques, using measures such as the sum of squared
differences (SSD) or correlation, where background pixels included in a matching win-
dow can significantly alter the correlation value and cause incorrect matches. One
standard way of addressing this problem in template matching is to use sub-regions
of the views, such that the regions do not contain any background. A similar ap-
proach has also been taken in eigenspace matching [10, 8]. One drawback, however,
is that sub-regions are generally less distinctive and thus can lead to more possible
matches being found. This issue of distinctiveness has been addressed in [9] where
they use a selection procedure for image regions based on a minimum description



length principle.

In this paper we describe a subspace recognition method that handles clutter
and partial occlusion by using a robust image comparison measure, rather than by
using sub-regions of views. Our method is based on using an eigen-decomposition to
approximate the computation of the generalized Hausdorff measure [5]. The Hausdorff
measure has been used to determine the degree of resemblance between binary images
(bitmaps). It has been effective in template matching recognition methods, even in
the presence of significant background information in the match window [4, 3]. Much
of the power of Hausdorff-based measures comes from the fact that they are robust
to outlying data points [5]. The major contribution of the method that we report
in this paper is that it combines the robustness of Hausdorff-based measures for
identifying partially occluded objects in clutter, with the speed of subspace methods
for recognizing sets of object models. The recent work of [2] has also developed
a robust image comparison measure using eigenspaces, however the computation is
considerably more expensive than our method (and thus far their technique has been
applied to object tracking as opposed to view based recognition).

We present some simple experiments demonstrating that our method performs
well when the background is unknown or when the object to be recognized is partially
occluded, including in cases where prior eigenspace methods based on the SSD break
down. In addition, our method can be extended to handle the image search problem,
where the locations of objects to be recognized in an image are not known. We show
how to incorporate the Hausdorff eigenspace method into an image search engine that
identifies the locations (translations) in an image where any of the stored model views
yield a good match. Experiments indicate that searching images using this approach
can reliably rule out the vast majority of image locations for all of the models in
the view set, without losing the correct match. Moreover, these experiments show
that the Hausdorff eigenspace techniques provide considerble speed up over previous
image search methods based on the generalized Hausdorff measure [5], when the task
involves a set of more than about 200 stored model views.

In the following section we discuss subspace matching methods in more detail,
focusing on the use of previous subspace techniques that are based on the SSD. We
then describe the generalized Hausdorff measure and how it can be approximated
using subspace methods. We also consider the error or uncertainty that is introduced
by the projection of an image into an eigenspace. This error analysis is applicable
to any use of subspace techniques. Following the error analysis, we present an em-
pirical investigation of the accuracy of the approximation and contrast the Hausdorft
eigenspace matching approach with an SSD-based approach. Finally, we consider how
to incorporate the Hausdorff eigenspace approach into an image search engine such
as that in [12], in order to search an image for instances of any of the objects in a set
of views. We constrast the efficiency of this approach with previous Hausdorff-based
image search techniques.



2 Subspace Representations and Approximating
the SSD

In this section we review the use of eigenspace methods for grey-level matching (e.g.,
[10, 11]). Let [ denote a two-dimensional image with N pixels, and let « be its
representation as a (column) vector in scan line order. Given a set of training or
model images, I,,, 1 < m < M, define the matrix X =[xy —¢,..., 2y — ¢, where x,,
denotes the vector representation of /,,, and ¢ is the average of the z,,’s. The average
image is subtracted from each z,, so that the predominant eigenvectors of X X7 will
capture the maximal variation of the original set of images. In many applications of
subspace methods, the x,,’s are normalized in some fashion prior to forming X, such
as making ||@,|| = 1, to prevent the overall brightness of the image from affecting the
results.

The eigenvectors of X X7 are an orthogonal basis in terms of which the x,,’s can be
rewritten (and other, unknown, images as well). Let A;, 1 < ¢ < N, denote the ordered
(from largest to smallest) eigenvalues of X X7 and let ¢; denote each corresponding
eigenvector. Define F to be the matrix [e1,...,en]. Then g, = ET(x,, — ¢) is the
rewriting of z,, — ¢ in terms of the orthogonal basis defined by the eigenvectors of
X XT. The original z,, is then just the weighted sum of the eigenvectors

N
Ty = nglez +c
=1

where ¢, is the 2th term of ¢,,.

It is straightforward to show that ||, — x.||* = ||gm — gal|* (cf. [10]), because
distances are preserved under an orthonormal change of basis. That is, the sum of
squared differences (SSD) of two images can be computed using the distance between
the eigenspace representations of the two images.

The central idea underlying the use of subspace methods is to approximate x,,
using just those eigenvectors corresponding to the few largest eigenvalues, rather than
using all NV eigenvectors. This low-dimensional representation is intended to capture

the important characteristics of the set of training images. Let f, = (¢my»- -+ gm;» 0, - ..

and 7, = (0,...,0,0my 1+ -5 9my), 80 that g, = fu 4+ 7. That is, f,, is the vector
of coefficients corresponding to the first k£ terms in the sum, and r,, is the vector of
remaining coefficients, where k& << N. Then z,, can be approximately reconstructed
using just the first &k coefficients:

k
xm%xm:meiei—l—c.
=1

In some applications, the few largest eigenvectors are also not used in constructing
the approximation &, because they capture properties that are common to the entire
set of images.
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The SSD, ||z, — ,]|?, is then simply approximated as || f,, — f.||*. As this repre-
sentation uses only the &k eigenvectors with largest eigenvalues, it is not necessary to
compute all N eigenvalues and eigenvectors of X X7 (which would be quite impracti-
cal as IV is usually many thousands). One approach, when the number of model views
is smaller than the number of pixels in each view, is to compute the eigenvectors of
XTX instead (this is done in [10]).

The search for a model, x,,, that is most similar to some unknown x,, can, in
theory, be performed in O(log M) time. In practice this is efficient currently for up
to about a 25-dimensional space (i.e., up to about k = 25 eigenvectors) using the
approximation method of Arya et al. [1]. In addition, the points in the subspace can
be viewed as samples of some underlying manifold representing all possible views of
a given object or set of objects. In [10] this manifold is approximated and used in
computing the distance between an unknown image and the set of model views.

3 Approximating Binary Correlation and the Haus-
dorff Fraction

In this section we describe a subspace method for approximating the generalized
Hausdorff measure. The Hausdorff measure is defined for sets of points, and thus we
are now restricting the discussion to binary images which represent sets of feature
points on a grid (i.e., a binary image that is 1 for points that are in the set and 0
otherwise). First we review the generalized Hausdorff measure, and then consider a
subspace approximation.

Given two point sets P and Q, with m and n points respectively, and a fraction,
0 < f <1, the generalized Hausdorff measure is defined in [5, 12] as

hy(P,Q) = f"min|[p—q, (1)
peP 1€Q

where ;lépg(p) denotes the f-th quantile value of g(p) over the set P. For example,
the 1-th quantile value is the maximum (the largest element), and the %—th quantile
value is the median. Equation (1) generalizes the classical Hausdorff distance, which
mazximizes over p € P. In other words, the generalized measure uses an arbitrary
percentile (rank) of distances rather than the maximal distance as used in the classical
measure.

The generalized Hausdorff measure is asymmetric (as is the classical Hausdorff
distance). Given a fraction, f, and two point sets, P and Q, hs(P, Q) and hs(Q,P)
can attain very different values. For example, there may be points of P that are
not near any points of Q, or vice versa. We can also use a bidirectional form of this
measure, hy, (P, Q) = max(hs(P,Q),h,(Q,P)). The bidirectional measure is not

robust to large amounts of image clutter, but it is useful in uncluttered images and
for verification of hypotheses.



The generalized Hausdorff measure has been used for a number of matching and
recognition problems. In particular, there are two complementary ways in which the
measure has been used:

1. Specify a fixed fraction, f, and then determine the distance, d = h(P, Q). In
other words, find the smallest distance, d, such that k = [fm] of the points of
P are within d of points of Q. We call this the fractional Hausdorff distance,
because it is analogous to the Hausdorff distance, but considering only a fixed
fraction of the points rather than all the points. Intuitively, the fractional
Hausdorff distance measures how well the best subset of size k = [fm] of P
matches Q. It is one way of determining how well two sets match, with smaller
distances being better matches.

2. Specity a fixed distance, d, and then determine the resulting fraction of points
that are within that distance. In other words, find the largest f such that
hs(P,Q) < d. Intuitively, this measures what portion of P is near Q, for
some fixed neighborhood size, d. We call this the Hausdorff fraction, because
it measures the fraction of points within some given distance. It is a second
way of determining how well two sets match, with larger fractions being better
matches.

In this paper we use the second of these measures, the Hausdorff fraction. This
fraction specifies for a given distance d the fraction of points in one set that are within
distance d of points in the other set. For digital images, the points of the two sets
P and Q have integral coordinates. Thus we let P be a binary image denoting the
set P, with each 1 in the binary image P corresponding to a point in P (and zero
otherwise). Likewise for Q and Q). Let Q¢ be the dilation of by a disk of radius d
(i.e., each 1 in @ is replaced by a “disk” of 1’s of radius d). The Hausdorff fraction,
for distance d, is then

#(P)

where #(5) denotes the number of 1’s in a binary image S, and A denotes the logical

(I)d(Pv Q) =

and (or the product) of two bitmaps. That is, we simply replace each point of @) with
a disk (specifying all the points within distance d of that point). Then we compute
the logical and of that dilated image with the other image. The result is all the
points in P that are within distance d of points in ). Note the asymmetry of the
measure: one set is dilated and the other is not. Furthermore, note that when the
dilation is zero the Hausdorff fraction is simply a normalized binary correlation. The
eigenspace approximation to the Hausdorff fraction developed below is thus also an
approximation to the binary correlation.

Given two binary images, [,, and [,, we let z,, be the representation of [, as
a column vector and ', be the representation of I¢ (throughout we use primes to



denote vectors corresponding to dilated images). The Hausdorff fraction ®4(1,,, I,,)

can then be computed as

T .1
Oy, 1) = —mon

lenll?

because 2™ and z’, are both binary vectors and thus their dot product is the number
of ones in the logical and.

Given this formulation of the Hausdorff fraction ®,;, we now look at how it can
be approximated using a subspace approximation to the dot product. First we look
at the relation between the dot product of two images and their representations in
eigenspace, where, as above, ¢, and ¢/, are the rewriting of z,, and 2/, in a new
coordinate system defined by the eigenvectors £ of X X7,

x?nx’n = (xm—c+ C)T(l'/n —c+c)

= (2n =) (¢ =)+ (2 — ) et ('u — ) e+ |e]|”

T
= gngn +rgetale— |

The last step follows from gl ¢’ = (ET(z,, — )T ET(2', — ¢) = (2 — )T EET (', —

c) = (z,, — c)T(2', — ¢) (i.e., dot products are preserved under an orthogonal change
of basis).

We wish to approximate ¢, and ¢/ using just the first k& coefficients, which, as
above, we denote by f,, and f'. Thus we note that gL g" = (fm + rn)T(f. +7) =
FEf 4 rTy!  because all of the cross terms are zero.

Note that the reconstruction z,, using just the first & coefficients:

3
im - Z fmiei +c
=1
. . . e AT
is no longer in general a binary vector. However 1 2/, ~ ! 2’ i.e., the dot product
is still an approximation of the dot product of the complete binary vectors. The

quality of this approximation depends on the magnitude of the residuals, r,, and r/.

3.1 Subspace Approximation of the Hausdorff Fraction

We now describe the steps for constructing the eigenspace given a set of binary model
views, x1,...,xy. First, form the matrix X = [z1 —¢,..., 2y — ¢], as above, where
¢ is the centroid of the x,’s. Do not normalize the z,,’s in any fashion. Compute
and save the first k eigenvectors of X X7 (i.e., those corresponding to the k largest
eigenvalues)'. For each of the z,,’s, compute f,, = (gmys---,Gm,), Where g, =
el(z,, — ¢). Then compute z1 ¢ and ||z,,||*. Save this vector and two scalars for each

7

Tt is often much more efficient to compute the eigenvectors of X7 X, since it is usually much
smaller. If e is an eigenvector of X7 X then Xe is an eigenvector of X X7 and the ordering of the
eigenvectors by eigenvalue is the same.



2,,. This, in addition to the k eigenvectors with the largest eigenvalues, is all of the
information needed to match the set of models to each unknown image.

Once the above information has been computed and saved for each model image,
an unknown image is processed by dilating it by d, forming the vector ', from this
dilated image, and computing f! and :z:’gc.

An explicit search of all of the models can be performed by computing the ap-
proximation to the Hausdorff fraction, ®,4, for each x,, and the (dilated) unknown

!
Ty,

Fr= (3)

Note that each of the terms in this expression was computed and stored in forming
the eigenspace or is computed once per unknown image, except for fIf/. Thus
the matching a given view in the eigenspace to an unknown image only requires a
dot product of two k length vectors (just as in the traditional eigenspace matching
techniques), plus a division and a few additions.

One issue with approximating the Hausdorfl fraction is that the unknown images
may not be well approximated by the eigenspace, simply because all of the model
views are undilated whereas each unknown image is dilated. For “thin” features like
intensity edges, the dilated images are quite different in appearance and thus are not
necessarily well represented by the eigenspace. For edge features better performance
is achieved if the subspace is created using both dilated and undilated versions of
each model view (i.e., using both x, and 2’,, to represent each stored model view
I,;). This approach is taken for the experiments reported below.

4 The Error Introduced by Subspace Approxima-
tions

We now turn to the question of how much error is introduced in using a subspace
representaiton to approximate the SSD and the Hausdorff fraction. This error can
be used to determine whether the best matching view is sufficiently better than the
next best match to be reported as the single best match. In particular, the difference
between the first and second best match in the subspace can be compared with the
difference between the true distances and the approximate distances. If the approx-
imation error is larger than the difference between the two best matches, then these
matches are indistinguishable given the approximation.

First we consider the error in the SSD approximation. Expanding out the SSD
yields,

2w ="l = llgm — g0l

= [(fo +rm) = (1 + I
I fon = SollP A+ Nl — I
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The last step is because all of the cross terms involving f and r are zero.

Thus there is an error of ||r,, — r’||> when using ||f,. — f'||* to approximate
|z — 2',]|*. Of course directly determining the value of this error would defeat the
goal of efficient computation, as it would be necessary to compute all N eigenvectors
rather than just k£ of them. However we can bound the error using just the coefficients
of the k largest eigenvectors,

17 = 1012 = [l 4 [l = 200,
First we note that ||r,.||* = [|[xm — c||* — || fn]|?, since ||gnl]* = ||#m — ¢||? (it is just
an orthogonal change of basis) and ||g.|[* = ||fmll* + ||rm||*. Thus |[r.|[* can be

computed from just the original image, the centroid of the images and the projection
using the k largest eigenvectors.
We also note that [2rL+! | < 2||r,,|| - ||7%||. Thus the total error is in the range,

el = s 1 2 2| - [l
or equivalently, ||z, — ;|| lies in the range
1fon = £l 1?4 1 £ 2l - 1

The quantity ||r,,|| - ||| is a relatively loose bound on the magnitude of rLr!. A
tighter bound would also take into account the angle between the two vectors. While
this angle cannot be computed efficiently, it may be possible to use the distribution
of angles between two randomly chosen (N — k)-vectors to produce a distribution of
estimated error magnitudes.

In order to compute the error ranges efficiently, for each z,,, 1 < m < M, ||r,||
and ||@, — ¢|| can be computed and stored along with the k nonzero coefficients of
fm. Then for a given image x',,, we compute ||/ || and ||z’, —¢|| when f! is computed.

For the Hausdorff fraction, first we consider the error in using fI f! as an approx-
imation for g% ¢’ is rIr’. As above, while we cannot compute this term efficiently we
can bound its magnitude by ||r,|| - ||7,|| which can be computed efficiently.

The correlation 21 z', can be seen to be in the range

T
Fudit amet alye = Jlel* £ [lra]] - [l

The amount of error in the overall approximation to the Hausdorff fraction is thus
bounded by
7l - 7l

[
Note that each of the terms in this expression can be pre-computed for each model
view and computed once for an image view. Thus the uncertainty interval can be com-

m —

puted easily as part of the matching process. The true Hausdorff fraction, ®4(7,,, I,,),
lies in the interval [F,, — &, Fin 4 €] (of course the true fraction can never be less

9
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Figure 1: Error introduced by the subspace approximation. (a) The edges of a model
image. (b) The edges after projection into the subspace and reconstruction using
only the first 76 eigenvectors. (c) The dilated edges of an unknown image. (d) The
edges after projection into the subspace and reconstruction using only the first 76
eigenvectors.

than 0 or greater than 1), where F, is the approximate fraction using the eigenspace,
as defined in equation (3).

In practice, the actual errors in the approximation to the Hausdorff fraction are
considerably smaller than the error bound given above. This is because the error
bounds the worst possible case, where the two vectors are pointing in exactly the
same direction and all of the errors multiply together, which is very unlikely. For
cases where the true Hausdorff fraction is not large, the estimated fraction is typically
very close to the true fraction (within £.05).

In order to examine the errors in the subspace approximation to the Hausdorff
fraction, we ran an experiment using a subset of the image set from [10]. This set
of images consists of views of 20 different three-dimensional objects. 60 views of
each object were created by placing each object on a turntable and capturing an
image at regularly spaced rotations of the turntable. We subsampled these images
to 64 x 64 pixels and used the even numbered views as the model image set and the
odd numbered views as the unknown image set. In these experiments we used the 76
most significant eigenvectors to approximate the set of training images. Figure 1 gives
examples showing the reconstruction of both an undilated image and a dilated image
after projecting them into the subspace. Figure 2 shows a plot of the approximate
Hausdorff fraction versus the true Hausdorff fraction for 10,000 pairs of model images
with unknown images (that were not part of the training set).

Note that as the true fraction ®4(1,,, [,,) becomes large, the approximate fraction
F),, sometimes underestimates the correct value. The reason for this is that, in closely
correlated images, r,, and r/ will have similar directions, which results in k, being
less than ®4(1,,, [,). In the extreme case, if the dilated unknown view was exactly

llrmll®
”1,’:1”2 since

the same as the model view, then ®4(1,,, I,,) would be underestimated by

rm and r! would be the same.

10
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Figure 2: Plot of the correct fraction versus the estimated fraction in the image
subspace for an experiment with 100 model images and 100 unknown images.

11



5 Experimental Results

We now consider some simple experiments which illustrate the matching performance
of the Hausdorff eigenspace techniques. We are particularly interested in comparing
the performance of these techniques with previous eigenspace matching techniques
using grey-level images, when the background is unknown or when the object is
partially occluded.

These experiments also used the image set from [10], with 30 evenly spaced views
of each of 20 objects as the set of model views and 30 other evenly spaced views of
each of the same objects as the set of unknown images. Each of the images is divided
into the foreground (object) and the background, where the background has intensity
value zero. Figure 3 shows an example view for each of the objects in the image set
and the edges that were detected for each example.

Each of the 600 unknown views (not used in constructing the eigenspace) was
classified as one of the 20 objects by finding the closest matching model view in the
eigenspace. That is, a trial was considered successful if the best match was from
the same object as the unknown, regardless of the viewpoint of the unknown image
and the best matching model image. For the grey-level matching both the model
images and unknown images were normalized such that each has a magnitude of one.
We selected as the best match the model view with the minimum approximate SSD
computed using the method described in Section 2. For the binary matching we
computed edge maps for each image and selected the model view with the largest
approximate Hausdorff fraction F, as the best match for each unknown image (or
using binary correlation for those experiments).

First it should be noted that using the true Hausdorff fraction ®4 (with no sub-
space approximation) did not exhibit perfect performance in selecting the correct
object (it was successful in 96% of the trials). The reason that the true Hausdorff
fraction was unsuccessful was typically due to unknown images that had dense edges,
such that a very high fraction of pixels in the model view that were near image pixels
in the unknown image. This is because of the asymmetry of the Hausdorff distance,
which only measures the degree to which the model is accounted for by the image,
and not vice versa. Figure 4 shows examples of correct and incorrect matches for
the true Hausdorff distance. In the incorrect matches the sparse edges of the incor-
rect model view were well matched by the dense edges of the unknown image, but
the reverse was not true. When comparing uncluttered images, like those used in
this experiment, better results are obtained using the bidirectional Hausdorft frac-
tion min(®y( 1, I,.), ®a( 1, [,,)). However, using the bidirectional fraction makes the
measure more sensitive to clutter, because of the insistence that a high fraction of
feature points in the unknown image lie near feature points of the model view. In the

?Note that Murase and Nayar use a more complicated method where each object is represented
by a manifold in the eigenspace. This manifold is approximated from the points corresponding to
individual views using a spline interpolation technique.

12



Figure 3: A single view of each of the objects and the edges found in each view.
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Figure 4: Examples of correct and incorrect matches that occur when the actual
Hausdorff fraction is used. The correct matches are from slight rotations of the
object. The incorrect matches are from different objects. (a) A view of a Tylenol
box. (b) The best scoring match. (¢) A view of a rubber duck. (d) The best scoring
match. (e) A view of a Tylenol box. (f) The best scoring match. (g) A view of a
Tylenol box. (h) The best scoring match.

experiments below, we report approximations to both the Hausdorff fraction and the
bidirectional fraction.

When we use the original unperturbed test images, the grey-level matching tech-
niques in the image subspace yield perfect performance, while the Hausdorft subspace
matching technique is successful 96% of the time (575 of 600 trials). The Tylenol box
accounted for 16 of the unsuccessful trials, with 3 other models accounting for the
remaining unsuccessful trials. The subspace approximation of the bidirectional Haus-
dorff fraction was successful 99% of the time (593 of 600 trials).

It is important to note that for the approximate Hausdorff fraction we can gen-
erally detect when it is likely to be incorrect, by looking at the quality of the next-
best-match. For successful trials, there was no match that was nearly as good as
the correct match, whereas for the unsuccessful trials there generally were other close
matches. In particular, for the successful trials, the difference between the largest 28
for a view of the correct object and the largest F,, for a view of any other object was
.238 on average. In contrast, for the unsuccessful trials this difference was .017 on
average, with a maximum value of .041.

Recall that the error in approximating the Hausdorff fraction is about .05. Thus
for the unsuccessful trials there are multiple matches within the uncertainty of the
approximation, whereas for the successtul trials there are not. This provides empirical
support for the error analysis above, which suggests that all matches within the

14



Grey-Level | Directed | Bidirectional | Normalized
Image change SSD Hausdorff | Hausdorff | Correlation
Unperturbed 100% (600) | 96% (575) | 99% (593) 89% (532)
Background=50 | 94% (564) | 95% (567) | 98% (585) 89% (H35)
Background=100 | 41% (248) | 95% (568) | 95% (571) 88% (H30)
25% occlusion 52% (314) | 88% (528) | 97% (583) 87% (523)
50% occlusion 51% (309) | 85% (510) | 90% (538) 84% (503)

Table 1: Summary of results for the subspace image matching experiments. The first
column is for the normalized correlation of the grey-level images. The second column
is for the Hausdorff fraction of the edge maps. The third column is for the bidirectional
Hausdorff fraction described in the paper. The fourth column is for the normalized
correlation of the edge maps. All results are using the subspace approximation with
76 coefficients.

uncertainty range of the best match should be considered. We find here that the
best match is correct in all cases when there are no matches to views of other objects
within this uncertainty range. Moreover, the best match turns out to be incorrect in
all the cases where there are such close matches.

We next considered the case in which the unknown images were modified such
that the background intensity (which was zero in the original images) was changed to
a uniform non-zero value. The overall image was still normalized to have unit length
for the grey-level matching using the SSD. The edges of the unknown images were
recomputed after the change of background intensities for the binary matching. When
the background of the unknown images was changed changed to 50, the grey-level
techniques were successful 94% of the time (564 of 600 trials). When the background
value was changed to 100, the grey-level techniques were successful only 41% of the
time (248 of 600 trials). Thus the grey-level techniques, not surprisingly, are fairly
sensitive to large changes in the background intensity, because all pixel differences
contribute equally to the overall measure. These changes yielded little difference for
the Hausdorff techniques, yielding 95% success in both cases (567 and 568 successful
trials, respectively).

Finally we return to images with a uniform, black background, but in which the
object was partly occluded. We simulated occlusion of 25% of the object by setting
the upper, left quarter of the image to a black background in the grey-level images
and by erasing the edge pixels in this region for the edge images. In this experiment,
the grey-level techniques were successful in 314 trials, while the Hausdorff techniques
were successful in 528 trials. When the entire left half of the image was occluded,
the grey-level techniques yielded 309 successful trials and the Hausdorff techniques
yielded 510 successful trials.

Table 1 gives a summary of the results for the eigenspace approximations to the
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Figure 5: Tests were run on images with random clutter. (a) Test images not included
in forming the subspace. (b) The test images with 20% random clutter added. (c)
The best matching model images for the test images according to the approximate
Hausdorff fraction.

grey-level SSD and to both the directed and bidirectional Hausdorff fractions. For
comparison, results are also given for the approximation to the normalized correlation.
Perhaps the most striking overall result is that the edge-based measures (Hausdorff
or correlation) suffer much less than the grey-level measures as the background in-
tensity is changed. This indicates that while edge detectors are sensitive to changes
in illumination, they can be considerably less sensitive than the normalized intensity
values. We believe that this suggests a view-based approach to recognition which
makes use of features extracted from views (not simply edges, but multiple types of
features) rather than the views themselvs.

The second overall result seen in Table 1 is that the Hausdorff matching techniques
have uniformly good performance, whereas the grey-level techniques break down when
the background is changed and when the object is partially occluded. The Hausdorft
measure also performs significantly better than the normalized binary correlation of
the edge maps. The improvement over binary correlation is to be expected, because
the Hausdorff fraction handles small perturbations in the locations of image features
(whereas for binary correlation either feature points are directly superimposed or they
do not match).

In the next set of experiments we considered the effects of random edge clutter
on the edge matching techniques. In these experiments we added random straight
edge segments to each image until a specified fraction of the white space was covered
by clutter (see Figure 5). In this case the performance of the Hausdorff matching
techniques degraded as additional clutter was added, but even when 40% of the non-
edge pixels were changed to clutter, the techniques identified the correct object in over
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Directed | Normalized

Clutter Hausdorfl | Correlation
Percentage | Measure of Edges
0% 96% (575) | 89% (532)
10% 94% (562) | 2% (433)
20% 89% (533) | 53% (318)
30% 82% (492) | 44% (264)
40% 73% (437) | 32% (193)

Table 2: Percentage and number of successful trials as a function of image clutter in
the subspace experiments. The clutter percentage is the fraction of background pixels
that were covered by straight edge segment clutter. Results are given both for the
directed Hausdorff measure and the normalized correlation of the edge maps. The
number of successful trials is out of 600 total trials.

70% of the trials. The performance of the normalized correlation of the edge maps
degraded much faster, for instance at 10% occlusion the Hausdorff-based measure
achieved 96% correct classification whereas the normalized binary correlation was
only 72% correct.

6 Image search

In many recognition tasks the positions of objects that may be present in the image
are unknown. Moreover, current segmentation methods cannot reliably determine the
regions of an image that correspond to separate objects, except in simple cases. For
this reason it is crucial to have methods for quickly searching an image for locations
where there may be a match of one of the views in a set of model views. In this section
we describe how to integrate the Hausdorff-based subspace matching technique into
an image search engine. When the set of model views is larger than about 200, we
obtain substantial speedup over techniques that separately search for each model view
in an unknown image. These running time comparisons are done using the Hausdorff
matching methods reported in [5, 12], which have been heavily optimized.

We first consider the simple experiment of using the eigenspace approximation
to the Hausdorff fraction in order to rule out those locations (translations) in an
unknown image that are a poor match in the subspace. Note that the subspace
techniques need not rule out all of the incorrect translations of the model. As long as
the vast majority of the locations and models are eliminated, without eliminating the
correct matches, we can use standard techniques to check the remaining hypotheses.
We rely on the fact that the approximate Hausdorff fraction is nearly always close
to the true fraction as a heuristic to avoid ruling out correct matches. We use a
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threshold fraction that is .05 smaller than that specified by the maximal amount of
occlusion allowed (because the empirical data in Figure 2 illustrates that the true
fraction is nearly always within .05 of the estimated one).

Figure 6 shows an example of a cluttered image that was used in these experiments.
In this example, we are attempting to locate the Tylenol box, which had by far the
worst performance of the 20 models in our previous experiments. Let’s consider a
case where we wish to find all translations of one of the 600 views of the 20 models.
The image is 220 x 170 pixels and the model views are each 64 x 64 (as above). As
there are about 25 thousans locations in the image to search, a brute force search for
all 600 models would perform about 15 million comparisons of stored model views to
the image.

In order to allow for some mismatch between the model views and the image, we
allow for 20% of the model edges to be unmatched by the image (due to differences in
the edge features from lighting, slight viewpoint differences, etc). In order to ensure
that it will be unlikely that we rule out any such translation, we eliminate from
consideration only those model/translation pairs that have E, <075 (allowing for a
.05 error in the approximation). In this image, the only model with such a match is
the Tylenol box, which has a true Hausdorff fraction of 0.844 at the best match. By
ruling out all locations where the best approzimate fraction for all the model views
in the subspace is less than 0.75, we are able to eliminate 98.7% of the translations
in this image. Note that the best approximate match over the entire image, which is
shown in Figure 6, is a view of the Tylenol box, with estimated fraction 0.836 (which
is quite close to the true fraction of 0.844).

Figure 7 shows an example of an image where the model (the Anacin box) was
partially occluded. We want to allow for 25% mismatch in this case (due to the
small amount of occlusion) and thus set the threshold at 0.7. The best match shown
in the figure yielded a true Hausdorff fraction of 0.702 and the subspace methods
yield an estimated fraction of 0.727. When we eliminate all translations that yield a
best estimated fraction below 0.7, 99.3% of the search space is pruned. Experiments
with images like these indicate that the subspace matching techniques can eliminate
most of the possible positions of the model images in a large unknown image without
performing full comparisons of model views against the image at these positions. We
thus expect these techniques to yield a considerable improvement in the speed of
image matching techniques using the Hausdorff fraction.

6.1 Subspace Matching in an Image Search Engine

The subspace approximation to the Hausdorff fraction can be integrated into a multi-
resolution search strategy to achieve additional speedup over a separate search for each
model view. The basic idea behind multi-resolution strategies for Hausdorft matching
is to exploit the fact that if there is not a good match at a particular location, then
this fact can be used to eliminate other nearby locations from consideration. When
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Figure 6: A cluttered image that was used to test the image search. (a) The original
image. (b) The edges detected in the image. (c) The best matching view of the
Tylenol box. (d) The edges of the Tylenol box overlaid on the full edge image at the
location of the best match.
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Figure 7: A cluttered image with some occlusion that was used to test the image
search. (a) The original image. (b) The edges detected in the image. (¢) The best
matching view of the Anacin box. (d) The edges of the Anacin box overlaid on the
full edge image at the location of the best match.
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searching under translation, one strategy that can be used is to dilate the image by a
disk with a radius greater than the desired error radius, 6. If a model does not match
this highly dilated image at some position, then this position of the model and other
positions close to it can be ruled out as possible matches in an image that is dilated
only by 6. To make this concrete, let’s say that we dilate the image with a disk of
radius 6 4+ . If the match of the model to this dilated image at some translation
does not surpass the specified Hausdorft fraction, then no translation within + can
possibly yield a match in the image when dilated by only 6. This thus allows us to
rule out all translations that are within 4 of the current translation.

We can formulate an efficient search strategy using this observtion by considering
a hierarchical cell decomposition of the search space. The translations are divided
into cells of uniform size (which can recursively be divided into similarly uniform
cells) [6, 12]. We then create a new image dilated by a disk with a radius equal to
the distance from the center of the cell to the cell boundary plus the error allowed,
0. This allows an entire cell to be ruled out or expanded by only examining the
translation at the center of the cell. For each cell that cannot be ruled out at this
level, we divide the cell and apply the process recursively until the final cells consist
of a single translation of the model, which are good matches between a model and the
image according to the subspace approximation. The use of these techniques requires
the computation of several dilations of the image, at different radii, but this is more
than compensated by the reduction in the number of positions of the models that
have to be examined with a brute force search.

Since we are using a subspace approximation to the Hausdorff fraction, we can
only determine whether a match exists up to the error in this approximation. As
above, if we set our threshold for ruling out a cell lower than the actual threshold we
are interested in, we can be reasonably certain that we do not rule out any cells that
we should not. We again use a heuristic of .05 error in the approximation. At the
bottom level of the hierarchy, when we reach cells that contain a single translation
which cannot be ruled out, we can compute the true Hausdorff fraction rather than
using the eigenspace approximation, since there will be few such cells that remain,
and each such cell will only have a small number of possible matching model views.

Figure 6.1 shows a running time comparison between our implementation of a
hierarchical image search using the subspace Hausdorff matching techniques and a
previous implementation of hierarchical search using the true Hausdorfl fraction [5],
both running on a SPARC-10. The previous system has been heavily optimized in
order to efficiently rule out regions of the search space that do not need to be con-
sidered, but it does not use the subspace techniques for approximating the Hausdorff
fraction. While the subspace techniques are not as heavily optimized and have addi-
tional overhead associated with mapping subimages of the unknown image into the
subspace, the time required by these techniques grows slowly with number of objects
in the database. As the set of models grows large, the subspace image search method
outperforms the previous techniques by a considerable margin. From the graph it
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Figure 8: The time required by the subspace methods grows far less quickly than pre-
vious Hausdorff matching techniques as the number of model images in the database
grows.

can be seen that for 200 model views the subspace method already has about a 20%
speed advantage over the method which considers each model view independently.
When the model set reaches 600 views, the speed advantage is about 300%. As
noted above, a brute force comparsion of all 600 views would involve about 15 million
matches of model views to the image. Therefore the effective speed of the subspace
method is about 75,000 model view matches per second on a SPARC-10. This speed
is achieved both by pruning the space of possible translations that are considered and
by matching the eigen-coefficients rather than the complete model views.

While we have only considered searching over possible translations of the object
models in an image, it is also possible to consider other transformations such as
scaling, rotation or affine. One method by which this could be done is to include
scaled and rotated versions of the model images in the database [14], but this method
yields very large catalogs of model images. Alternately, we can explore the space
of such transformation together with the space of possible translations. First, the
transformation space is discretized such that no two adjacent transformations map
any model pixel more than one pixel apart in the image. We can then consider cells
of this transformation space as above in the multi-resolution search strategy. Such
an approach to Hausdorfl matching is taken in [12], without the use of a subspace
approximation.
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7 Summary

We have descried a new subspace method for approximating the Hausdorff fraction
between two binary images, and have demonstrated the use of this method for view-
based recognition. The use of edge features rather than grey-level images yields
a view-based recognition technique that is relatively insensitive to lighting changes
and to unknown backgrounds. The use of the Hausdorff fraction to compare feature
maps provides robustness to clutter and occlusion. The eigenspace approximation to
the Hausdorff fraction allows individual matches to be processed much faster than
previous Hausdorff matching methods. Thus, overall this combination of techniques
results in a system that has both the speed of subspace methods and the robustness
of the Hausdorff measure.

Empirical results presented in the paper indicate that the Hausdorff based eigenspace
method provides a substantial improvement over SSD-based methods, in situations
where the background is unknown or cluttered or objects are partially occluded. In
addition, these experiments suggest that it is possible to detect when the Hausdorff
matching techniques are likely to have selected an incorrect match, based on the dis-
tance between the best match and the next-best match. Finally the paper showed
how the Hausdorff eigenspace method can be used for image search, by integrating it
with a multi-resolution search strategy in order to quickly identify possible instances
of a set of model views at unknown locations in an image. Comparison with prior
methods for performing Hausdorff matching (that did not use subspace techniques)
shows considerable improvement in matching time when a set of a few hundred model
views is used.
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