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Abstract

View�based recognition methods� such as those using eigenspace techniques�
have been successful for a number of recognition tasks� Currently� however� such
approaches are relatively limited in their ability to recognize objects which are
partly hidden from view or occur against cluttered backgrounds� In order to
address these limitations� we have developed a new view matching technique
based on an eigenspace approximation to the generalized Hausdor� measure�
This method achieves the compact storage and fast indexing that are the main
advantages of previous eigenspace view matching techniques� while also being
tolerant of partial occlusion and background clutter�

Our approach is based on comparing features extracted from views� such as
intensity edges� rather than directly comparing the views themselves� The un�
derlying comparison measure that we use is the Hausdor� fraction� as opposed
to the sum of squared di�erences �SSD� which is employed by most eigenspace
matching techniques� The Hausdor� fraction is quite insensitive to small varia�
tions in feature location as well as to the presence of clutter or partial occlusion�
In this paper we de�ne an eigenspace approximation to the Hausdor� fraction
and present some simple recognition experiments which contrast our approach
with prior work on eigenspace image matching� We also show how to e�ciently
incorporate our technique into an image search engine� enabling instances from
a set of model views to be identi�ed at any location �translation� in a larger
image�
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� Introduction

Appearance�based approaches to object recognition have been successful in a number
of tasks �e�g� ��� ��� ��� �	
�� The central idea underlying such methods is to represent
objects as collections of views� and to use an e�cient encoding scheme for storing and
retrieving the views� The most common encoding scheme is based on representing
each view using a relatively low�dimensional space which captures important char�
acteristics of the entire set of views� This low�dimensional space is generally formed
using an eigen�decomposition �or principal components analysis� to de
ne a subspace
which provides a reasonable approximation to the set of stored views� Each stored
model view is represented in terms of its projection into this subspace� which is quite
compact in comparison with the number of pixels in each view� An unknown object
is recognized by projecting its image into the subspace and then 
nding the closest
model view�s� in the subspace using some similarity measure�

Subspace methods are attractive when there is a relatively large database of model
views� because the set of model views can be represented using a small number of
coe�cients each� rather than the thousands of pixels in each image� This both saves
storage and speeds the process of 
nding the closest matching images in the database�
Moreover� when the subspace is relatively low�dimensional �e�g� ��� �	 dimensions�
there are methods for 
nding approximate closest matches in time logarithmic in the
number of items in the database �e�g� ��
�� Subspace methods can also be viewed
as a form of generalization or learning� To the extent that a subspace captures the
important characteristics of a given set of images while omitting the unimportant
characteristics� it can be insensitive to unimportant variations in the images�

The most e�ective applications of subspace methods have been limited to tasks
where the objects that are to be recognized appear fully visible �i�e� not partially
occluded�� are against a uniform background and where the images are nearly cor�
rectly registered with each other in advance� For example� a particularly successful
application is the recognition of faces from mugshots� where the head is generally
about the same size and location in the image� and the background is a 
xed color
�e�g�� ���
�� The main reason for these limitations is that when extraneous informa�
tion from the background of an unknown image is projected into the subspace� it
tends to cause incorrect recognition results� This is analogous to the problem that
occurs with template matching techniques� using measures such as the sum of squared
di�erences �SSD� or correlation� where background pixels included in a matching win�
dow can signi
cantly alter the correlation value and cause incorrect matches� One
standard way of addressing this problem in template matching is to use sub�regions
of the views� such that the regions do not contain any background� A similar ap�
proach has also been taken in eigenspace matching ��	� �
� One drawback� however�
is that sub�regions are generally less distinctive and thus can lead to more possible
matches being found� This issue of distinctiveness has been addressed in ��
 where
they use a selection procedure for image regions based on a minimum description

�



length principle�
In this paper we describe a subspace recognition method that handles clutter

and partial occlusion by using a robust image comparison measure� rather than by
using sub�regions of views� Our method is based on using an eigen�decomposition to
approximate the computation of the generalized Hausdor� measure ��
� The Hausdor�
measure has been used to determine the degree of resemblance between binary images
�bitmaps�� It has been e�ective in template matching recognition methods� even in
the presence of signi
cant background information in the match window ��� �
� Much
of the power of Hausdor��based measures comes from the fact that they are robust
to outlying data points ��
� The major contribution of the method that we report
in this paper is that it combines the robustness of Hausdor��based measures for
identifying partially occluded objects in clutter� with the speed of subspace methods
for recognizing sets of object models� The recent work of ��
 has also developed
a robust image comparison measure using eigenspaces� however the computation is
considerably more expensive than our method �and thus far their technique has been
applied to object tracking as opposed to view based recognition��

We present some simple experiments demonstrating that our method performs
well when the background is unknown or when the object to be recognized is partially
occluded� including in cases where prior eigenspace methods based on the SSD break
down� In addition� our method can be extended to handle the image search problem�
where the locations of objects to be recognized in an image are not known� We show
how to incorporate the Hausdor� eigenspace method into an image search engine that
identi
es the locations �translations� in an image where any of the stored model views
yield a good match� Experiments indicate that searching images using this approach
can reliably rule out the vast majority of image locations for all of the models in
the view set� without losing the correct match� Moreover� these experiments show
that the Hausdor� eigenspace techniques provide considerble speed up over previous
image search methods based on the generalized Hausdor� measure ��
� when the task
involves a set of more than about �		 stored model views�

In the following section we discuss subspace matching methods in more detail�
focusing on the use of previous subspace techniques that are based on the SSD� We
then describe the generalized Hausdor� measure and how it can be approximated
using subspace methods� We also consider the error or uncertainty that is introduced
by the projection of an image into an eigenspace� This error analysis is applicable
to any use of subspace techniques� Following the error analysis� we present an em�
pirical investigation of the accuracy of the approximation and contrast the Hausdor�
eigenspace matching approach with an SSD�based approach� Finally� we consider how
to incorporate the Hausdor� eigenspace approach into an image search engine such
as that in ���
� in order to search an image for instances of any of the objects in a set
of views� We constrast the e�ciency of this approach with previous Hausdor��based
image search techniques�
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� Subspace Representations and Approximating

the SSD

In this section we review the use of eigenspace methods for grey�level matching �e�g��
��	� ��
�� Let I denote a two�dimensional image with N pixels� and let x be its
representation as a �column� vector in scan line order� Given a set of training or
model images� Im� � � m �M � de
ne the matrix X � �x�� c� � � � � xM � c
� where xm
denotes the vector representation of Im� and c is the average of the xm�s� The average
image is subtracted from each xm so that the predominant eigenvectors of XXT will
capture the maximal variation of the original set of images� In many applications of
subspace methods� the xm�s are normalized in some fashion prior to forming X� such
as making kxmk � �� to prevent the overall brightness of the image from a�ecting the
results�

The eigenvectors ofXXT are an orthogonal basis in terms of which the xm�s can be
rewritten �and other� unknown� images as well�� Let �i� � � i � N � denote the ordered
�from largest to smallest� eigenvalues of XXT and let ei denote each corresponding
eigenvector� De
ne E to be the matrix �e�� � � � � eN 
� Then gm � ET �xm � c� is the
rewriting of xm � c in terms of the orthogonal basis de
ned by the eigenvectors of
XXT � The original xm is then just the weighted sum of the eigenvectors

xm �
NX

i��

gmi
ei � c

where gmi
is the ith term of gm�

It is straightforward to show that kxm � xnk� � kgm � gnk� �cf� ��	
�� because
distances are preserved under an orthonormal change of basis� That is� the sum of
squared di�erences �SSD� of two images can be computed using the distance between
the eigenspace representations of the two images�

The central idea underlying the use of subspace methods is to approximate xm
using just those eigenvectors corresponding to the few largest eigenvalues� rather than
using all N eigenvectors� This low�dimensional representation is intended to capture
the important characteristics of the set of training images� Let fm � �gm�

� � � � � gmk
� 	� � � � � 	�

and rm � �	� � � � � 	� gmk��
� � � � � gmN

�� so that gm � fm � rm� That is� fm is the vector
of coe�cients corresponding to the 
rst k terms in the sum� and rm is the vector of
remaining coe�cients� where k �� N � Then xm can be approximately reconstructed
using just the 
rst k coe�cients�

xm � �xm �
kX

i��

fmi
ei � c �

In some applications� the few largest eigenvectors are also not used in constructing
the approximation �x� because they capture properties that are common to the entire
set of images�
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The SSD� kxm� xnk�� is then simply approximated as kfm� fnk�� As this repre�
sentation uses only the k eigenvectors with largest eigenvalues� it is not necessary to
compute all N eigenvalues and eigenvectors of XXT �which would be quite impracti�
cal as N is usually many thousands�� One approach� when the number of model views
is smaller than the number of pixels in each view� is to compute the eigenvectors of
XTX instead �this is done in ��	
��

The search for a model� xm� that is most similar to some unknown xn� can� in
theory� be performed in O�logM� time� In practice this is e�cient currently for up
to about a ���dimensional space �i�e�� up to about k � �� eigenvectors� using the
approximation method of Arya et al� ��
� In addition� the points in the subspace can
be viewed as samples of some underlying manifold representing all possible views of
a given object or set of objects� In ��	
 this manifold is approximated and used in
computing the distance between an unknown image and the set of model views�

� Approximating Binary Correlation and the Haus�

dor� Fraction

In this section we describe a subspace method for approximating the generalized
Hausdor� measure� The Hausdor� measure is de
ned for sets of points� and thus we
are now restricting the discussion to binary images which represent sets of feature
points on a grid �i�e�� a binary image that is � for points that are in the set and 	
otherwise�� First we review the generalized Hausdor� measure� and then consider a
subspace approximation�

Given two point sets P and Q� with m and n points respectively� and a fraction�
	 � f � �� the generalized Hausdor� measure is de
ned in ��� ��
 as

hf�P�Q� � f th

p�P
min
q�Q

kp� qk� ���

where f thp�Pg�p� denotes the f �th quantile value of g�p� over the set P� For example�
the ��th quantile value is the maximum �the largest element�� and the �

�
�th quantile

value is the median� Equation ��� generalizes the classical Hausdor� distance� which
maximizes over p � P� In other words� the generalized measure uses an arbitrary
percentile �rank� of distances rather than the maximal distance as used in the classical
measure�

The generalized Hausdor� measure is asymmetric �as is the classical Hausdor�
distance�� Given a fraction� f � and two point sets� P and Q� hf�P�Q� and hf �Q�P�
can attain very di�erent values� For example� there may be points of P that are
not near any points of Q� or vice versa� We can also use a bidirectional form of this
measure� hfg�P�Q� � max�hf �P�Q�� hg�Q�P��� The bidirectional measure is not
robust to large amounts of image clutter� but it is useful in uncluttered images and
for veri
cation of hypotheses�
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The generalized Hausdor� measure has been used for a number of matching and
recognition problems� In particular� there are two complementary ways in which the
measure has been used�

�� Specify a 
xed fraction� f � and then determine the distance� d � hf �P�Q�� In
other words� 
nd the smallest distance� d� such that k � dfme of the points of
P are within d of points of Q� We call this the fractional Hausdor� distance�
because it is analogous to the Hausdor� distance� but considering only a 
xed
fraction of the points rather than all the points� Intuitively� the fractional
Hausdor� distance measures how well the best subset of size k � dfme of P
matches Q� It is one way of determining how well two sets match� with smaller
distances being better matches�

�� Specify a 
xed distance� d� and then determine the resulting fraction of points
that are within that distance� In other words� 
nd the largest f such that
hf �P�Q� � d� Intuitively� this measures what portion of P is near Q� for
some 
xed neighborhood size� d� We call this the Hausdor� fraction� because
it measures the fraction of points within some given distance� It is a second
way of determining how well two sets match� with larger fractions being better
matches�

In this paper we use the second of these measures� the Hausdor� fraction� This
fraction speci
es for a given distance d the fraction of points in one set that are within
distance d of points in the other set� For digital images� the points of the two sets
P and Q have integral coordinates� Thus we let P be a binary image denoting the
set P� with each � in the binary image P corresponding to a point in P �and zero
otherwise�� Likewise for Q and Q�� Let Qd be the dilation of Q by a disk of radius d
�i�e�� each � in Q is replaced by a �disk� of ��s of radius d�� The Hausdor� fraction�
for distance d� is then

�d�P�Q� �
��P �Qd�

��P �
���

where ��S� denotes the number of ��s in a binary image S� and � denotes the logical
and �or the product� of two bitmaps� That is� we simply replace each point of Q with
a disk �specifying all the points within distance d of that point�� Then we compute
the logical and of that dilated image with the other image� The result is all the
points in P that are within distance d of points in Q� Note the asymmetry of the
measure� one set is dilated and the other is not� Furthermore� note that when the
dilation is zero the Hausdor� fraction is simply a normalized binary correlation� The
eigenspace approximation to the Hausdor� fraction developed below is thus also an
approximation to the binary correlation�

Given two binary images� Im and In� we let xm be the representation of Im as
a column vector and x�n be the representation of Idn �throughout we use primes to
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denote vectors corresponding to dilated images�� The Hausdor� fraction �d�Im� In�
can then be computed as

�d�Im� In� �
xTmx

�
n

kxmk�

because xm and x�n are both binary vectors and thus their dot product is the number
of ones in the logical and�

Given this formulation of the Hausdor� fraction �d� we now look at how it can
be approximated using a subspace approximation to the dot product� First we look
at the relation between the dot product of two images and their representations in
eigenspace� where� as above� gm and g�n are the rewriting of xm and x�n in a new
coordinate system de
ned by the eigenvectors E of XXT �

xTmx
�
n � �xm � c� c�T �x�n � c� c�

� �xm � c�T �x�n � c� � �xm � c�T c� �x�n � c�T c� kck�

� gTmg
�
n � xTmc� x�

T

n c� kck�

The last step follows from gTmg
�
n � �ET �xm � c��TET �x�n � c� � �xm� c�TEET �x�n �

c� � �xm � c�T �x�n � c� �i�e�� dot products are preserved under an orthogonal change
of basis��

We wish to approximate gm and g�n using just the 
rst k coe�cients� which� as
above� we denote by fm and f �n� Thus we note that gTmg

�
n � �fm � rm�T �f �n � r�n� �

fTmf
�
n � rTmr

�
n� because all of the cross terms are zero�

Note that the reconstruction �xm using just the 
rst k coe�cients�

�xm �
kX

i��

fmi
ei � c

is no longer in general a binary vector� However xTmx
�
n � �xtm �x�

T

n � i�e�� the dot product
is still an approximation of the dot product of the complete binary vectors� The
quality of this approximation depends on the magnitude of the residuals� rm and r�n�

��� Subspace Approximation of the Hausdor� Fraction

We now describe the steps for constructing the eigenspace given a set of binary model
views� x�� � � � � xM � First� form the matrix X � �x� � c� � � � � xM � c
� as above� where
c is the centroid of the xm�s� Do not normalize the xm�s in any fashion� Compute
and save the 
rst k eigenvectors of XXT �i�e�� those corresponding to the k largest
eigenvalues��� For each of the xm�s� compute fm � �gm�

� � � � � gmk
�� where gmi

�
eTi �xm� c�� Then compute xTmc and kxmk

�� Save this vector and two scalars for each

�It is often much more e�cient to compute the eigenvectors of XT
X� since it is usually much

smaller� If e is an eigenvector of XT
X� then Xe is an eigenvector of XXT and the ordering of the

eigenvectors by eigenvalue is the same�

�



xm� This� in addition to the k eigenvectors with the largest eigenvalues� is all of the
information needed to match the set of models to each unknown image�

Once the above information has been computed and saved for each model image�
an unknown image is processed by dilating it by d� forming the vector x�n from this
dilated image� and computing f �n and x�

T
n c�

An explicit search of all of the models can be performed by computing the ap�
proximation to the Hausdor� fraction� �d� for each xm and the �dilated� unknown
x�n�

�Fm �
fTmf

�
n � xTmc� x�

T
n c� kck�

kxmk�
���

Note that each of the terms in this expression was computed and stored in forming
the eigenspace or is computed once per unknown image� except for fTmf

�
n� Thus

the matching a given view in the eigenspace to an unknown image only requires a
dot product of two k length vectors �just as in the traditional eigenspace matching
techniques�� plus a division and a few additions�

One issue with approximating the Hausdor� fraction is that the unknown images
may not be well approximated by the eigenspace� simply because all of the model
views are undilated whereas each unknown image is dilated� For �thin� features like
intensity edges� the dilated images are quite di�erent in appearance and thus are not
necessarily well represented by the eigenspace� For edge features better performance
is achieved if the subspace is created using both dilated and undilated versions of
each model view �i�e�� using both xm and x�m to represent each stored model view
Im�� This approach is taken for the experiments reported below�

� The Error Introduced by Subspace Approxima�

tions

We now turn to the question of how much error is introduced in using a subspace
representaiton to approximate the SSD and the Hausdor� fraction� This error can
be used to determine whether the best matching view is su�ciently better than the
next best match to be reported as the single best match� In particular� the di�erence
between the 
rst and second best match in the subspace can be compared with the
di�erence between the true distances and the approximate distances� If the approx�
imation error is larger than the di�erence between the two best matches� then these
matches are indistinguishable given the approximation�

First we consider the error in the SSD approximation� Expanding out the SSD
yields�

kxm � x�nk
� � kgm � g�nk

�

� k�fm � rm�� �f �n � r�n�k
�

� kfm � f �nk
� � krm � r�nk

�
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The last step is because all of the cross terms involving f and r are zero�
Thus there is an error of krm � r�nk

� when using kfm � f �nk
� to approximate

kxm � x�nk�� Of course directly determining the value of this error would defeat the
goal of e�cient computation� as it would be necessary to compute all N eigenvectors
rather than just k of them� However we can bound the error using just the coe�cients
of the k largest eigenvectors�

krm � r�nk
� � krmk

� � kr�nk
� � �rTmr

�
n

First we note that krmk� � kxm � ck� � kfmk�� since kgmk� � kxm � ck� �it is just
an orthogonal change of basis� and kgmk� � kfmk� � krmk�� Thus krmk� can be
computed from just the original image� the centroid of the images and the projection
using the k largest eigenvectors�

We also note that j�rTmr
�
nj � �krmk � kr�nk� Thus the total error is in the range�

krmk
� � kr�nk

� � �krmk � kr
�
nk

or equivalently� kxm � x�nk lies in the range

kfm � f �nk� krmk
� � kr�nk

� � �krmk � kr
�
nk

The quantity krmk � kr�nk is a relatively loose bound on the magnitude of rTmr
�
n� A

tighter bound would also take into account the angle between the two vectors� While
this angle cannot be computed e�ciently� it may be possible to use the distribution
of angles between two randomly chosen �N � k��vectors to produce a distribution of
estimated error magnitudes�

In order to compute the error ranges e�ciently� for each xm� � � m � M � krmk
and kxm � ck can be computed and stored along with the k nonzero coe�cients of
fm� Then for a given image x�n� we compute kr�nk and kx�n�ck when f �n is computed�

For the Hausdor� fraction� 
rst we consider the error in using fTmf
�
n as an approx�

imation for gTmg
�
n is rTmr

�
n� As above� while we cannot compute this term e�ciently we

can bound its magnitude by krmk � kr�nk which can be computed e�ciently�
The correlation xTmx

�
n can be seen to be in the range

fTmf
�
n � xTmc� x�

T

nc� kck� � krmk � kr
�
nk

The amount of error in the overall approximation to the Hausdor� fraction is thus
bounded by

�m �
krmk � kr�nk

kxmk�

Note that each of the terms in this expression can be pre�computed for each model
view and computed once for an image view� Thus the uncertainty interval can be com�
puted easily as part of the matching process� The true Hausdor� fraction� �d�Im� In��
lies in the interval � �Fm � �m� �Fm � �m
 �of course the true fraction can never be less
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�a� �b� �c� �d�

Figure �� Error introduced by the subspace approximation� �a� The edges of a model
image� �b� The edges after projection into the subspace and reconstruction using
only the 
rst �� eigenvectors� �c� The dilated edges of an unknown image� �d� The
edges after projection into the subspace and reconstruction using only the 
rst ��
eigenvectors�

than 	 or greater than ��� where �Fm is the approximate fraction using the eigenspace�
as de
ned in equation ����

In practice� the actual errors in the approximation to the Hausdor� fraction are
considerably smaller than the error bound given above� This is because the error
bounds the worst possible case� where the two vectors are pointing in exactly the
same direction and all of the errors multiply together� which is very unlikely� For
cases where the true Hausdor� fraction is not large� the estimated fraction is typically
very close to the true fraction �within ��	���

In order to examine the errors in the subspace approximation to the Hausdor�
fraction� we ran an experiment using a subset of the image set from ��	
� This set
of images consists of views of �	 di�erent three�dimensional objects� �	 views of
each object were created by placing each object on a turntable and capturing an
image at regularly spaced rotations of the turntable� We subsampled these images
to �� � �� pixels and used the even numbered views as the model image set and the
odd numbered views as the unknown image set� In these experiments we used the ��
most signi
cant eigenvectors to approximate the set of training images� Figure � gives
examples showing the reconstruction of both an undilated image and a dilated image
after projecting them into the subspace� Figure � shows a plot of the approximate
Hausdor� fraction versus the true Hausdor� fraction for �	�			 pairs of model images
with unknown images �that were not part of the training set��

Note that as the true fraction �d�Im� In� becomes large� the approximate fraction
�Fm sometimes underestimates the correct value� The reason for this is that� in closely
correlated images� rm and r�n will have similar directions� which results in �Fm being
less than �d�Im� In�� In the extreme case� if the dilated unknown view was exactly

the same as the model view� then �d�Im� In� would be underestimated by krmk�

kxmk�
since

rm and r�n would be the same�
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Figure �� Plot of the correct fraction versus the estimated fraction in the image
subspace for an experiment with �		 model images and �		 unknown images�
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� Experimental Results

We now consider some simple experiments which illustrate the matching performance
of the Hausdor� eigenspace techniques� We are particularly interested in comparing
the performance of these techniques with previous eigenspace matching techniques
using grey�level images� when the background is unknown or when the object is
partially occluded�

These experiments also used the image set from ��	
� with �	 evenly spaced views
of each of �	 objects as the set of model views and �	 other evenly spaced views of
each of the same objects as the set of unknown images� Each of the images is divided
into the foreground �object� and the background� where the background has intensity
value zero� Figure � shows an example view for each of the objects in the image set
and the edges that were detected for each example�

Each of the �		 unknown views �not used in constructing the eigenspace� was
classi
ed as one of the �	 objects by 
nding the closest matching model view in the
eigenspace� That is� a trial was considered successful if the best match was from
the same object as the unknown� regardless of the viewpoint of the unknown image
and the best matching model image� For the grey�level matching both the model
images and unknown images were normalized such that each has a magnitude of one�
We selected as the best match the model view with the minimum approximate SSD
computed using the method described in Section ��� For the binary matching we
computed edge maps for each image and selected the model view with the largest
approximate Hausdor� fraction �Fm as the best match for each unknown image �or
using binary correlation for those experiments��

First it should be noted that using the true Hausdor� fraction �d �with no sub�
space approximation� did not exhibit perfect performance in selecting the correct
object �it was successful in ��� of the trials�� The reason that the true Hausdor�
fraction was unsuccessful was typically due to unknown images that had dense edges�
such that a very high fraction of pixels in the model view that were near image pixels
in the unknown image� This is because of the asymmetry of the Hausdor� distance�
which only measures the degree to which the model is accounted for by the image�
and not vice versa� Figure � shows examples of correct and incorrect matches for
the true Hausdor� distance� In the incorrect matches the sparse edges of the incor�
rect model view were well matched by the dense edges of the unknown image� but
the reverse was not true� When comparing uncluttered images� like those used in
this experiment� better results are obtained using the bidirectional Hausdor� frac�
tion min��d�Im� In���d�In� Im��� However� using the bidirectional fraction makes the
measure more sensitive to clutter� because of the insistence that a high fraction of
feature points in the unknown image lie near feature points of the model view� In the

�Note that Murase and Nayar use a more complicated method where each object is represented

by a manifold in the eigenspace� This manifold is approximated from the points corresponding to

individual views using a spline interpolation technique�
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Figure �� A single view of each of the objects and the edges found in each view�
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�a� �b� �c� �d�

�e� �f� �g� �h�

Figure �� Examples of correct and incorrect matches that occur when the actual
Hausdor� fraction is used� The correct matches are from slight rotations of the
object� The incorrect matches are from di�erent objects� �a� A view of a Tylenol
box� �b� The best scoring match� �c� A view of a rubber duck� �d� The best scoring
match� �e� A view of a Tylenol box� �f� The best scoring match� �g� A view of a
Tylenol box� �h� The best scoring match�

experiments below� we report approximations to both the Hausdor� fraction and the
bidirectional fraction�

When we use the original unperturbed test images� the grey�level matching tech�
niques in the image subspace yield perfect performance� while the Hausdor� subspace
matching technique is successful ��� of the time ���� of �		 trials�� The Tylenol box
accounted for �� of the unsuccessful trials� with � other models accounting for the
remaining unsuccessful trials� The subspace approximation of the bidirectional Haus�
dor� fraction was successful ��� of the time ���� of �		 trials��

It is important to note that for the approximate Hausdor� fraction we can gen�
erally detect when it is likely to be incorrect� by looking at the quality of the next�
best�match� For successful trials� there was no match that was nearly as good as
the correct match� whereas for the unsuccessful trials there generally were other close
matches� In particular� for the successful trials� the di�erence between the largest �Fm
for a view of the correct object and the largest �Fm for a view of any other object was
���� on average� In contrast� for the unsuccessful trials this di�erence was �	�� on
average� with a maximum value of �	���

Recall that the error in approximating the Hausdor� fraction is about �	�� Thus
for the unsuccessful trials there are multiple matches within the uncertainty of the
approximation� whereas for the successful trials there are not� This provides empirical
support for the error analysis above� which suggests that all matches within the
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Grey�Level Directed Bidirectional Normalized
Image change SSD Hausdor� Hausdor� Correlation
Unperturbed �		� ��		� ��� ����� ��� ����� ��� �����
Background��	 ��� ����� ��� ����� ��� ����� ��� �����
Background��		 ��� ����� ��� ����� ��� ����� ��� ���	�
��� occlusion ��� ����� ��� ����� ��� ����� ��� �����
�	� occlusion ��� ��	�� ��� ���	� �	� ����� ��� ��	��

Table �� Summary of results for the subspace image matching experiments� The 
rst
column is for the normalized correlation of the grey�level images� The second column
is for the Hausdor� fraction of the edge maps� The third column is for the bidirectional
Hausdor� fraction described in the paper� The fourth column is for the normalized
correlation of the edge maps� All results are using the subspace approximation with
�� coe�cients�

uncertainty range of the best match should be considered� We 
nd here that the
best match is correct in all cases when there are no matches to views of other objects
within this uncertainty range� Moreover� the best match turns out to be incorrect in
all the cases where there are such close matches�

We next considered the case in which the unknown images were modi
ed such
that the background intensity �which was zero in the original images� was changed to
a uniform non�zero value� The overall image was still normalized to have unit length
for the grey�level matching using the SSD� The edges of the unknown images were
recomputed after the change of background intensities for the binary matching� When
the background of the unknown images was changed changed to �	� the grey�level
techniques were successful ��� of the time ���� of �		 trials�� When the background
value was changed to �		� the grey�level techniques were successful only ��� of the
time ���� of �		 trials�� Thus the grey�level techniques� not surprisingly� are fairly
sensitive to large changes in the background intensity� because all pixel di�erences
contribute equally to the overall measure� These changes yielded little di�erence for
the Hausdor� techniques� yielding ��� success in both cases ���� and ��� successful
trials� respectively��

Finally we return to images with a uniform� black background� but in which the
object was partly occluded� We simulated occlusion of ��� of the object by setting
the upper� left quarter of the image to a black background in the grey�level images
and by erasing the edge pixels in this region for the edge images� In this experiment�
the grey�level techniques were successful in ��� trials� while the Hausdor� techniques
were successful in ��� trials� When the entire left half of the image was occluded�
the grey�level techniques yielded �	� successful trials and the Hausdor� techniques
yielded ��	 successful trials�

Table � gives a summary of the results for the eigenspace approximations to the
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�a� �b� �c�

Figure �� Tests were run on images with random clutter� �a� Test images not included
in forming the subspace� �b� The test images with �	� random clutter added� �c�
The best matching model images for the test images according to the approximate
Hausdor� fraction�

grey�level SSD and to both the directed and bidirectional Hausdor� fractions� For
comparison� results are also given for the approximation to the normalized correlation�
Perhaps the most striking overall result is that the edge�based measures �Hausdor�
or correlation� su�er much less than the grey�level measures as the background in�
tensity is changed� This indicates that while edge detectors are sensitive to changes
in illumination� they can be considerably less sensitive than the normalized intensity
values� We believe that this suggests a view�based approach to recognition which
makes use of features extracted from views �not simply edges� but multiple types of
features� rather than the views themselvs�

The second overall result seen in Table � is that the Hausdor� matching techniques
have uniformly good performance� whereas the grey�level techniques break down when
the background is changed and when the object is partially occluded� The Hausdor�
measure also performs signi
cantly better than the normalized binary correlation of
the edge maps� The improvement over binary correlation is to be expected� because
the Hausdor� fraction handles small perturbations in the locations of image features
�whereas for binary correlation either feature points are directly superimposed or they
do not match��

In the next set of experiments we considered the e�ects of random edge clutter
on the edge matching techniques� In these experiments we added random straight
edge segments to each image until a speci
ed fraction of the white space was covered
by clutter �see Figure ��� In this case the performance of the Hausdor� matching
techniques degraded as additional clutter was added� but even when �	� of the non�
edge pixels were changed to clutter� the techniques identi
ed the correct object in over
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Directed Normalized
Clutter Hausdor� Correlation

Percentage Measure of Edges
	� ��� ����� ��� �����
�	� ��� ����� ��� �����
�	� ��� ����� ��� �����
�	� ��� ����� ��� �����
�	� ��� ����� ��� �����

Table �� Percentage and number of successful trials as a function of image clutter in
the subspace experiments� The clutter percentage is the fraction of background pixels
that were covered by straight edge segment clutter� Results are given both for the
directed Hausdor� measure and the normalized correlation of the edge maps� The
number of successful trials is out of �		 total trials�

�	� of the trials� The performance of the normalized correlation of the edge maps
degraded much faster� for instance at �	� occlusion the Hausdor��based measure
achieved ��� correct classi
cation whereas the normalized binary correlation was
only ��� correct�

� Image search

In many recognition tasks the positions of objects that may be present in the image
are unknown� Moreover� current segmentation methods cannot reliably determine the
regions of an image that correspond to separate objects� except in simple cases� For
this reason it is crucial to have methods for quickly searching an image for locations
where there may be a match of one of the views in a set of model views� In this section
we describe how to integrate the Hausdor��based subspace matching technique into
an image search engine� When the set of model views is larger than about �		� we
obtain substantial speedup over techniques that separately search for each model view
in an unknown image� These running time comparisons are done using the Hausdor�
matching methods reported in ��� ��
� which have been heavily optimized�

We 
rst consider the simple experiment of using the eigenspace approximation
to the Hausdor� fraction in order to rule out those locations �translations� in an
unknown image that are a poor match in the subspace� Note that the subspace
techniques need not rule out all of the incorrect translations of the model� As long as
the vast majority of the locations and models are eliminated� without eliminating the
correct matches� we can use standard techniques to check the remaining hypotheses�
We rely on the fact that the approximate Hausdor� fraction is nearly always close
to the true fraction as a heuristic to avoid ruling out correct matches� We use a
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threshold fraction that is �	� smaller than that speci
ed by the maximal amount of
occlusion allowed �because the empirical data in Figure � illustrates that the true
fraction is nearly always within �	� of the estimated one��

Figure � shows an example of a cluttered image that was used in these experiments�
In this example� we are attempting to locate the Tylenol box� which had by far the
worst performance of the �	 models in our previous experiments� Let�s consider a
case where we wish to 
nd all translations of one of the �		 views of the �	 models�
The image is ��	 � ��	 pixels and the model views are each �� � �� �as above�� As
there are about �� thousans locations in the image to search� a brute force search for
all �		 models would perform about �� million comparisons of stored model views to
the image�

In order to allow for some mismatch between the model views and the image� we
allow for �	� of the model edges to be unmatched by the image �due to di�erences in
the edge features from lighting� slight viewpoint di�erences� etc�� In order to ensure
that it will be unlikely that we rule out any such translation� we eliminate from
consideration only those model�translation pairs that have �Fm � 	��� �allowing for a
�	� error in the approximation�� In this image� the only model with such a match is
the Tylenol box� which has a true Hausdor� fraction of 	���� at the best match� By
ruling out all locations where the best approximate fraction for all the model views
in the subspace is less than 	���� we are able to eliminate ����� of the translations
in this image� Note that the best approximate match over the entire image� which is
shown in Figure �� is a view of the Tylenol box� with estimated fraction 	���� �which
is quite close to the true fraction of 	������

Figure � shows an example of an image where the model �the Anacin box� was
partially occluded� We want to allow for ��� mismatch in this case �due to the
small amount of occlusion� and thus set the threshold at 	��� The best match shown
in the 
gure yielded a true Hausdor� fraction of 	��	� and the subspace methods
yield an estimated fraction of 	����� When we eliminate all translations that yield a
best estimated fraction below 	��� ����� of the search space is pruned� Experiments
with images like these indicate that the subspace matching techniques can eliminate
most of the possible positions of the model images in a large unknown image without
performing full comparisons of model views against the image at these positions� We
thus expect these techniques to yield a considerable improvement in the speed of
image matching techniques using the Hausdor� fraction�

��� Subspace Matching in an Image Search Engine

The subspace approximation to the Hausdor� fraction can be integrated into a multi�
resolution search strategy to achieve additional speedup over a separate search for each
model view� The basic idea behind multi�resolution strategies for Hausdor� matching
is to exploit the fact that if there is not a good match at a particular location� then
this fact can be used to eliminate other nearby locations from consideration� When
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�a� �b�

�c� �d�

Figure �� A cluttered image that was used to test the image search� �a� The original
image� �b� The edges detected in the image� �c� The best matching view of the
Tylenol box� �d� The edges of the Tylenol box overlaid on the full edge image at the
location of the best match�
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�a� �b�

�c� �d�

Figure �� A cluttered image with some occlusion that was used to test the image
search� �a� The original image� �b� The edges detected in the image� �c� The best
matching view of the Anacin box� �d� The edges of the Anacin box overlaid on the
full edge image at the location of the best match�
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searching under translation� one strategy that can be used is to dilate the image by a
disk with a radius greater than the desired error radius� �� If a model does not match
this highly dilated image at some position� then this position of the model and other
positions close to it can be ruled out as possible matches in an image that is dilated
only by �� To make this concrete� let�s say that we dilate the image with a disk of
radius � � �� If the match of the model to this dilated image at some translation
does not surpass the speci
ed Hausdor� fraction� then no translation within � can
possibly yield a match in the image when dilated by only �� This thus allows us to
rule out all translations that are within � of the current translation�

We can formulate an e�cient search strategy using this observtion by considering
a hierarchical cell decomposition of the search space� The translations are divided
into cells of uniform size �which can recursively be divided into similarly uniform
cells� ��� ��
� We then create a new image dilated by a disk with a radius equal to
the distance from the center of the cell to the cell boundary plus the error allowed�
�� This allows an entire cell to be ruled out or expanded by only examining the
translation at the center of the cell� For each cell that cannot be ruled out at this
level� we divide the cell and apply the process recursively until the 
nal cells consist
of a single translation of the model� which are good matches between a model and the
image according to the subspace approximation� The use of these techniques requires
the computation of several dilations of the image� at di�erent radii� but this is more
than compensated by the reduction in the number of positions of the models that
have to be examined with a brute force search�

Since we are using a subspace approximation to the Hausdor� fraction� we can
only determine whether a match exists up to the error in this approximation� As
above� if we set our threshold for ruling out a cell lower than the actual threshold we
are interested in� we can be reasonably certain that we do not rule out any cells that
we should not� We again use a heuristic of �	� error in the approximation� At the
bottom level of the hierarchy� when we reach cells that contain a single translation
which cannot be ruled out� we can compute the true Hausdor� fraction rather than
using the eigenspace approximation� since there will be few such cells that remain�
and each such cell will only have a small number of possible matching model views�

Figure ��� shows a running time comparison between our implementation of a
hierarchical image search using the subspace Hausdor� matching techniques and a
previous implementation of hierarchical search using the true Hausdor� fraction ��
�
both running on a SPARC��	� The previous system has been heavily optimized in
order to e�ciently rule out regions of the search space that do not need to be con�
sidered� but it does not use the subspace techniques for approximating the Hausdor�
fraction� While the subspace techniques are not as heavily optimized and have addi�
tional overhead associated with mapping subimages of the unknown image into the
subspace� the time required by these techniques grows slowly with number of objects
in the database� As the set of models grows large� the subspace image search method
outperforms the previous techniques by a considerable margin� From the graph it
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Previous methods

Subspace methods

Figure �� The time required by the subspace methods grows far less quickly than pre�
vious Hausdor� matching techniques as the number of model images in the database
grows�

can be seen that for �		 model views the subspace method already has about a �	�
speed advantage over the method which considers each model view independently�
When the model set reaches �		 views� the speed advantage is about �		�� As
noted above� a brute force comparsion of all �		 views would involve about �� million
matches of model views to the image� Therefore the e�ective speed of the subspace
method is about ���			 model view matches per second on a SPARC��	� This speed
is achieved both by pruning the space of possible translations that are considered and
by matching the eigen�coe�cients rather than the complete model views�

While we have only considered searching over possible translations of the object
models in an image� it is also possible to consider other transformations such as
scaling� rotation or a�ne� One method by which this could be done is to include
scaled and rotated versions of the model images in the database ���
� but this method
yields very large catalogs of model images� Alternately� we can explore the space
of such transformation together with the space of possible translations� First� the
transformation space is discretized such that no two adjacent transformations map
any model pixel more than one pixel apart in the image� We can then consider cells
of this transformation space as above in the multi�resolution search strategy� Such
an approach to Hausdor� matching is taken in ���
� without the use of a subspace
approximation�
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	 Summary

We have descried a new subspace method for approximating the Hausdor� fraction
between two binary images� and have demonstrated the use of this method for view�
based recognition� The use of edge features rather than grey�level images yields
a view�based recognition technique that is relatively insensitive to lighting changes
and to unknown backgrounds� The use of the Hausdor� fraction to compare feature
maps provides robustness to clutter and occlusion� The eigenspace approximation to
the Hausdor� fraction allows individual matches to be processed much faster than
previous Hausdor� matching methods� Thus� overall this combination of techniques
results in a system that has both the speed of subspace methods and the robustness
of the Hausdor� measure�

Empirical results presented in the paper indicate that the Hausdor� based eigenspace
method provides a substantial improvement over SSD�based methods� in situations
where the background is unknown or cluttered or objects are partially occluded� In
addition� these experiments suggest that it is possible to detect when the Hausdor�
matching techniques are likely to have selected an incorrect match� based on the dis�
tance between the best match and the next�best match� Finally the paper showed
how the Hausdor� eigenspace method can be used for image search� by integrating it
with a multi�resolution search strategy in order to quickly identify possible instances
of a set of model views at unknown locations in an image� Comparison with prior
methods for performing Hausdor� matching �that did not use subspace techniques�
shows considerable improvement in matching time when a set of a few hundred model
views is used�
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