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Abstract

Today’s complex cyber-physical systems (CPSs) are created using models throughout

the system development life cycle, a process referred to as model-based design (MBD). The

heterogeneity of elements in CPSs requires multiple perspectives and formalisms to explore

the complete design space. Ensuring the consistency of these various system models is an

important part of the integrated MBD approach.

In this thesis, we propose to unify heterogeneous system models through light-weight

representations of their structure and semantics using architectural descriptions. Archi-

tectures are annotated structural representations that describe systems at a high level of

abstraction, allowing designers to determine appropriate assignment of functionality to

elements, and make trade-offs between different quality attributes. There are two funda-

mental shortcomings of current architecture modeling capabilities that limit their potential

to fully address the engineering problems of large-scale, heterogeneous CPSs: (i) limited

vocabulary to represent physical elements and their interactions; and (ii) inadequate ways

to support consistency relations between heterogeneous architecture views of the same

system.

This thesis addresses the first shortcoming through the development of the CPS archi-

tectural style that supports a unified representation of both physical and cyber elements

and their interactions in the same framework. This ability allows the architect to create

a common base architecture (BA) for a CPS that provides a unified point of reference for

multi-domain system models. To address the second shortcoming, the architectural view is

used as the mechanism to represent the architectures of system models as abstractions of

the underlying shared BA. In this context, well-defined mappings between a view and the

BA are used to identify and manage semantically equivalent elements (and their relations)

between each model and the underlying system.

Structural consistency defines when an architectural view conforms to the structural and

semantic constraints imposed by components and connectors in the system’s BA. Such a

notion of consistency ensures that the model elements adhere to the connectivity constraints

and physical laws present between elements in the BA. We define view consistency as the
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existence of an appropriate morphism between the typed graphs of a view and the BA.

Depending on the type of morphism present, two notions of consistency are defined: view

conformance and view completeness.

Our tool framework is implemented in the AcmeStudio architecture design framework,

and consists of a view map language, a graphical view editor, and a set of graph morphism

algorithms for consistency checking. We illustrate the application of our architectural

approach with two case studies: an autonomous quadrotor with heterogeneous legacy

models, and management of model variants in simulation environments for engine control

of vehicles.

vi



Acknowledgments

I thank my family for their love and support throughout my Ph.D., and their unwavering

belief in me. I express my deep gratitude to my advisor, Bruce Krogh, from whom I learnt

the discipline, analytical approach, and clear and precise thinking that now enable me to

face new problems and domains with confidence. Bruce strikes the right balance between

motivating and helping his students, and allowing them to pursue ideas independently.

I am indebted to David Garlan, who has played the role of a co-advisor, helping me to

bridge the gap between the worlds of control engineering and software architecture. It was

the detailed discussions I had with David, throughout my proposal and defence phases,

that clarified many critical parts of the approach in this thesis. I thank Philip Koopman,

who made me understand the practical side of my research, including the hurdles that must

be overcome to have acceptance in the industry. Thank you to Dionisio, who graciously

accepted to be on my committee at the last minute, and who has played an important part

with his valuable advice and feedback on my work. I also thank Bradley Schmerl, who has

been the key resource person I went to anytime I needed help with all things related to

AcmeStudio, ADLs, iThings, or understanding the Aussie accent.

Raj Reddy and Pradeep Khosla have been a source of knowledge, sagacious advice, and

support during my Masters and Ph.D. days at Carnegie Mellon. Because of their presence,

this University has always felt more like family and a home away from home.

Thanks to Paulo, Sabina, and Joya for being the last people standing (sitting) for my

defence and providing me moral support during the presentation. Thanks also to all the

Porter Hall B-ites, especially Luca, Akshay, Rohan, Matthias, Sergio, JY, Jim, and Juhua,

who made life interesting, fun, and bearable during the Ph.D. years. Claire Bauerle and

Carolyn Patterson make Porter Hall always seem welcoming with their helpful and caring

attitudes. Similarly, Elaine and the ECE Grad office make every student’s academic life

seamless and smooth because of their conscientious approach towards our needs.

A special thanks to my best friend Parth, who stood by me an ocean away in India,

reminding me: “Ajinkya, Life is always funny. It’s just that, sometimes we forget to laugh

with it.” Another special thanks to Sujata, who came into my life towards the end of this

vii



long race, but who gave me the strength to complete the final sprint past the finish line.

This work is supported in part by the National Science Foundation (NSF) under grant

nos. CNS0834701 and CNS1035800, and by the Air Force Office of Scientific Research

(AFOSR) under contract no. FA9550-06-1-0312. I am grateful to these sponsors for their

financial support.

viii



Contents

1 Introduction 1

1.1 Why Architectural Consistency of Models . . . . . . . . . . . . . . . . . . 2
1.2 Contributions of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 9

2.1 Architectural Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Physical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Integrated Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Augmenting Architecture with Physical Elements 17

3.1 Component-Connector Architectures . . . . . . . . . . . . . . . . . . . . . 17
3.2 Cyber Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Physical Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Cyber-Physical Interface Style . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Refinement to Specific Physical Domains . . . . . . . . . . . . . . . . . . . 25
3.6 Tool Framework for CPS Architectures . . . . . . . . . . . . . . . . . . . . 28
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Architectural Views 35

4.1 Formalizing Architecture Views . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Model-to-View Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 View-to-BA Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Tool Framework for Architecture View Maps . . . . . . . . . . . . . . . . . 49
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Consistency of Architectural Views 57

5.1 Architectures as Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Structural View Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Applicability to System Design . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Graph Algorithms for View Consistency . . . . . . . . . . . . . . . . . . . 67
5.5 MCS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5.2 Search Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

ix



5.6.1 Calculating Edge Density . . . . . . . . . . . . . . . . . . . . . . . 75
5.6.2 MCS Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6.3 Monomorphism Performance . . . . . . . . . . . . . . . . . . . . . . 78

5.7 Tool Framework for View Consistency . . . . . . . . . . . . . . . . . . . . 81
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Case Study I : STARMAC 85

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Base Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Architecture Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.1 Software View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.2 Control View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.3 Hardware View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.4 Physical View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 View Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4.1 Software View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4.2 Control View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.4.3 Hardware View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4.4 Physical View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Case Study II : XILS 129

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2 Limitations of Current XILS Environments . . . . . . . . . . . . . . . . . . 131
7.3 Architectural Approach to XILS Testing . . . . . . . . . . . . . . . . . . . 134
7.4 ThermoFluid Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.5 Base Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.5.1 Engine Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.5.2 Controller Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.5.3 Standardized Input-Output Interface . . . . . . . . . . . . . . . . . 142

7.6 MILS View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.7 SILS View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.8 HILS View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8 Conclusions 155

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Bibliography 163

x



List of Figures

1.1 Benefits of early discovery of faults in system design cycle [1]. . . . . . . . 3

3.1 Elements of component-connector architectures [2]. . . . . . . . . . . . . . 18
3.2 Physical component with ports containing effort and flow variables. . . . . 21
3.3 Physical connectors for the electrical and mechanical domains. . . . . . . . 26
3.4 Electro-mechanical actuator combining components from electrical and me-

chanical domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Acme specification for physical port and component type . . . . . . . . . . 29
3.6 Acme specification for the mechanical and electrical element types . . . . . 31
3.7 Creating the BA of quadrotor in AcmeStudio. . . . . . . . . . . . . . . . . 33

4.1 Relationship between models and BA through architectural views. . . . . . 36
4.2 Creating the control view from a Simulink model. . . . . . . . . . . . . . . 42
4.3 Mapping between the control view and BA for the quadrotor. . . . . . . . 44
4.4 Invalid many-to-many map between a view and BA. . . . . . . . . . . . . . 46
4.5 Encapsulation of components in a system. . . . . . . . . . . . . . . . . . . 47
4.6 Encapsulation of connectors in a system. . . . . . . . . . . . . . . . . . . . 47
4.7 Invalid encapsulation of elements in a system. . . . . . . . . . . . . . . . . 48
4.8 Creating a control view in AcmeStudio. . . . . . . . . . . . . . . . . . . . . 50
4.9 Structure of an Acme map type specification. . . . . . . . . . . . . . . . . 52
4.10 Portion of a control view map type file with component map and port map

types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.11 Portion of the map file for the quadrotor control view. . . . . . . . . . . . . 54
4.12 Creation of a plant map in AcmeStudio between the control view and BA

of the quadrotor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Example of an architecture graph. . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Hierarchical consistency checking between view and BA of quadrotor. . . . 64
5.3 Search space of MCS algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 MCS performance with varying size of common subgraph. . . . . . . . . . 77
5.5 MCS performance with varying size of pre-mapped nodes. . . . . . . . . . 79
5.6 Monomorphism performance with varying size of common subgraph. . . . . 80
5.7 Running consistency checks with the AcmeStudio view editor. . . . . . . . 82
5.8 Displaying consistent mappings with the AcmeStudio view editor. . . . . . 84

6.1 The STARMAC quadrotor [3]. . . . . . . . . . . . . . . . . . . . . . . . . . 86

xi



6.2 Creating the base architecture of the STARMAC. . . . . . . . . . . . . . . 88
6.3 Acme representation of the Flyer component. . . . . . . . . . . . . . . . . 89
6.4 Acme representation of the Starmac component. . . . . . . . . . . . . . . . 90
6.5 Acme representation of the VehicleFrame component. . . . . . . . . . . . . 92
6.6 Acme representation of the Act component. . . . . . . . . . . . . . . . . . 92
6.7 Creating software view from quadrotor FSP model. . . . . . . . . . . . . . 95
6.8 Mapping between software view and BA of quadrotor. . . . . . . . . . . . . 97
6.9 Creating control view from Stanford Simulink model. . . . . . . . . . . . . 99
6.10 Mapping between control view for SM-1 and BA of quadrotor. . . . . . . . 100
6.11 Creating control view from CMU Simulink model. . . . . . . . . . . . . . . 101
6.12 Mapping between control view for SM-2 and BA of quadrotor. . . . . . . . 102
6.13 Quadrotor hardware architecture [3]. . . . . . . . . . . . . . . . . . . . . . 104
6.14 Creating the hardware view from an AADL model. . . . . . . . . . . . . . 105
6.15 Mapping between hardware view and BA of quadrotor. . . . . . . . . . . . 107
6.16 Free-body diagram of quadrotor dynamics. . . . . . . . . . . . . . . . . . . 108
6.17 Creation of physical view from Modelica model of quadrotor dynamics. . . 110
6.18 Mapping between physical view and BA of quadrotor. . . . . . . . . . . . . 111
6.19 Inconsistent elements between software view and BA of quadrotor. . . . . . 113
6.20 Successful conformance check between software view and BA of quadrotor. 114
6.21 Inconsistent elements between control view for SM-1 and BA of quadrotor. 116
6.22 Inconsistency in control view for SM-1 traced back to Simulink model. . . . 117
6.23 Completeness check between control view for SM-1 and BA of quadrotor. . 119
6.24 Completeness check between control view for SM-2 and BA of quadrotor. . 122
6.25 Successful conformance check between hardware view and BA of quadrotor. 125
6.26 Successful conformance check between physical view and BA of quadrotor. 126

7.1 XILS scenarios for controller-plant testing. . . . . . . . . . . . . . . . . . . 132
7.2 Base Architecture for the engine control system. . . . . . . . . . . . . . . . 138
7.3 MILS view of the engine control system. . . . . . . . . . . . . . . . . . . . 144
7.4 Encapsulation of crank shaft subsystem in MILS view. . . . . . . . . . . . 146
7.5 SILS view of the engine control system. . . . . . . . . . . . . . . . . . . . . 147
7.6 Encapsulation of intake system in SILS view. . . . . . . . . . . . . . . . . . 149
7.7 HILS view of the engine control system. . . . . . . . . . . . . . . . . . . . 150
7.8 Encapsulation of air estimation system in HILS view. . . . . . . . . . . . . 152

xii



List of Tables

3.1 Effort and flow variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Rules for mapping between DSML elements and View elements. . . . . . . 39
4.2 Architecture Styles for CPS Design Concerns. . . . . . . . . . . . . . . . . 40
4.3 Rules for mapping between components in the CPS style and different views. 45

6.1 Models and Views created for STARMAC quadrotor. . . . . . . . . . . . . 109
6.2 Consistency analysis for STARMAC quadrotor. . . . . . . . . . . . . . . . 127

7.1 Elements of Thermo-Fluid family. . . . . . . . . . . . . . . . . . . . . . . . 139

xiii



xiv



Chapter 1

Introduction

The term cyber-physical system (CPS) refers to the tight conjoining of and coordination

between computational and physical resources [4]. Today’s complex CPSs are created using

models throughout the system development life cycle, a process referred to as model-based

design (MBD) [5]. Models allow designers from different disciplines to share knowledge,

facilitate design comprehension, and assess system-level trade-offs. Each representation

highlights certain features and occludes others to make analysis tractable and to focus on

particular performance attributes. Typically a particular modeling formalism represents

either the cyber or the physical elements well, but not both. For example, differential

equation models represent physical processes well, but do not represent naturally the details

of computation or data communication. On the other hand, discrete formalisms such as

process algebras and automata are well suited for representing concurrent behavior and

control flow, but are not particularly useful for modeling continuous phenomena in the

physical world. Thus, the heterogeneity of elements in CPSs requires multiple perspectives

and formalisms to explore the complete design space. Ensuring the consistency of these

various system models is an important part of the integrated MBD approach.

There is a need for a representation at some level that encompasses the complete sys-

tem and is not prejudiced towards the cyber or physical side. Such a representation would

serve as a unified point of reference for the variety of more domain-specific models and
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also as a framework for exploring design trade-offs across the cyber-physical boundary.

We believe that the architectural representation of a system provides the right level of

abstraction to define relationships between the various heterogeneous system models. Ar-

chitectures are annotated structural representations that describe systems at a high level

of abstraction, allowing designers to determine appropriate assignment of functionality to

elements, evaluate the compatibility of the parts, and make trade-offs between different

quality attributes such as performance, reliability, and maintainability. The approach in

this thesis is to reason about the consistency of system models at the architectural level,

rather than developing a universal modeling language or a meta-modeling framework for

translating models between different formalisms.

1.1 Why Architectural Consistency of Models

It is an established fact that detecting defects early in the project life cycle can have huge

cost and time savings. A number of studies have shown that current development processes

allow 70% of faults to be introduced early in the design, while 80% of them are not caught

until integration, testing, or later with a repair cost of 16 times or higher [6, 7]. These

findings are summarized in Fig. 1.1 (taken from [1]) which illustrates the percentages for

fault introduction, discovery, and cost factors for fault removal at various stages of the

design cycle. If we can discover a reasonable percentage of these late system-level faults

earlier in the development process, it is reasonable to expect considerable cost savings.

A return on investment analysis that focuses on cost avoidance due to early detection of

design defects by using the architecture-centric SAVI methodology predicts a nominal cost

reduction for a 27 Million Source Lines Of Code (MSLOC) avionics system as $2,391M,

while the most conservative estimate is $717M for the same system [8]. Hence, this thesis

focuses on checking model consistency at the architectural level because of the potential

of architectural analysis to expose design flaws early in the project life cycle [1].

Industrial practice has shown that independently developed models in a typical MBD

2



Figure 1.1: Benefits of early discovery of faults in system design cycle [1].
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approach tend to result in multiple versions of the same system. We illustrate some types

of inconsistencies that can arise in different models of the same system through two case

studies. The first one describes how inconsistent assumptions about the system structure

can be made in different models for an avionics system (details in Chap. 6). The second one

describes the necessity of maintaining consistent architecture between variants of controller

and plant models for testing of engine controllers (details in Chap. 7).

Mismatched assumptions in different models due to multiple system versions are the

main source of the introduction of faults during the design phase [9]. The lack of a unifying

framework to compare models early and throughout the life cycle leads to faults being

detected late, causing a large rise in costs for fault removal. Missing mechanisms to enforce

consistency of models limits the ability to use the results of model-level analyses to derive

system-level properties. Hence, there is a need for an architecture-centric approach that

ensures that analytical models are consistent with each other and the evolving architecture

throughout the design process.

Based on this discussion, we summarize the areas of system design that are affected by

the lack of an architectural approach for CPSs with heterogeneous models:

• The number of system-level faults introduced during the design phase.

• The number of system-level faults detected during the design phase.

• The cost of fault removal during the complete life cycle.

• Limited ability to use analyses from different models to derive system-level properties

because of multiple versions of the underlying system.

To address these problems, the approach in this thesis is to unify heterogeneous system

models through light-weight representations of their structure and semantics using archi-

tectural descriptions.
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1.2 Contributions of Thesis

There are two fundamental shortcomings of current architecture modeling capabilities that

limit their potential to fully address the engineering problems of large-scale, heterogeneous

CPSs: (i) limited vocabulary to represent physical elements and their interactions; and (ii)

inadequate ways to support consistency relations between heterogeneous architecture views

of the same system. The first limitation prevents the creation of a complete architectural

representation of the system that includes the description of the physical plant(s) being

controlled by the embedded controller software. The second limitation makes it difficult

to share and maintain consistent information between system models that are created and

analyzed in different design concerns.

This thesis addresses the first shortcoming through the development of an architectural

style that serves as a common representation of the complete system, and the second

shortcoming through the abstraction of architectural views to compare the structure and

semantics of corresponding heterogeneous models to the CPS architecture. In particular,

we make the following contributions:

1. Extending architecture to represent continuous dynamical physical ele-

ments and their coupling. We have created a CPS architectural style that sup-

ports a unified representation of both physical and cyber elements and their interac-

tions in the same architectural framework. This ability allows the architect to create

a common base architecture (BA) for a CPS that provides a unified point of reference

for multi-domain system models.

2. Using architecture as the common system representation to relate the

structure and semantics of heterogeneous models. The architectural view is

used as the mechanism to represent the architectures of system models as abstractions

and refinements of the underlying shared BA. In this context, well-defined mappings

between a view and the BA are used to identify and manage semantically equivalent
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elements (and their relations) between each model and the underlying system.

3. Defining and evaluating consistency between architectural views and the

system’s BA. View consistency defines when an architectural view conforms to the

structural and semantic constraints imposed by components and connectors in the

system’s BA. Such a notion of consistency ensures that the model elements adhere to

the connectivity constraints and physical laws present between elements in the BA.

This guarantees that the models used for design and evaluation are not based on

assumptions about the system’s design that are inconsistent with the actual system

as reflected in the BA. We define view consistency as the existence of an appropriate

morphism between the typed graphs of a view and the BA. Depending on the type

of morphism present, two notions of consistency are defined: view conformance and

view completeness.

4. Tools for automated consistency checking of architectural views. The first

tool is a mechanism (Acme Maps) to define the types of maps possible between each

view type and the BA as well as map instances between the elements of a view and the

BA . Acme Maps is an extension of the core Acme Architecture Description Language

(ADL) that allows the creation and type checking of view relations and element

correspondences. The second tool is a graphical editor to compare views visually,

define element correspondences (including encapsulations) that must be maintained,

and display the results of consistency checking to the user. The third tool is a set

of graph morphism algorithms that find the largest set of semantically consistent

element mappings between a view and the BA, based on the pre-mapped elements

and the type compatibility defined by the user. All tools are implemented as plugins

in the AcmeStudio architecture design framework [10], so that they can be extended

easily for future enhancements.

5. Evaluation of multi-view architecture framework. We illustrate the applica-
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tion of our architectural approach with two case studies. The first one demonstrates

how heterogeneous models of an avionics system (the STARMAC quadrotor) can be

created as views of the baseline architecture. The choice of the modeling domains is

motivated by the analysis and verification activities typically found in an embedded

control system design process. We apply the consistency check to each view and

highlight the mismatches that are detected between the models and the actual im-

plemented system. The second case study illustrates the usefulness of architectural

views to manage model variants for X-In-the-Loop Simulation (XILS) environments

for engine control of vehicles. We show how each simulation scenario can be captured

as a view of the system under test, and how view consistency can help the engineer in

checking consistency of controller-plant models between various XILS environments.

1.3 Organization of Thesis

The next chapter surveys the related work in the areas of multiple architectural views,

physical system modeling, and MBD toolchains. Chapter 3 describes how we extend ar-

chitecture models to incorporate physical elements and laws, using an approach based on

the semantics of acausal interconnection of conjugate physical variables. In Chapter 4,

architectural views for heterogeneous models are formally introduced, along with their re-

lations to the model and BA. Chapter 5 defines the notion of view consistency, discusses

its application to system design, and formulates consistency checking as a typed graph

morphism problem. In Chapter 6, the first of two case studies is presented to illustrate the

application of our approach to real-world systems. The study focuses on the consistency of

heterogeneous views of a quadrotor vehicle. The second case study, presented in Chapter

7, describes the usefulness of architectural views to manage model variants for XILS envi-

ronments for engine control of vehicles. We present conclusions of this thesis and discuss

future work in Chapter 8.
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Chapter 2

Related Work

Multiple efforts have focused on supporting multi-view, model-based system development.

In this chapter, we give a brief outline of the development of this work in the areas of

architectural approaches, physical modeling tools, and integrated frameworks.

2.1 Architectural Approaches

An architectural description consists of multiple, possibly heterogeneous architectural views

[11]. In the architecture community, there is a common understanding of what a view is,

with several seminal works defining this concept. In [12] the need for views is outlined,

while in [13] a view model with a fixed number of commonly used heterogeneous views is

introduced. Multiple views and their formal descriptions form the basis for architecture

documentation in the book “Documenting Software Architectures: Views and Beyond”

(DSA) [11], and in [14]. The concepts of architectural description and architectural view

have been standardized by the ANSI/IEEE 1471 standard [15], which is identical in con-

tent to the ISO/IEC 42010 standard [16]. Unfortunately, existing methods do not formally

define the relationships between views. This represents a problem for architectural model-

ing, since it is critical to understand how design decisions or analyses in one view impact

those of another.

The ISO 42010 conceptual model introduces and relates concepts such as architectural
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description, concern, viewpoint, view, and model. According to the standard, a viewpoint

is a way of looking at an architecture; the view is the result of looking at a specific system’s

architecture in this way. The standard also incorporates the concept of a viewtype (intro-

duced in DSA) which “defines the element types and relation types used to describe the

architecture of a software system from a particular perspective”. The ISO 42010 standard

defines a single view for each viewpoint, and multiple architectural models contained in

each view. A view relation in the ISO 42010 standard is called a correspondence with the

semantics defined by an associated correspondence type.

We can relate our architectural approach to the ISO 42010 model as follows. We use

a component-connector viewtype to describe the run-time characteristics of the complete

system, with multiple viewpoints contained in it. The viewpoints are defined by the differ-

ent design concerns present in a typical CPS design flow. Each viewpoint has an associated

architectural style, which defines the element types, semantics, and constraints that are

relevant for the design concern [17]. For each viewpoint, there are one or more views

that relate system models created for that design concern to the system’s BA. The BA is

also considered to be a view, created in a viewpoint with the CPS style as the associated

architectural style.

A detailed survey together with a taxonomy and classification of view relation mecha-

nisms is found in [18]. This taxonomy has been used as a baseline for classifying correspon-

dence types in ISO 42010. Based on this taxonomy, relations can be of the intra-model or

inter-model type. Intra-model relations are relations between the same type of architectural

models. Since our view relations define correspondences between two component-connector

architectures, they are intra-model relations. The level of detail that our relations support

is fine-grained, since structural correspondences down to the level of component ports and

semantic constraints over properties associated with elements can be specified using these

view relations. According to the taxonomy, we use direct references for individual element
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correspondences, tuples for element encapsulations, and an expression language in the form

of first-order predicates to define constraints over element properties. The current usage

of our view relations falls under the consistency checking category.

Some ADLs have mechanisms for mapping between specific views. For example, Meta-

H provides a mechanism for mapping between software and hardware views [19], while

SADL allows one to characterize mappings between architecture refinement levels [20].

Each of these capabilities is tied to the semantics of particular kinds of views and to the

semantics of a particular ADL. In contrast, our approach considers the general problem of

structural mapping between architectural views and introduces a mechanism for creating

view relations between sets of elements.

UML is a standardized general-purpose modeling language for object-oriented software

engineering [21]. The language is managed by the Object Management Group and has

become the industry standard for modeling software-intensive systems. UML includes a

set of diagrams to create visual models of the structural and behavioral aspects of software

systems. The semantics for UML diagrams is ambiguous and there is no formal notion of

relations between different views of a system. UML is used to describe the software aspects

of systems only, and has no support for representing physical dynamics.

SysML is a UML 2.0 profile, specialized for systems engineering applications [22].

SysML has additional diagrams (e.g. parametric, requirement) which allow modeling of

hardware, software, information, processes, personnel, and facilities. The aim of SysML

is to be a general language for systems architectures, but the semantics for consistency

between views is not defined formally. Additionally, there is currently no support for

describing physical architectures, although work on integrating dynamical equations for

elements is ongoing (described in Sec. 2.2).

AADL (Architecture Analysis and Design Language) is an international standard for

predictable model-based engineering of real-time and embedded computer systems [23].
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AADL offers a set of predefined component categories to represent real-time systems and

it is capable of describing functional component interfaces like data and control flows, as

well as non-functional aspects of components like timing properties. Preliminary work

has been done on integrating aspect-oriented programming constructs into AADL [24].

Architectural descriptions can be extended with annexes, such as the behavior annex that

allows a state machine description of component implementations. However, AADL does

not support architectural representation of physical domain entities (except as generic

‘device’ components), nor does it address how heterogeneous views can reconciled.

Egyed et al. [25] exploit redundancies between different types of UML diagrams to

ensure consistency between the views. The approach is limited to UML viewtypes and

there is no mechanism for incorporating other system viewtypes. Our approach has support

for the same types of view relations between component-connector architecture models, in

addition to support for physical element descriptions.

Boucké et al. [26] focus on composing several structural views in the xADL language and

define three view relations as part of the approach. The unification and mapping relations

in their approach correspond exactly to our one-to-one and encapsulation relations. In

contrast to our approach, there is no notion of consistency with the underlying system, since

composition is done only between views. In addition, depending on which xADL structural

views are being composed, the view relations do not deal with any types associated with

the architectural elements. This is different from our approach, where element types play

a central role in defining element mappings between views.

Radjenovic et al. [27] present an approach called AIM (Architectural Information Mod-

elling) for view consistency. The AIM framework uses a relational database as the core data

model for all views and is comprised of three layers - data, rules and views. The relations

between different views are defined in the rules layer and can be constraint-based or struc-

tural. The structural relations in AIM are similar to our view relations. One limitation
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of the approach is the need to translate any modeling language into an AIM-compatible

language for view comparison. In addition, AIM focuses on software-centric views only

and has no concept of physical architectures or models.

The System Architecture Virtual Integration (SAVI) project of the Aerospace Vehicle

Systems Institute is an architecture-centric approach to the analysis of virtually integrated

system models with respect to multiple operational quality attributes such as performance,

safety, and reliability [1]. SAVI aims to use a multi-aspect reference architecture model as

the single source of truth, a model bus for consistent model interchange between repositories

and tools, and a component-based framework. Currently SAVI is the second phase of

development, hence the representations for the reference architecture and model bus are

still not formalized, to the best of our knowledge.

Our approach aligns closely with the SAVI framework. The concept of a base archi-

tecture in our approach parallels the reference architecture model, while the concept of

an architectural view for a model is similar to the “model bus” and model translators in

SAVI. Whereas our approach currently focuses on component-connector architecture de-

scriptions, the long-term goal of SAVI is to be able to incorporate different architectural

viewpoints and languages into the same framework.

NAOMI is an experimental platform for enabling multiple heterogeneous models to

work together [28]. In NAOMI, a model is defined in terms of the set of input and output

attributes that it shares with the system. NAOMI checks consistency for a set of models

based on: (1) whether all attributes are updated, (2) if the current values of all attributes

do not violate any model-specific constraints, and (3) whether the modification times of all

models are earlier than the modification times of their output attributes. In contrast to our

approach, there is no concept of an underlying system architecture model in NAOMI. As a

result, NAOMI does not define what it means for each model to be individually consistent

with the system, nor is there is a mechanism to define physical architectural elements.
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2.2 Physical Modeling

There are also a number of tools for modeling and simulating physical systems. In contrast

to the signal flow semantics used in control system modeling, compositions of physical sys-

tems are most naturally modeled using acausal connections, which are symmetric reaction

relations for which the directionality of interaction flows is determined by the internal state

of the interconnected components.

Modelica is a popular object-oriented, open-standard language for constructing component-

based models of physical systems [29]. MapleSim is a tool for developing models of physical

systems and generating efficient code for real-time simulations, particularly for hardware-

in-the-loop testing [30]. MathWorks has introduced Simscape, a MATLAB-based modeling

language and Simulink blockset that makes it possible to integrate physical models with

control-oriented simulations [31]. All these languages are created for detailed simulations

of the physical plant, and have minimal support for formal architectural representations of

the system. They do not have mechanisms to formally analyze the software aspects of the

design, including thread scheduling, timing, and concurrency checking.

The ModelicaML profile is an attempt to integrate UML and Modelica for modeling

and simulation of system requirements and design [32]. Similar work has been done for

UML and Simulink [33]. There is an ongoing effort to integrate Modelica with SysML for

physical domain modeling [34]. In all these approaches, there does not exist an easy way

to incorporate physical dynamical models into the overall framework. For example, SysML

flow ports do not have a well-defined semantics to model flows of physical quantities (e.g.,

energy or torque). Defining explicit behavior for flow transmission is up to the modeler.

In contrast, the physical entities in our framework are based on the behavioral approach

[35], where the semantics of component behavior and interconnections is well defined in

terms of conjugate variables for each physical domain.
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2.3 Integrated Frameworks

There are tool platforms that offer an integrated solution based on the MBD methodology.

These tools have support for hardware/software co-design, model management and model

translation between specific domains, and generation of component-level or system-level

code for targeted application platforms.

Ptolemy II is a tool that enables the hierarchical integration of multiple “models of

computation” in a single system, based on an actor-oriented design [36]. Actors are software

or hardware modules that communicate with each other through timed events [37]. Even

though Ptolemy II supports hierarchy and incorporation of multiple formalisms at the

detailed simulation level, it is not possible to define architectural styles or high-level design

tradeoffs. In addition, there is no support for acausal, equation-based modeling of physical

systems, since the underlying formalism is event-based communication.

The Vanderbilt model-based prototyping toolchain provides an integrated framework

for embedded control system design [38]. It provides support for multiple views, such as

functional Simulink/Stateflow models, software architecture, and hardware platform mod-

eling along with deployment. The views are created using meta-models of the associated

viewpoints and model transformations for translating between specific pairs of views. The

toolchain’s ESMoL language has a time-triggered semantics, which restricts the functional

view to Simulink blocks that can only execute periodically. ESMoL does not support the

full semantics of Simulink. In ESMoL the execution of Simulink data flow blocks is re-

stricted to periodic discrete time, consistent with the underlying time-triggered platform.

This also restricts the type and configuration of blocks that may be used in a design. There

is currently no support for additional views (e.g., physical or verification models), nor a

notion of consistency between additional system views. In contrast, our work focuses on

architecture-level view comparison, not on meta-modeling or model transformations.

SysWeaver [39] is a model-based development tool that includes a flexible code gen-
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eration scheme for distributed real-time systems. The complete toolchain requires a sim-

ulation tool (Simulink) and its code generator (MATLAB Embedded Coder), along with

SysWeaver. The functional aspects of the system are specified in Simulink and translated

into a SysWeaver model to be enhanced with timing information, the target hardware

model and its communication dependencies. The translation from Simulink is not com-

pletely automated if closed-loop controllers are present. SysWeaver uses the concepts of

semantic dimensions for the separation of the functional and para-functional aspects of

the system, and couplers to enable the hierarchical decomposition of these aspects. Since

the focus of the tool is on the synthesis of a fully deployable system, there is currently no

mechanism for relating models from different formalisms. In particular, there is no support

for a physical plant modeling view.

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standardized

automotive software architecture framework, jointly developed by automobile manufac-

turers, suppliers and tool developers. It defines a component-based layered architecture

that contains abstractions for the ECU, actuators, and sensors of the vehicle, as well as

descriptions of the hardware platform and network topology. The focus of AUTOSAR is

on the description and generation of in-vehicle software. Hence, there is limited support

for physical modeling of the plant or new architectural viewpoints that are not part of the

existing standard.
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Chapter 3

Augmenting Architecture with Physical Ele-

ments

This chapter describes elements of an architectural style that can serve as a base representa-

tion for the CPS domain. The challenge in defining an architectural style for cyber-physical

systems is to strike a balance between specificity and generality. Our goal is to provide

a representative set of components and connectors that can serve as the foundation for

application-specific styles in targeted frameworks. Towards this end, we define three re-

lated architectural styles pertaining to the cyber domain, the physical domain, and their

interconnection.

3.1 Component-Connector Architectures

Although there is considerable diversity in the capabilities of different ADLs, all of them

have support for architectural descriptions based on a component-connector representation

of systems [40]. In this thesis, the term architecture is synonymous with a component-

connector architecture, since we focus on analyzing properties and behavior of elements

of the run-time system. We use Acme [2] as the ADL to create all our architectural

models, because of its built-in support for the following features of component-connector

architectures:
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Figure 3.1: Elements of component-connector architectures [2].

• Components : These represent the primary computational elements and data stores

of a system. Intuitively, they correspond to the boxes in box-and-line descriptions

of system architectures. Typical examples of components include clients, servers,

filters, and databases. A component can have multiple interfaces, each of which is

termed a port. A port identifies a point of interaction between the component and its

environment, and can represent an interface as simple as a single procedure signature.

Alternatively, a port can define a more complex interface, such as a collection of

procedure calls that must be invoked in a specific order.

• Connectors : These represent interactions among components. Connectors are used

to describe the communication and coordination activities among the connected com-

ponents. Intuitively, they correspond to the lines in box-and-line descriptions. Ex-

amples include simple forms of interaction, such as pipes, procedure call, and event

broadcast. But connectors may also represent more complex interactions, such as a

client-server protocol or a SQL link between a database and an application. Con-

nectors also can have multiple interfaces, each of which is termed a role. Each role

defines a participant of the interaction represented by the connector. Binary connec-
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tors have two roles such as the reading and writing roles of a pipe, or the sender and

receiver roles of a message passing connector. Other kinds of connectors may have

more than two roles. For example, an event broadcast connector might have a single

event-announcer role and an arbitrary number of event-receiver roles

• Systems : A system (or configuration) is a graph that defines how a set of components

are connected to each other via connectors. The graph is defined by associating com-

ponent ports with the connector roles in which they participate. For example, ports

of filter components are associated with roles of the pipe connectors through which

they read and write streams of data. Systems may also be hierarchical: components

and connectors may represent subsystems that have internal architectures.

• Properties : In addition to defining high-level structure, Acme supports the annota-

tion of architectural elements with an arbitrary list of properties. Properties contain

information about a system or its parts that allows analysis about overall behav-

ior (both functional and para-functional). For example, for an architecture whose

components represent periodic tasks, properties would define the period, priority,

and CPU usage of each component. Properties of connectors would include latency,

throughput, reliability, and protocol of interaction.

• Constraints : These represent claims about an architectural design that should remain

true as it evolves over time. Typical constraints include restrictions on allowable

values of properties, topology, and design vocabulary. For example, an architecture

might constrain its design so that the number of clients of a particular server is less

than some maximum value.

• Styles : represent families of architectures for a particular domain. An architectural

style typically defines a vocabulary of design element types and rules for compos-

ing them [17]. Examples include data architectures based on pipes and filters, and

the NASA Mission Data System style to model space rovers for Mars [41, 42]. An
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architectural style in Acme is called a family.

We use these architectural concepts to define a set of representative styles for the

cyber domain, physical domain, and the interfaces between these domains in the following

sections. Together, these three styles form the complete CPS architectural style.

3.2 Cyber Style

The cyber side of CPSs is the traditional domain for ADLs and provides support for

standard real-time monitoring and control applications. The cyber components are:

• Computation: These components represent the implemented software functionality

provided by the system. They include components that perform filtering, state esti-

mation, and control.

• Data Stores : These components store data as an interface between the computational

elements in the system. In simple systems, these could be just passive memory blocks.

In complex systems there could be further details specifying what components can

read and write to the data store components.

• IO Interfaces : These components perform the computations and timing functions

required to interface with hardware devices, including software for user interfaces.

This would include, for example, device drivers that process raw sensor data for

higher-level components.

In addition to the computational aspects of the software, it is important to represent the

communication elements in the system to reason about timing between software elements

and how this affects the physical behavior of the complete system. We represent the

following major types of cyber connectors:

• Send-Receive: This represents a one-to-one data communication between two com-

putational or IO components. The communication mechanism could be event-based,

synchronous or asynchronous, and is specified by the type of role defined for each
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Figure 3.2: Physical component with ports containing effort and flow variables.

connector.

• Publish-subscribe: This represents data communication between a set of computa-

tional components or IO interfaces, in which one component generates data that is

used by the other connected components.

Each connector type can be refined further, based on the communication semantics of the

interacting components, as described in [43]. For example, the send-receive connector could

be elaborated to define communication between CORBA components by annotating the

roles with the interaction protocol for CORBA.

3.3 Physical Style

There are several challenges in developing a suitable architectural representation of the

physical side of cyber-physical systems. Architectural models should not have all the details

required for a full simulation of the physical dynamics. At the same time, the architectural
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components and connectors should correspond to intuitive notions of physical dynamics in

the same way cyber components and connectors correspond to elements of computational

systems. To achieve this balance, we introduce components and connectors based on a be-

havioral view of open and interconnected physical systems, as defined by J.C Willems [35].

This provides a domain-independent perspective, including the ability to represent inter-

actions between different physical domains and the possibility to specify system properties

such as power flow and energy conservation laws. This is similar to the perspectives taken

in bond graphs [44] and Lagrangian mechanics [45], where power-conjugated variables (ef-

fort and flow) describe energy flows between sources, storage elements, and dissipative

elements. The behavioral perspective is more general than bond graphs however, and

imposes more than just energy-based descriptions of components and their interactions.

In the behavioral approach, laws that govern physical phenomena impose relations on a

component’s variables, while interconnection means that variables are shared between the

connected components i.e component behaviors are coupled via their common variables.

The physical style is used to model architectures for multi-domain physical systems. A

physical component is specified by its type, and its behavior, as shown in Fig. 3.2. The type

identifies the physical domain that the component represents. Each physical port defines

the effort and flow variables with which the component interacts with the environment.

The component’s behavior defines the relationships between its port variables (and any

internal state variables, if defined). In other words, it is a specification of what time

trajectories are possible for the set of port variables. A behavior can be described, for

example, as the solution set of a differential equation or through a transfer function. The

behavior is annotated as a component property.

A physical connector (along with its roles) defines the relationship between the effort

and flow pairs of all the components that are attached to the connector. When two or more

components from the physical style are connected, the implication is that their behaviors
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are coupled through their shared port variables. If the ports obey certain properties, then

the product of the port’s power conjugate variable pair equals generalized power in the

physical domain of interest [35, p. 68-69]. In such cases, power flowing into a component

is defined as positive. This is analogous to positive mechanical work being defined as work

done by the applied force on the component. The effort and flow variables for commonly

encountered physical domains are given in Table 3.1.

Table 3.1: Effort and flow variables.

Domain Effort Flow

Electrical Voltage [V] Current[A]

Translational Mechanical Position [m] Force [N]

Rotational Mechanical Angular Position [rad ] Torque [N-m]

Thermal Temperature [◦ C] Heat Flow [watt]

Fluid Pressure [Pa] Mass Flow [kg/s]

The physical component types are:

• Source: These components deliver constant effort (or flow) to other components,

regardless of the load present. This is analogous to an ideal voltage (or current)

source. Because of the defined direction of flow variables, such components will have

negative power flow as long as they are supplying power to other components.

• Sink : These components can consume an arbitrary amount of flow from other compo-

nents, while maintaining a constant effort. This is analogous to an electrical ground

or a large external volume of air that can maintain its temperature, regardless of

the heat flowing into it. Because of the defined direction of flow variables, such

components will have positive power flow.

• Energy storage: These components model dynamic elements or subsystems that store

energy, such as components that have capacitive and inductive properties in electri-
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cal systems. The set of ports on these components allow power transfer to other

subsystems.

• Dissipative: These components model physical elements that lose energy over time.

They correspond to resistors in electrical circuits and dampers or friction losses in

mechanical systems. Power losses can take place in complex ways within physical

components. The semantics of a dissipative component is completely defined by its

energy loss function, which describes the relationship between the effort and flow

variables of all its connected ports.

• Physical transducer : These components represent power transfer or energy conversion

between different types of physical domains. These components are particularly use-

ful in modeling multi-domain systems with, for example, electromechanical devices

that transform energy between the electrical and mechanical domains. Transduc-

ers contain at least one port from each of the physical domains they interconnect.

Transducers can also represent transformations between system variables of the same

physical domain, such as coordinate frame transformations between two rigid bodies

in the mechanical domain.

• Subsystem: These components model physical elements with complex behavior, that

cannot be not modeled by source, storage, dissipative, or transducer components

alone. Subsystems can also be used to encapsulate primitive components and con-

nectors to create hierarchies of physical elements.

The physical connector types are:

• Physical coupling : The constraints on the effort and flow variables of the component

ports coupled with this connector are: (1) the effort variables of all connected ports

are equal; and (2) the sum of the flow variables of all connected ports is zero. This

connector represents the application of Kirchhoff’s laws in the electrical domain, and

force/moment balance laws in the mechanical domain, for coupled components.
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• Physical signal : These connectors indicate effort and/or flow variables that are de-

termined by one physical component and used as an input in another physical com-

ponent. Thus, these connectors are directional and correspond to connections in

traditional block diagrams (e.g., signal lines in Simulink).

3.4 Cyber-Physical Interface Style

We define the Cyber-Physical Interface (CPI) style to bridge between the cyber and the

physical worlds. The elements represent connections between computational and physical

systems, as well as transformation of information between the two domains:

• CPI components : cyber-to-physical (C2P) and physical-to-cyber (P2C) transducers;

• CPI connectors : cyber-to-physical (C2P) and physical-to-cyber (P2C) translators.

The difference between CPI components and CPI connectors is a matter of detail and so-

phistication in the interface. An intelligent sensor that performs signal processing functions

might be represented as a CPI component, whereas a simple digital thermometer could be

represented as a CPI connector.

3.5 Refinement to Specific Physical Domains

Together, the three generic styles described above can be combined and extended to provide

a unified representation of a CPS. The component and connector types in the physical

style are used to define new styles with features and attributes specific to the physical

domain of interest. Each physical domain extends the basic port type by defining effort

and flow variable types relevant to that domain, along with their units and ranges of

acceptable values. For the electrical style, two components connected by an electrical

coupling connector are shown in Fig. 3.3 (a). An electrical physical port has voltage and

current as the conjugate variables. The voltage across the component and the current

through it (along with either charge or flux as the stored quantity) are defined in terms

of the conjugate variables at the ports. The electrical connector enforces Kirchhoff’s laws
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Figure 3.3: Physical connectors for the electrical and mechanical domains.
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Figure 3.4: Electro-mechanical actuator combining components from electrical and me-
chanical domains.
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between the voltage and current variables on the ports of the connected components.

For the mechanical style, two components connected by a mechanical signal connector

are shown in Fig. 3.3 (b). The connector represents the transmission of constant torque of

K Newton-meter from a mechanical source component to a mechanical effort storage com-

ponent. The effort and flow variables on each mechanical component’s ports are the torque

and angular position being related by the connector. Similarly, a mechanical coupling con-

nector defines a physical coupling between two or more components which constrains them

to move together in the given frame of reference, while the forces at the joint sum to zero.

An electro-mechanical actuator is shown in Fig. 3.4. This component is an example of an

architectural element that combines multiple physical domains and it is used to model the

rotor assembly of the STARMAC quadrotor in Chap. 6. TheMotor is a physical transducer

component that converts the voltage at its electrical input port into a proportional torque

at its mechanical output port. The Rotor is a mechanical component that converts the

torque at its input port into forces and torques acting on the vehicle frame at its two output

ports. The dynamics of each component are annotated as part of the element’s properties.

For the mechanical domain, mass and moment of inertia (MI) correspond to energy

storage elements because they represent the ability of a material body to store kinetic and

potential energy. The energy storage concept can be generalized to a rigid body using the

mechanical subsystem component. A rigid body contains both mass (annotated with the

center of gravity (CG) coordinates) and MI as subcomponents, as well as body coordinate

frames and frame transformations as behavioral properties. Mechanical dissipative compo-

nents reflect phenomena where mechanical energy is lost over time, such as static friction

and viscous damping.

3.6 Tool Framework for CPS Architectures

We have created the CPS style as an Acme family, using Acme’s built-in support for

flexibly defining and extending architectural types. The basic building block for defining
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architectural styles in Acme is a type system that can be used to encapsulate recurring

structures and relationships. An architect can define three kinds of types: property types,

structural types, and architectural styles. Property types are defined using a set of built-in

primitive types (including integer, string, and boolean), and type constructors for records,

sets, and lists. Structural types make it possible to define types of components, connectors,

ports, and roles. Each such type provides a type name and a list of required substructure,

properties, and constraints (called design rules). Acme uses a constraint language based on

first order predicate logic (similar to UML’s Object Constraint Language) to define design

rules. Constraints may be specified in one of two ways: as an invariant or a heuristic. An

invariant is a rule that cannot be violated. A heuristic is a rule that should be observed,

but may be selectively violated.

Port Type PhysicalPortT extends BasePortT with {

Property effort : string;

Property flow : string;

Property effort_units: string;

Property flow_units: string;

invariant forall r in self.attachedRoles |

declaresType(r, PhysicalRoleT );

}

Component Type PhysicalCompT extends BaseCompT with {

Property behavior: string;

invariant forall p in self.PORTS |

declaresType(p, PhysicalPortT );

}

Figure 3.5: Acme specification for physical port and component type

The Acme definition of a physical port type and physical component type (that form

part of the physical family) is shown in Fig 3.5. The port type specifies that any port that

is an instance of PhysicalPortT must contain properties for effort and flow variables and

their units. The invariant associated with the type requires that all roles attached to a

physical port must be of type PhysicaRoleT. To simplify specifications of constraints Acme

29



also provides a number of built-in functions. For example, self.attachedRoles returns

the set of roles attached to the port represented by self, where the term self refers to

the entity to which the constraint is associated. The declaresType(e,T) function returns

true if an element e is declared to have type T.

PhysicalCompT extends the BaseCompT base type. The property behavior is a generic

string and allows the specification of component behavior to be annotated to the element.

The specification could be, for example, the filename of a Modelica object that implements

the component. The invariant associated with the type requires that all ports of a physical

component must be of the type PhysicalPortT, where self.PORTS returns the ports

attached to the component represented by self.

There are analogous Acme specifications for physical connectors and physical roles. We

have created component and connector types for all the physical elements described in Sec.

3.3, as well as for the complete cyber family and the CPI family. The creation of the three

styles as Acme families allows a designer to extend them for each new CPS application as

required. We have extended the physical family to create the following Acme families:

• Mechanical translational : to incorporate various forces acting on the vehicle frame

in the physical architecture of the quadrotor.

• Mechanical rotational : to model the torques from the rotors in the physical architec-

ture of the quadrotor.

• Electrical : to model the electrical and electro-mechanical aspects of the physical

architecture of the quadrotor.

• Thermo-Fluid : to model the architecture of the intake and exhaust systems of the

engine in the XILS case study.

An example of extending the physical family to the mechanical and electrical domain is

shown in Fig. 3.6. The MechanicalPortT extends the physical port by specifying position

and force as the effort and flow variables for the mechanical translational domain, along

30



Port Type MechanicalPortT extends PhysicalPortT with {

Property effort = "position ";

Property flow = "force ";

Property effort_units = "meter ";

Property flow_units = "Newton ";

invariant forall r in self.attachedRoles |

declaresType(r, MechanicalRoleT );

}

Component Type MechanicalCompT extends PhysicalCompT with{

invariant forall p in self.PORTS |

declaresType(p, MechanicalPortT );

}

Port Type ElectricalPortT extends PhysicalPortT with {

Property effort = "voltage ";

Property flow = "current ";

Property effort_units = "Volt";

Property flow_units = "Ampere ";

invariant forall r in self.attachedRoles |

declaresType(r, ElectricalRoleT );

}

Component Type ElectricalCompT extends PhysicalCompT with{

invariant forall p in self.PORTS |

declaresType(p, ElectricalPortT );

}

Figure 3.6: Acme specification for the mechanical and electrical element types

with their units. The associated invariant requires that mechanical ports should only be

attached to mechanical roles. Similarly, the MechanicalCompT component type extends

the physical component type, and can only contain mechanical ports. An analogous Acme

specification exists for the electrical element types. The specification of such Acme families

allows type-checking of elements and their interconnections for an architecture containing

entities from multiple physical domains.

AcmeStudio is a customizable graphical editing environment and visualization tool for

architectural design based on the Acme ADL, created by Garlan et al [10]. The tool

allows the architect to define new Acme families and customize the environment to work

with those families by defining visualization styles. AcmeStudio also has a built-in editor
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and parser for the Acme ADL. In Fig. 3.7, the BA of the quadrotor has been created

as an instance of the CPS family in AcmeStudio. The palette on the right contains all

the element types that are present in the CPS family. The designer can choose element

instances and connect them together by dragging and dropping items from the palette onto

the canvas. The Properties pane below the Acme system displays information relevant to

the architectural element selected, including its name, type hierarchy, associated rules,

and annotated properties. All our Acme families and systems have been created in the

AcmeStudio design environment.

3.7 Summary

In this chapter, we describe elements of an architectural style that can serve as a comprehen-

sive representation for the CPS domain. The CPS style allows the unified representation of

cyber and physical elements of a system in the same architectural model. We introduce the

Acme language and its flexible support for creating styles as Acme families, and illustrate

the specification of elements in the physical family. The CPS style is implemented as three

separate Acme families, along with mechanical, electrical, and thermo-fluid extensions to

the physical family. Extending the physical family to multiple physical domains is done

by specifying new element types for that domain, that include the effort and flow variables

(and their units) as properties .
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Chapter 4

Architectural Views

In this chapter, we define our notion of an architectural view, the types of structural

relations needed between multiple views and the system BA, and the tools we have created

to define such view relations.

A view describes the system’s architecture from the perspective of a particular view-

point, also called a design concern in this thesis. Hence, architectural views are a mech-

anism to facilitate the separation of concerns during system design. Although views can

be (and usually are) constructed separately, the set of all system views must be related

and consistent (in some sense) with the overall architecture, since each view contains a

description of the same underlying system.

In contrast to the notion of architecture views, there is a lack of consensus in the

architecture community for formally defining and characterizing relations between views

[18]. View relations are necessary for establishing consistency of views with the underlying

system architecture, and for maintaining that consistency as the system and its constituent

models evolve over the design lifecycle. The types of view relations defined in this thesis

allows us to check whether the assumptions made in each view about a system’s component

connectivity and physical structure are correct.
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Figure 4.1: Relationship between models and BA through architectural views.

4.1 Formalizing Architecture Views

In this section we relate heterogeneous models to a system’s base architecture through

architectural views, as shown in Fig. 4.1.

Definition 1. The base architecture (BA) of a CPS is an instance of the CPS architecture

style that contains all the cyber and physical components and connectors constituting the

complete system at runtime that are relevant for system design and analysis.

The BA provides the reference structure for all models used for design and verification.

It contains the set of system elements that are related to the analyses carried out in

each model, as well as the elements that are common between the models. The BA should

contain enough detail to describe the nature of the information exchanged and the physical

quantities flowing between components, as well as component connectivity and coupling

between physical variables represented by connectors.
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Definition 2. An architectural view V for a design concern D is a tuple < AV ,R
M
V ,R

V
BA >

where:

• AV is the component-connector architecture of the view, with the associated archi-

tectural style defined by D

• RM
V is the model-to-view relation that associates elements in the model with compo-

nents and connectors in AV

• RV
BA is the view-to-BA relation that associates elements in AV with elements in the

BA

A system model contains detailed structure and semantics defined by a particular for-

malism. An architectural view captures the system structure and connectivity assumptions

reflected in the model through the view architecture, AV , and the element encapsulations

and one-to-one correspondences defined by the relations RM
V and RV

BA. Hence, a view can

be thought of as a mechanism to capture the level of abstraction between the model and

BA at the structural level. The view exposes certain system structures and their properties

that are the focus of analysis in the associated model. In the next two sections, we describe

how to create the relations RM
V and RV

BA.

4.2 Model-to-View Relations

The various models used in the design of CPSs are created by using multiple domain-

specific modeling languages (DSMLs). Each DSML defines the structure and semantics

that every model instance should conform to. The model-to-view relation RM
V associates

elements in the model M with components and connectors in AV . The correspondence

allowed is either one-to-one or an encapsulation of multiple elements in the model to a single

element in the view, defined by the modeler’s choice of grouping. The rules which define

valid correspondences (including encapsulations) are based on the semantic relationship

between the model’s DSML and the architectural style of the view’s design concern.

We observe that most models are composed of interacting components, with the seman-
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tics of the interactions defined by (implicit or explicit) connectors. For certain DSMLs,

the component-connector structure is obvious. For example, Simulink or LabView models

used for control analysis consist of functional components interacting through connectors

with data-flow semantics. Modelica or MapleSim models consist of physical components

interacting through connectors with acausal interconnection semantics. For other DSMLs,

the structure of the model may have to be created using well-defined translation rules. We

have created rules for the DSMLs of models used in this thesis that are summarized in

Tab. 4.1.

We illustrate the creation of the rules for Finite State Process (FSP), a DSML used

to specify and verify concurrent system behavior. FSP models are a specification that

contain processes, with their interactions modeled by synchronized events. To create a

component-connector architecture for FSP models, we have implemented a translation

scheme to create a component for each FSP process, with the ports defining the events that

this process can share with other processes in the model. Connectors are created whenever

two processes share events, and connectors can also be associated to an FSP process that

defines the semantics of the communication protocol. In this way, a structurally and

semantically meaningful architecture can be created from the textual specification of an

FSP model. Hence, each heterogeneous system model can be thought of as having an

underlying architecture, with the architectural style defined by the DSML that the model

is created in.

The architecture AV of a view V , created for a particular design concern D, contains

elements that conform to the architectural style defined by D. We have created the fol-

lowing architectural styles for the views used in this thesis. The architectural elements

contained in each style are summarized in Table 4.2.

• Software style: The software design concern focuses on the cyber aspects of the

system, including concurrent processes and their communication, and analysis of
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Table 4.1: Rules for mapping between DSML elements and View elements.

DSML Components Connectors Ports Allowed En-
capsulations

FSP Primitive
process

Primitive
process,
Shared events

Shared events Multiple
events mapped
to single port

Simulink Blocks,
Subsystems

Signal lines Signals Multiple signal
lines to single
connector,
same for ports

AADL (Platform) Processor,
Memory,
Device

Bus Access Data Multiple buses
of same type
to single
connector

Modelica Physical block Physical,
Signal-flow

Conjugate
Variables

Multiple
physical lines
from same
domain to
single
connector,
same for ports

safety and liveness properties. The software style contains component types that

represent the software for the control and estimation algorithms implemented in the

final system, along with the embedded software communicating with the system’s

sensors and actuators. A Device component represents the abstraction of physical

processes and dynamics in the system, and is useful for the abstractions made in

process algebra models. Connector types represent either (buffered or unbuffered)

data, or events (i.e., messages) between communicating software components.

• Control style: From a control engineer’s perspective, a CPS can be viewed as a signal

flow model. The control style contains components to represent controllers, estima-

tors, physical plants, sensors, actuators, and reference/setpoint generators. The con-

nectors represent input-output signal flow between the connected components. The

39



control view typically ignores controller implementation details such as scheduling of

tasks and associated communication jitter and delays.

• Hardware style: defines components such as processors, memory, and devices for

sensors and actuators that are used to physically implement a system. The connectors

represent the various buses (and their communication protocols), such as serial (RS-

232), I2C, PCI bus, and wired and wireless networks.

• Physical style: is used to model architectures for multi-domain physical systems, and

is the same as that defined in the CPS style.

Table 4.2: Architecture Styles for CPS Design Concerns.

Style Components Connectors Ports

Software Process, Thread,
Subprogram,
Controller, Estimator,
IOAdapter, Device

Data-flow, Event Data, Event,
Data-Event

Control Controller, Estimator,
Reference, Filter,
Plant, Sensor,
Actuator, Environment

Signal-flow, ControlSig,
FeedbackSig,
MeasurementSig

Input, Output,
Control, Reference,
Feedback

Hardware Processor, Memory,
Device, Actuator,
Sensor

Bus InChannel,
OutChannel,
InOutChannel

Physical Source, Sink, Storage,
Dissipative, Transducer

Coupling, Physical
Signal

Physical, Input,
Output

In Fig. 4.2, the creation of the control view from the STARMAC Simulink model

is illustrated. In this case, the relation RM
V maps each top-level Simulink block to a

component, and each group of signal lines between them to connectors, resulting in the

control view’s AV . The rules for valid encapsulations between the elements of the Simulink

model and single elements of the view are based on what group of model entities represents

controllers, what group represents plant dynamics, and so on. We allow combining of
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multiple Simulink signals into a single view connector, since this encapsulation represents

the creation of a vector signal from scalar signals, a semantically valid operation for the

control design concern.

The model-to-view relations used in the case studies are created by hand to illustrate the

concepts. However, many tool frameworks exist for automatic translation of Simulink (or

similar signal-flow) models into a component-connector architecture. One example is the

ESMoL language (part of Vanderbilt’s GME toolchain) that converts any Simulink model

into an ESMoL architecture and annotates it with para-functional properties [38]. Another

one is SysWeaver that converts the controller part of a Simulink model into a component-

based representation for real-time analysis [39]. There is an ongoing effort to automatically

convert Modelica models into SysML component diagrams using triple graph grammars to

transform between the meta-models of Modelica and SysML [34]. Similarly, we can envision

a tool that automatically creates an architecture from an FSP textual specification, based

on the embedded comments for each primitive FSP process and common events defined in

the specification.

The focus of this thesis is on mechanisms for defining view-to-BA relations, and the

consistency of views at the architectural level, not on the model-to-view relations or their

implementation. Thus, tool support to define the relation RM
V systematically can be made

available as part of the model-based design framework within which our view consistency

approach would be used.

4.3 View-to-BA Relations

In this section we describe our approach for defining relations between different system

views and the underlying BA. For the purpose of this discussion, we consider the BA to be a

view of the system, albeit a very detailed and comprehensive view, with the CPS style being

the associated architectural style. In general, describing arbitrary relations (or “maps”)

between architectural views is a hard problem, since each view has its own semantics, and
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there may not be sufficient overlap with the semantics of every other view. Despite the

differences in semantics, most views describe their structure using common notations. For

example, Medvidovic and Taylor argue that all architectural descriptions must explicitly

specify their components, connectors, and architectural configurations [46]. Their survey

shows that all ADLs provide means for structural specification of architectural elements.

The universal use of structural notation makes it possible to describe maps between the

structural elements of most views.

All the views considered in this thesis are structurally specified using a component-

connector description. Hence, we consider relations that define either one-to-one element

correspondences or encapsulations between sets of components and connectors in two dif-

ferent views, where one view is always the BA of the system. The view-to-BA relation,

RV
BA, is an n-ary relation that enables the architect to group specific components and con-

nectors in the BA and map them to elements of a view. The allowed correspondences and

encapsulations are defined by the semantic relationship between the architectural styles of

the two views, and hence RV
BA also captures semantics of element types between the views.

Many ADLs carry semantic constructs along with structural descriptions. For exam-

ple, Acme and Armani use properties attached to structural elements to carry semantic

information. Armani also uses predicates to impose constraints on structural constructs

[2]. Hence, a structural map description can provide a strong basis for describing more so-

phisticated maps that address semantic properties as well. We have incorporated checking

of constraints over element properties (based on the correspondences defined by RV
BA) in

our map creation language, Acme Maps, described in Sec. 4.4.

The rules for valid component correspondences under RV
BA for the control view are

summarized in Table 4.3. We have created similar rules for architectural elements in the

software, hardware, and physical styles. Since the physical style is directly derived from

the CPS physical style, the correspondence rules are one-to-one. These rules give the
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architect a mechanism to associate semantically meaningful entities between the view and

BA structures being compared.

Table 4.3: Rules for mapping between components in the CPS style and different views.

Control CPS Software CPS Hardware CPS

Controller Computation
Data Store

Process Computation
IOSoftware

Processor Computation
IOSoftware

Estimator Computation
Data Store

Thread Computation
IOSoftware

Memory Data Store

Reference Computation
Data Store

Controller Computation
Data Store

Device CPI
Physical

Filter Computation
Physical

Estimator Computation
Data Store

Sensor CPI
Physical

Plant Physical
CPI

IOAdapter IOSoftware
CPI

Actuator CPI
Physical

Sensor Transducer
CPI

Device CPI
Physical

Actuator Transducer
CPI

Subprogram Computation
IOSoftware

Environment Computation
Data Store
Physical

Figure 4.3 illustrates the mapping defined between the control view and BA of the

quadrotor. The correspondences are created based on the semantic compatibility of the

element types defined in Table. 4.3. For example, the controller components in the view

can only be mapped to cyber and data components (or their encapsulations) in the BA,

and plant components in the view can be mapped to physical or interface components in

the BA. Every connector in the control view represents a (cyber or physical) signal. Hence,

semantically equivalent connectors between two components in the BA can be mapped to

a single connector in the control view.

The encapsulation operation defined by RV
BA for components is illustrated in Fig. 4.5,

where three components have been selected to be encapsulated into a single component,
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Figure 4.4: Invalid many-to-many map between a view and BA.

and then mapped to a component in the view. Any elements (components or connectors)

that are internal to the selected components are hidden in the encapsulated component.

Any ports that are connected to elements outside the encapsulation (or are unconnected

boundary ports of components) appear as ports of the encapsulated component, as shown

for ports P1 and P2 in Fig. 4.5.

The encapsulation operation for connectors, shown in Fig. 4.6, is analogous to compo-

nent encapsulation, except that roles R1 and R2 now appear as roles of the encapsulated

connector. However, encapsulations that result in neither a component nor a connector,

such as the one shown in Fig. 4.7 (because of the presence of both port and role on the

same element), are not permitted. Our tool framework (described in Sec. 4.4) automatically

checks for such cases and flags an error when detected.

One-to-one and many-to-one (encapsulation) maps from the BA to a view are allowed.

Many-to-many maps are not allowed since this can lead to inconsistent connections being

hidden inside the encapsulated components. A potential many-to-many map is shown in

Fig. 4.4 between the BA and view of a system. If this map were allowed, the connector C1
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Figure 4.5: Encapsulation of components in a system.

Figure 4.6: Encapsulation of connectors in a system.
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Figure 4.7: Invalid encapsulation of elements in a system.

(present only in the view) and the connector C2 (present only in the BA) would both be

hidden inside the encapsulation and would not be detected when the view is checked for

consistent structural connectivity with the BA. A similar reasoning holds for disallowing

many-to-many maps between connectors, where inconsistent components can be hidden

away between encapsulated connectors.

Not allowing many-to-many maps does not restrict the expressiveness of our view re-

lations for structural consistency checking of views. Any many-to-many map between the

view and BA elements can be transformed into an encapsulation from BA to view ele-

ments. This is done by creating a single view element from the set of view elements in

the many-to-many map. Combining view elements in this manner reflects that there is de-

tailed structure in the associated model that is not defined in the BA. The view abstracts

these model details into a single element. This operation does not impact the connectivity

topology of the view. However, allowing many-to-many maps can be useful in situations

where refinements in the view are used to analyze model coverage, as discussed in Chap.

8.
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4.4 Tool Framework for Architecture View Maps

In this section, we describe the tool framework to create the relation RV
BA as maps between

architectural views and the BA.

An architecture view is created in AcmeStudio as an instance of a specific Acme family,

based on the design concern of the view. Figure 4.8 shows the creation of a control view

in the AcmeStudio editor. The palette on the right contains all the element types that are

present in the control family. Each view is saved as an Acme system in AcmeStudio.

We have created a mechanism for creating view relations between two component-

connector views with different architectural styles: the Acme Maps language. Acme Maps

is an extension to the Acme ADL for expressing maps between the structural aspects of

architectural views, and for expressing constraints over those maps using Acme design

rules. An important feature of the language is the automatic checking of valid mappings

based on constraint rules defined by the user between the architectural styles of the two

views.

An Acme Map specification consists of two types of text files. The first is a map type

file which specifies which types of elements from each of the views are allowed in any map

instance between the views. The second is a map file that specifies a mapping between a

pair of views, based on the map type. Every map is an instance of a map type and has to

satisfy the constraints imposed by its map type.

In Fig. 4.9, the general structure of an Acme map type specification is shown. The

specification contains the pair of Acme families whose element types are to be related. If

we want to create the map for RV
BA, the source is the Acme family of the BA, while the

target is the Acme family of the view. Each map type is made up of a number of component

(and nested port) and connector (and nested role) map types. Acme design rules can be

defined for any element map type and are useful to enforce semantic constraints between

the view and BA families. Consider the portion of the control map type specification
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shown in Fig. 4.10. A component map type named PlantMapT is defined for components

representing plants in the control view. The map type specifies that any plant component

in the control family can be mapped to the set of physical components in the physical

family and transducer components in the interface family. This is semantically meaningful

for a control view because many control models group sensors and actuators along with

plant dynamics into a single element and treat it as the plant to be controlled.

The PlantMapT also contains nested port map types that specify which types of ports

on any plant element can be mapped to ports in the CPS family. The Acme invariant

enforces the presence of at least one physical component in any encapsulation of compatible

elements from the BA to a plant component. This design rule prevents the architect from

accidently mapping only transducer components in the BA to a plant component, since it

is not semantically valid for a plant to contain no physical components.

The second component map type (named ControllerMapT ) contains a (heuristic) design

rule between the properties of any controller element in the view and any computational

element in the BA. The rule specifies that the sampling period of any controller must be

more than the Worst-Case Execution Time (WCET) of the computational element it is

mapped to. This is an example of a map type that includes a semantic check over prop-

erties of its elements. Any map instance that satisfies this map type will map only those

controllers whose sampling periods satisfy this rule to appropriate computation elements

in the BA.

In Fig. 4.11, a portion of the map file for the control view map type is shown. The map

contains correspondences between the elements of the BA of the quadrotor, represented

by the Quadrotor system, and those of a control view, represented by the QRControlView

Acme system. In particular, the component map pMap1 (of type PlantMapT ) shows an

encapsulation of a set of elements in the BA to the Quadrotor plant component in the

view. The component map cMap1 associates the Starmac cyber component in the BA to
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MapType MapTypeName = {

Source = {AcmeFamilyName };

Target = AcmeFamilyName;

[invariant ...]

ComponentMapType MapTypeName = {

Source = {ComponentTypeName , ComponentTypeName , ...};

Target = ComponentTypeName;

[invariant ...]

PortMapType MapTypeName = {

Source = {PortTypeName , PortTypeName , ...};

Target = PortTypeName;

[invariant ...] }

...

} ...

ConnectorMapType MapTypeName = {

Source = {ConnectorTypeName , ConnectorTypeName , ...};

Target = ConnectorTypeName;

[invariant ...]

RoleMapType MapTypeName = {

Source = {RoleTypeName , RoleTypeName , ...};

Target = RoleTypeName;

[invariant ...] }

...

}

...

}

Figure 4.9: Structure of an Acme map type specification.

the AttitudeCtrl controller in the view. The sampling period property of AttitudeCtrl is

automatically checked against the WCET property of Starmac, because of the invariant

defined in the map type (ControllerMapT ) of cMap1.

Map types play two useful roles in a map specification: (1) they capture the common

properties of a class of maps, hence facilitating classification and reuse of map declarations,

and (b) they support type checking of map instances. A map type contains structural and

semantic constraints. The structural constraints address the structural aspects (e.g., the

type of elements associated) that instances of the map type must have. Semantic con-
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MapType ControlMapT = {

Source = CPSFam;

Target = ControlFam;

ComponentMapType PlantMapT = {

Source = {PhysicalFam.PhysicalCompT ,

InterfaceFam.P2CTransducer ,

InterfaceFam.C2PTransducer };

Target = ControlFam.PlantT;

invariant exists c : component in sources |

declaresType (c,PhysicalFam.PhysicalCompT );

PortMapType ActOutputPortMapT = {

Source = {PhysicalFam.PhysicalPortT };

Target = ControlFam.ActOutputPortT;

}

...

}

ComponentMapType ControllerMapT = {

Source = {CyberFam.ComputationT ,CyberFam.DataStoreT };

Target = ControlFam.ControllerT;

heuristic foreach c : ComputationT in sources |

target.samplingPeriod > c.WCET;

...

}

...

}

Figure 4.10: Portion of a control view map type file with component map and port map
types.
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Map controlMap : ControlMapT = {

Source = Quadrotor;

Target = QRControlView;

ComponentMap cMap1 : ControllerMapT = {

Source = {Quadrotor.Starmac };

Target = QRControlView.AttitudeCtrl;

}

ComponentMap pMap1 : PlantMapT = {

Source = {Quadrotor.GPS ,Quadrotor.VehicleFrame ,

Quadrotor.MeasurementConnT1 ,

Quadrotor.MeasurementConnT6 ,

Quadrotor.Act_3 ,Quadrotor.Act_4 ,

Quadrotor.Act_2 ,Quadrotor.AirDrag ,

Quadrotor.IMU ,Quadrotor.Gravity ,

Quadrotor.Sonar ,Quadrotor.WindVelocity };

Target = QRControlView.Quadrotor;

}

...

}

Figure 4.11: Portion of the map file for the quadrotor control view.

straints address relations between element properties and are declared as Acme design

rules. We have created Acme map types between the CPS family and the software, hard-

ware, control, and physical families. Every Acme map defined for a particular view uses

the map type for the associated family to create the view-to-BA relation.

The process of creating an Acme map in AcmeStudio between the control view and

BA of the quadrotor is shown in Fig. 4.12. We have implemented an Acme View Editor

to facilitate the process of displaying multiple views, and defining, editing, and saving

mappings between views. The user first selects the Acme system which represents the BA,

and then selects a system representing the view. The view editor displays both systems

side-by-side so that mappings between the BA and view can be created easily. The palette

on the right contains all the element map types that have been defined in the associated

map type specification. To create an element map from BA to view, the user clicks on the

appropriate map type in the palette. The editor highlights only those elements in the BA
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and view that are compatible as defined in the map type.

In Fig. 4.12, the user has selected the plant map type, and hence only the Quadrotor

plant component in the view and all physical and interface components in the BA have been

highlighted as being selectable for mapping. The current map shows an encapsulation of

BA elements mapped to the single plant component in the view. This mapping forms part

of the RV
BA relation between the control view and the BA of the quadrotor. In a similar

way, the user can define any number of element maps and then save (and reload) the

resulting map file for future use. In addition, a map file can be edited on-the-fly by adding

new maps or deleting existing maps through the features of the graphical editor. The view

editor automatically adds all components and connectors contained in an encapsulation to

the corresponding map instance, and also checks for duplicate, erroneous, or incompatible

maps between elements. The tool has been useful in quickly and correctly creating maps

between multiple views and the BA for both case studies in this thesis.

4.5 Summary

In this chapter, we introduce an architectural view as a mechanism to capture the level

of abstraction between the model and BA at the structural level. Formally, an architec-

tural view captures the system structure and connectivity assumptions reflected in the

model through the view architecture, AV , and the element encapsulations and one-to-one

correspondences defined by the relations RM
V and RV

BA.

We define the relationsRM
V andRV

BA for a view and describe rules to create them for the

software, hardware, control, and physical design concerns. To instantiate RV
BA between a

view and the BA, we introduce the Acme Maps language for the creation of map types and

maps. We illustrate the use of the AcmeStudio multi-view graphical editor that facilitates

the creation, editing, and display of view maps.
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Chapter 5

Consistency of Architectural Views

In this chapter, we define the notion structural consistency between the system’s BA and

the architectural views derived from various heterogeneous models. Structural consistency

ensures that the views adhere to the connectivity constraints and physical laws present

between elements in the BA. This guarantees that the models used for design and evaluation

are not based on assumptions about information or signal flow pathways between elements

that are inconsistent with the underlying system as reflected in the BA. For structurally

consistent models, analysis results based on component connectivity in the model are valid

for the underlying system as well.

In Sec. 5.1, we introduce architecture graphs as typed graphs that retain the inter-

connection topology of architectural elements. In Sec. 5.2, we formulate structural view

consistency as the existence of a morphism relation between the graphs of the view and

BA., and define view conformance and view completeness as two types of consistency con-

ditions. Our graph morphism and maximum common subgraph (MCS) algorithms check

for consistency or find the set of maximal consistent elements between the view and BA,

respectively, and are described in Sec. 5.4. We study the performance of these algorithms

applied to a set of randomly generated graphs in Sec. 5.6, and describe our tool framework

for view consistency support in AcmeStudio in Sec. 5.7.
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5.1 Architectures as Graphs

Any mathematical formalism that attempts to model a system’s architecture has to sup-

port two key characteristics. First, an architecture always includes the structure of the

system, and structure primarily consists of the topology. Second, typing of components

and connectors is necessary to help distinguish between architectures that are topologically

identical but represent semantically different systems. For example, one star topology ar-

chitecture might represent a mainframe computer being used by multiple thin clients, while

another might represent the centralized control of several unmanned aerial vehicles by a

single ground station.

Due to these requirements, we use undirected, labeled graphs to model a system ar-

chitecture. Associating types with elements differentiates an architectural model from a

simple graph because it defines the correspondence between an element and some real-

world entity or physical phenomenon. Mapping architectures into graphs allows us to

leverage well-studied tools in graph theory that evaluate the topological similarity between

two structures.

Definition 3. A labeled (or typed) graph G is a 6-tuple < VG, EG,ΛG,ΣG, αG, βG >,

where

• VG is the set of vertices (or nodes)

• EG ⊆ VG × VG is the set of edges (or arcs)

• ΛG is the set of vertex labels

• ΣG is the set of edge labels

• αG : VG → ΛG is the vertex labeling function

• βG : EG → ΣG is the edge labeling function

Definition 4. An architecture graph (AG) is a graph created from a system architecture

that retains the interconnection topology of the architectural elements:
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• VAG is the set of components, connectors, ports, and roles in the architecture

• EAG is the set of edges, which define which ports(roles) are contained in each com-

ponent(connector) and the attachments between the ports and roles

• ΛAG is the set of architectural types for components, connectors, ports, and roles

that are defined by the corresponding architectural style

• ΣAG = {contains, attachment, binding} is the set of edge types in the graph

The set ΛAG is a partially ordered set, or poset, with ≤ defined as the type inheritance

relation. For example, in the control view style, let ControllerT be a type for a generic

controller component and let PIDControllerT and LQRControllerT be two subtypes of

ControllerT that represent specific kinds of controller components. This is equivalent to

defining PIDControllerT ≤ ControllerT and LQRControllerT ≤ ControllerT. Further,

suppose DLQRControllerT represents a discrete LQR controller, which is a subtype of

LQRControllerT. By the transitivity of type inheritance, DLQRControllerT ≤ ControllerT

also holds.

ΣAG contains the types of edges that correspond to all the possible connections between

architectural entities:

• contains : This edge exists between a component (connector) node and its port (role)

nodes. The edge represents the fact that each port (role) belongs to a particular

component (connector).

• attachment : This edge exists between a port and a role node. The edge represents a

port-role attachment in the architecture.

• binding : This edge represents a binding relation between an internal port (role) and

a boundary port (role). This situation occurs when a component has one or more

representations or when a set of components or connectors is encapsulated as a single

entity.

The types in ΣAG do not have any type inheritance with each other since each represents
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Figure 5.1: Example of an architecture graph.

a distinct class of connection in the architecture.

Figure 5.1 shows an example of a simple architecture and the associated graph repre-

sentation.

A graph morphism is a structure-preserving correspondence between two graphs that

maps adjacent nodes in one graph to adjacent nodes in the other, while maintaining the

type compatibility of the nodes.

Definition 5. Let G and H be two graphs. Let T G
H ⊆ ΛG × ΛH be a relation defining the

compatibility of vertex types between G and H, and let LG
H ⊆ ΣG×ΣH be the corresponding

relation between the edge types of G and H. A graph morphism (from G to H) is a function

M : VG → VH for which the following properties hold:

1. e = (u, v) ∈ EG =⇒ e′ = (M(u),M(v)) ∈ EH , ∀u∀v ∈ G

2. (αG(v), αH(M(v) ) ) ∈ T G
H
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3. (βG(e), βH(e
′) ) ∈ LG

H

If M is injective (one-to-one), the morphism is known as a monomorphism. If the func-

tion is bijective (one-to-one and onto), the morphism is an isomorphism. The cardinality

of a morphism is defined as the total number of possible mappings between the two graphs.

When the morphism definition is applied to architecture graphs, specifically, between a

view graph and a BA graph, the relation T V
BA is defined by the map type of the view. The

posets of element types associated with the graphs of the BA and each view are derived

from the architectural styles of the BA and view, respectively. The posets enable the

architect to define which entities in the BA are semantically compatible with those in a

particular view. The relation LV
BA for architecture graphs is an identity relation between

the same types of edges.

We will need the concept of the maximum common subgraph (MCS) between a pair of

graphs to elaborate on our notion of view consistency. Hence, we introduce the concepts

related to the MCS in this section.

Definition 6. Let G = (VG, EG,ΛG,ΣG, αG, βG) and g = (Vg, Eg,Λg,Σg, αg, βg) be two

graphs. g is a node-induced subgraph of G if

• Vg ⊆ VG

• Eg = EG ∩ Vg × Vg

• αg(v) = αG(v) ∀v ∈ Vg

• βg(e) = βG(e) ∀e ∈ Eg

The subgraph obtained by Definition 6 is called node-induced because the number of

vertices from the parent graph is maximized. An alternative way to define a subgraph is

in terms of the edges of the parent graph.

Definition 7. Let G = (VG, EG,ΛG,ΣG, αG, βG) and g = (Vg, Eg,Λg,Σg, αg, βg) be two

graphs. g is an edge-induced subgraph of G if

• Eg ⊆ EG
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• Vg = {v ∈ VG : ∃u ∈ VG, (v, u) ∈ Eg}

• αg(v) = αG(v) ∀v ∈ Vg

• βg(e) = βG(e) ∀e ∈ Eg

The edge-induced subgraph contains the maximum number of edges along with all the

nodes that are endpoints of the edges. As a result, it can never contain isolated vertices.

Since the nodes of an architecture graph represent the elements of interest, and since the

mismatch of an edge in such graphs automatically implies that the connected vertex must

also be in error, the node-induced subgraph definition is more applicable to our problem.

In the remainder of the thesis, we use the term subgraph to mean a node-induced

subgraph. If a graph g is a subgraph of another graph G, we henceforth write this relation

as g ⊆ G.

Definition 8 (Subgraph Isomorphism). If I : g → h is a graph isomorphism between

graphs g and h, and h is a subgraph of another graph H, then I is called a subgraph

isomorphism from g to H.

Definition 9 (Maximum Common Subgraph). Let G and H be two graphs. A common

subgraph of G and H is a graph g such that there exist subgraph isomorphisms IG : g → G

and IH : g → H. We call g a Maximum Common Subgraph of G and H, or MCS(G, H),

if there exists no other common subgraph that has more nodes than g.

The MCS is not necessarily unique for two given graphs. We call the set of all maximum

common subgraphs of a pair of graphs the MCS set of the pair.

5.2 Structural View Consistency

Based on the representation of a system architecture as a typed, undirected graph, we

can formulate the structural correctness of a view with the BA in terms of the topological

similarity between the corresponding architecture graphs.

Definition 10. An architectural view V is structurally consistent with the BA if there
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exists a graph morphism from the view graph to the BA graph, where the graph morphism

conforms to the element correspondences defined by the relation RV
BA.

Based on whether the mapping is a monomorphism or an isomorphism, the following

two notions of view consistency arise.

Definition 11. View Conformance: There exists a monomorphism from the view graph

to the BA graph that conforms to the element correspondences defined by the relation

RV
BA.

Definition 12. View Completeness : There exists an isomorphism between the view graph

and the BA graph that conforms to the element correspondences defined by the relation

RV
BA.

View conformance enforces that: (i) every component in the view should be accounted

for in the BA, and (ii) every communication pathway and physical connection existing

between view elements should be allowed in the BA by the presence of corresponding

connectors. As a result, the view (and hence the model) cannot allow incorrect assumptions

about the existence of and connectivity between system elements, if this is not defined in

the BA. Checking for view conformance is useful when a view describes a sub-part of the

complete system architecture.

The physical view of the quadrotor which contains the elements that define its dynamic

equations of motion illustrates view conformance. The view does not contain any cyber

elements since the computational aspects of the system are not meaningful in the physical

design concern. If we want to ensure that the physical view has been created with valid

assumptions about the actual physical system, we need to check that every physical element

in the view is allowed in the quadrotor’s BA, and that the physical coupling present in the

view elements is also present in the BA elements. We should also expect none of the cyber

elements in the BA to be present in the view. Hence, the consistency check that should

be applied in this case is view conformance, so that every view element is consistent with,
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Figure 5.2: Hierarchical consistency checking between view and BA of quadrotor.

and accounted for, by some set of elements in the BA.

View completeness satisfies all the properties of view conformance. In addition, it

imposes the constraint that every element in the BA must be represented in the view in

some manner. This implies that the view must take into account every part of the complete

system, even if some parts are represented in an abstract fashion. For example, the control

view models the complete quadrotor system, with the cyber elements represented in the

controller elements, and the physical elements contained in the plant component. Hence,

every BA element has to be checked in the view, in addition to the view conforming to the

BA. This is a case where the view completeness check is applicable.

Structural consistency can be applied in a hierarchical manner between a view and the

BA. For example, suppose that the consistency check succeeds between the top level of

the control view and the BA for the quadrotor. The architect can further check if the

internal structure of the AttitudeCtrl component in the view is consistent with the inter-

nal architecture of the Starmac component in the BA. We assume, of course, that both

these components do have an internal architecture present. Acme allows the hierarchical
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description of the internal details of an element through the concept of one or more rep-

resentations associated with the element. We can now follow the same procedure as for

the view-BA case. A new ‘view’ is created from the internal elements of the AttitudeCtrl

and the representation of Starmac now becomes the new ‘base architecture’. A consistency

check can be carried out between the graphs of the new view and of the new BA. In this

way, the morphism checker can be invoked in a top-down manner to verify consistency

between elements (and sub-elements) of the view and the BA. However, the approach

does not currently support consistency checks across hierarchies, i.e, the architect cannot

compare the internal structure of the AttitudeCtrl with the top-level elements of the BA.

Our architectural approach is different from traditional approaches to consistency check-

ing, which are typically defined within the context of a specific modeling formalism. For

example, it is common to use bisimulation relations between labeled transition systems to

check that the two systems enter equivalent states at all times, for the same input event

sequence. Structural consistency enforces that each system model makes valid assumptions

about the topology of the underlying system, resulting in equivalent component connectiv-

ity and physical signal flows. However, it is a “light weight” notion of consistency in that

it does not address whether two components will exhibit the same behavior since system

behavior cannot be expressed simply as a topological constraint on its elements.

We have introduced the concept of parametric consistency [47] as a first step towards

using the architectural framework to evaluate stronger semantic relationships between mod-

els, including consistency with respect to behavioral semantics. This is done by allowing

each model (and hence the associated view) to import and export component and system

level parameters. We use logical constraints over parameters in the architectural views

to represent the conditions under which the specifications verified for each model are true

and imply the system-level specification. Interdependencies and connections between the

constraints in the architectural views are managed in the base architecture using first-order
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logic of real arithmetic to ensure consistency and correct reasoning. However, this thesis

focuses on the consistency of system models at the structural level, while allowing for

component parameters as annotated properties that can be checked during the creation of

element mappings.

5.3 Applicability to System Design

The base architecture provides the reference structure for all models used for design and

verification. Adherence to the component-port-connector structure of the BA assures that

the structure of each architectural view is consistent with the functional decomposition

of the system as represented by the architecture. However, as noted, the architectural

views need not have a structure identical to the BA. The important constraint is that the

presence or absence of ports and connectors in either the architectural view or the BA

must be reflected in the other structure through one-to-one or many-to-one associations

from BA to view. Such a constraint rules out the possibility that a view can introduce

a “back-door” communication channel not present in the reference structure, a property

called communication integrity in software architectures [20].

Correspondence between components, ports and connectors in the architectural views

and the BA would be defined by the engineers who construct the analysis models. When

inconsistencies are detected, i.e., when a morphism between the view and the BA cannot

be established, the designer needs to make modifications to bring the architectural view

for the model into compliance with the system architecture.

We can interpret an architectural view as a way of identifying which parts of the com-

plete system are represented in the model, and which parts are abstracted away. From the

modeler’s perspective, some parts of the BA are “in focus” and some parts are “blurred”.

The focused parts are the portions where the modeler insists that there be a fine-grained

correspondence between the elements in the view and those in the BA. The blurred parts

are the portions where this correspondence is coarser. This translates to a fluid notion of
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consistency between each view and the BA.

If the BA is constructed from validated stakeholder/system requirements, then the BA

contains only components and connectors that can be traced back to particular system-level

requirements. Under this assumption, by enforcing that each view maintain consistency

with the BA, we obtain a way to carry out requirements traceability for the corresponding

model as well. Checking consistency guarantees models do not contain extraneous elements,

or connections between elements, that are not mandated by some system-level requirement.

This gives the design team a mechanism to assure that decisions and future changes made

at the system architecture level are reflected correctly in the models used for analysis and

verification, and vice-versa.

5.4 Graph Algorithms for View Consistency

To check for view conformance and view completeness, we have implemented the VF2

algorithm [48]. This algorithm uses a computationally efficient heuristic based on the

analysis of the sets of nodes adjacent to the ones already considered in the partial mapping.

It is significantly faster than the widely used Ullman algorithm in many cases [49]. For

graph isomorphism with N nodes, the best case time complexity of the algorithm is O(N2)

and the worst case is O(NN !). Similarly, for monomorphism from a graph with N1 nodes

to a graph with N2 nodes, the best case time complexity of the algorithm is O(N1N2) and

the worst case is O(N1N2!). In addition, VF2 has a memory complexity of O(N1), making

it useful for working with large graphs.

If the consistency check for a particular view fails, the architecture framework should

inform the user about which elements caused the inconsistency. This is achieved by return-

ing the maximal set of correctly mapped elements between the view and BA. Finding this

set is exactly the problem of finding the MCS between the view and BA graphs. Hence,

our tool framework currently implements three types of graph matching algorithms: a

monomorphism and an isomorphism algorithm (based on VF2) to check view conformance
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and view completeness, respectively, and our MCS algorithm (described in the next section)

to highlight the set of consistently mapped elements between the view and the BA.

The main drawback of graph pattern-matching lies in its inherent computational com-

plexity. The monomorphism and subgraph isomorphism problems are known to be NP-

complete, while the complexity class of the isomorphism problem is not yet known [50].

The problem of finding an MCS of two graphs is NP-complete since it can be reduced

to finding the maximum clique (i.e., a fully connected subgraph) in a suitably defined

association graph of the two graphs [51]. However, we believe that graph matching algo-

rithms can be practically used for consistency checking because of the following properties

of architectural graphs:

• Every vertex and edge of an architectural graph is typed. This allows pruning of

a large number of possible but incompatible mappings and eliminates unsuccessful

search branches early in the exploration.

• The view-to-base element mappings defined by the architect form a starting point

for the algorithms to begin searching. Just like typed elements, the mappings also

allow pruning of the search space.

• Architecture graphs can never be completely connected. Hence, they do not represent

the worst-case class for graph algorithms. In an architecture, components can connect

to each other only through connectors. Ports can only attach to roles and only

be contained by components. Similarly for connectors and roles. Their inherent

structure can be leveraged to explore the search space more efficiently.

• Architecture graphs are bounded valence graphs, i.e., every node has a number of

edges lower than a given threshold, called the graph’s valence. This is because every

component has to have a maximum number of ports in it, defined by the style of

the design concern. Similarly, every connector has a bounded number of roles. Each

port and role have a single attachment edge between them. So, the number of edges
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for any vertex in the graph is bounded. For this class of graphs, a polynomial-time

algorithm exists for checking isomorphism [52].

• The hierarchical organization of a system’s architecture is reflected in the graph

representation. Each level in the hierarchy contains a small number of elements

compared to the total number of elements in the complete nested architecture. This

ensures that the level-by-level graph comparison between view and base graphs is

practical for large-scale systems.

5.5 MCS Algorithm

In this section, we describe the details our MCS algorithm, which is based on depth-first

search with backtracking, to find the maximal set of consistent elements between two

graphs.

5.5.1 Data Structure

Our MCS algorithm is based on the VF2 algorithm’s search structure, combined with an

efficient data structure (introduced in [53]) to store the set of compatible nodes from the

second graph G2 for each node in the first graph G1, in each state of the MCS search. The

data structure is called a Vertex Matching Matrix (VMM), and is implemented as an array

of dynamic lists, with one list for each node in G1. Each list contains the nodes from G2

that are compatible (in both type and structure) to the corresponding node in G1. The

VMM is initialized before the MCS algorithm begins the search phase by creating the set

of all type compatible nodes from G2 for each node in G1. For the MCS algorithm given in

[53], there is no check for structural compatibility of nodes during the VMM initialization

phase, since no nodes have been matched by the MCS search phase yet.

In our MCS algorithm, we leverage the pre-mapped components and connectors between

the view and BA graphs to restrict the ports and roles in the BA that are structurally

compatible with those in the view. For example, if a component is pre-mapped in the view
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graph, the ports of that component are structurally compatible only with the ports of the

corresponding component in the BA graph. Hence, we add only those ports to the node list

in the VMM, because we are dealing with architecture graphs with a well-defined structure.

Similar optimizations are carried out for pre-mapped connectors, and their attached roles.

In the worst case, where both the graphs are untyped, the initial size of the VMM is

N1N2, where N1 is the size of G1 and N2 is the size of G2. Hence, the memory complexity

of the algorithm is O(N2
1N2) in the worst case, and O(N1) in the best case. The best case

represents the scenario when every node is pre-mapped between the two graphs, and each

row in the array contains a single element. Since we are dealing with typed graphs, and

because of the pruning offered due to pre-mapped elements, the worst-case scenario cannot

occur. In fact, during all our performance tests, we noticed that the size of the VMM

reduces quite rapidly as the search proceeds further down any branch, since incompatible

nodes are quickly discarded as the common subgraph grows in size.

We can calculate the effect of pre-mapping by introducing the parameter p, the number

of pre-mapped nodes between the two graphs. With p nodes pre-mapped, the new size of

the array becomes (N1 − p)(N2 − p) and we have to go down N1 − p levels to match the

remaining nodes. So the memory complexity bound reduces to O[(N1 − p)2(N2 − p)]. By

pre-assigning a large number of nodes between the graphs, the size of the VMM can be

reduced substantially.

5.5.2 Search Strategy

A pseudo-code description of the MCS algorithm is shown in Listing 1. The algorithm

performs a depth-first search, with a heuristic for pruning unfruitful search paths. Each

state s in the MCS algorithm represents a common subgraph of the two graphs. This

common subgraph is part of the maximum common subgraph to be eventually formed.

The first state is the empty state, in which no nodes have yet been matched. In each state,

a pair of nodes (n1,n2) to be tried next is selected through the function NextPair(s,n1,n2).
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The node n1 belongs G1 and n2 belongs to G2. Given an n1, the next node in the VMM’s

list for n1 is selected to be n2. If all compatible nodes for n1 have been tried, a special

node called the null node (labeled as φ) is matched to n1. A null node mapping signifies

that n1 cannot be mapped to any node in the current search branch, and is a mechanism

to allow the search to proceed to the next state in that branch. If all nodes from G1 have

either been matched or no further compatible matching exists, then the current state is a

leaf state of the search tree. In this case, if an MCS has been found in this branch, it is

added to the set of all MCSs found so far by the function AddToSet. The function adds

unique MCSs to the set by checking that no existing MCS in the set is a copy of the one

to be added.

Algorithm 1 Calculate all maximum common subgraphs between two graphs

procedure FindMCS(State s)
begin

while NextPair(s, n1, n2) do
if IsFeasiblePair(s, n1, n2) then
State s1 = AddPair(n1, n2)
if Size(s1) >= currentSize then

currentSize = Size(s1)
currentState = s1

end if

if IsExpandable(s1) then
FindMCS(s1)

end if

BackTrack(s1)
end if

end while

AddToSet(currentState)
end

The selected node pair is analyzed through the function IsFeasiblePair(s,n1,n2) that

checks whether it is possible to extend the common subgraph represented by the current

state by means of the new pair, so obtaining a larger common subgraph. The function

checks if there are any edges from the node n1 to the set of nodes {ni
1} of G1 in the common

subgraph. For each such edge, there should be a corresponding edge from node n2 to the
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node ni
2 of G2 that is mapped to ni

1 of G1 in the common subgraph. The same check is

carried out for all edges from n2 to {ni
2} of G2 in the common subgraph. If the pair can be

added, the function AddPair(n1,n2) extends the current partial solution by adding (n1,n2)

to the common subgraph, thereby creating a new state s1 of the search space.

The VMM for s1 is refined in AddPair(n1,n2) by eliminating from each list, all nodes

from G2 that have become structurally incompatible with the corresponding node from G1

because of the addition of the pair (n1,n2). The node n2 is also eliminated from the lists

of all unmapped nodes in G1, since any node from G2 can only be mapped once to a node

from G1 in any search branch. Refining the VMM in each new state can drastically reduce

the number of node comparisons performed at each level as the search proceeds. The size

of the largest common subgraph found so far (stored in currentSize) is compared to the

current common subgraph, and is updated if the current mapping is larger.

The function IsExpandable checks whether the exploration the state s1 further will

possibly result in a common subgraph of the same size or larger than the ones found so

far. This is done by checking how many of the remaining (unmapped) nodes of G1 in

the VMM have non-empty lists, i.e., they have one or more possibly compatible nodes in

G2 in the current branch. If the number of such remaining nodes added to the size of

the current common subgraph is less than currentSize, the state s1 is not explored any

further. Otherwise, the FindMCS procedure is recursively called with s1 as input. After

the state has been analyzed, the BackTrack function is invoked to restore the common

subgraph of the previous state, and to choose a different new state.

A portion of the MCS search space is given in Fig. 5.3 (b) for the pair of simple graphs

in Fig. 5.3 (a). Each oval represents a state in the search space, i.e., a common subgraph

between the two graphs. Red ovals represent a maximal common subgraph found during

the search. The red crosses denote that the tried mapping was not successful, resulting in

a backtracking to the previous state. Using this search strategy, whenever a branch of the
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Figure 5.3: Search space of MCS algorithm.
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search tree is chosen, it will be followed as deeply as possible until a leaf state is reached,

or until a pruning condition is verified.

It is noteworthy that each branch of the search tree has to be followed because, except

for trivial examples, it is not possible to foresee if a better solution exists in a branch that

has not yet been explored. This full exploration of all the possibilities makes the MCS

algorithm computationally expensive as the size of the input graphs grow. In order to use

the MCS search practically, our algorithm allows the user to specify whether to return only

the first MCS found or the set of all MCSs. Asking the algorithm to return only the first

MCS allows it to prune any branches that do not contain a subgraph that is larger than

the current one, and results in a much faster search time, as demonstrated in Sec. 5.6.

5.6 Performance Evaluation

To evaluate the performance of our MCS and monomorphism algorithms, we have run

each algorithm on a set of pairs of randomly generated typed graphs. Our graph generator

allows us to create graphs with the following parameters: number of node types, edge

density, size of common subgraph, and number of pre-mapped nodes. The number of node

types defines the size of the set of unique labels for the nodes and is defined as a ratio of

the size of the parent graph. Every node in a graph is randomly assigned a type from this

set based on a uniform distribution. The edge density defines how dense the graph is and

is calculated based on the edge probability η (details are given in subsection 5.6.1).

Every graph created by our random graph generator contains a common subgraph

embedded in it. The common subgraph is a ring structure whose size can be varied based

on the number of nodes of the parent graph. Embedding a known subgraph in all created

graph pairs guarantees that our algorithms return at least this graph upon completion.

The size of the common subgraph is defined as a ratio of the size of the parent graph.

The number of pre-mapped nodes defines how many nodes of the common subgraph in

each graph are mapped beforehand, and is defined as a ratio of the size of the common
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subgraph. For a given graph size, one hundred pairs of random graphs were generated,

and the average time taken over all these pairs was taken as the performance time of the

algorithm. All tests were run on an IBM Thinkpad laptop with an Intel dual-core 2.5 Ghz

processor and 4 GB of RAM. The software environment was Windows 7 (64-bit) OS, with

Eclipse Helios (3.6) as the execution platform.

5.6.1 Calculating Edge Density

Let NC be the number of components and let each component have P number of ports.

Similarly, let NN be the number of connectors and let each connector have R number

of roles. The total number of vertices in the corresponding architecture graph is NV =

NC(P+1)+NN(R+1). Each component contributes P edges, since a component is attached

to its P ports. Similarly, each connector contributes R edges due to the attached roles. We

follow the convention that each port is attached to only one role, and hence contributes a

single edge. The edges from each role to its connector are already accounted for in the edge

count for each connector. Hence, the total number of edges is NE = 2(NCP ) +NNR. The

binary connector (i.e., a connector with two roles) is the most common in architectures.

With the restriction that a port is always connected to a single role, the number of binary

connectors is always NN = NCP

2
and R = 2. Hence, for architecture graphs with binary

connectors, we have: NV = NC(P + 1) + NCP

2
.(2 + 1) with NE = 3NCP .

An undirected fully connected graph with N vertices has N(N−1)
2

edges. We use an

edge probability parameter, η, to create graphs with N vertices and a random number of

edges, given by E = η.
(

N(N−1)
2

)

. A value of 0 for η results in an unconnected graph

(N isolated nodes) while a value of 1 results in a fully connected graph. To arrive at a

representative value of η for architecture graphs with binary connectors, we calculate η for

various numbers of components and ports. Consider an architecture with 10 components

with 5 ports each, which implies 5 binary connectors. Hence, the number of edges NE

is 150 and η = 2NE

N(N−1)
is 0.0166. However, as the number of components increase, η

75



reduces rapidly, since architecture graphs are essentially sparse. For an architecture with

25 components with 10 ports each, η is 0.0036, while for 50 components with 10 ports

each, η is 0.0018. In [54], a detailed evaluation of a number of MCS algorithms on a large

database of random graphs was made. The edge probability parameter for sparse graphs

in the database was chosen to be 0.05 to keep the running times of the experiments within

practical bounds. Hence, we choose η to be 0.05 for the performance evaluation of our

algorithms as well.

5.6.2 MCS Performance

For tests with the MCS algorithm, the number of nodes in the graph was varied from 10

to 100. We chose 40 as the size of the largest graph for the first test to keep the running

time of the test (with 100 iterations for each graph size) within practical bounds. Most

standard performance benchmarks for MCS algorithms (without pre-mapping of nodes)

use between 30 to 40 nodes as the graph size for the same reason [54]. We specified that

the algorithm return the first largest MCS found.

The first test evaluates the impact on the performance as the size of the common

subgraph between the two graphs is changed while keeping the other parameters constant

(no pre-mapped nodes and a fixed size of fifteen for the set of node types). In particular,

we increased the size of the common subgraph from 25% to 75% of the parent graph size

and plotted the performance in Fig. 5.4. The result shows that as the size of the common

subgraph gets larger, the MCS algorithm runs to completion more quickly. This is explained

by the observation that once a large common subgraph is found during the search, any

branches containing smaller subgraphs are pruned away quickly by the algorithm. This

result suggests that views that focus on a very small part of the BA will take longer for the

MCS checker to find the set of common elements, owing to the relatively smaller common

subgraph between the view and BA graphs. Views that relate to a large portion of the BA

are easier for the MCS algorithm to deal with.
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Figure 5.4: MCS performance with varying size of common subgraph.
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The second test evaluates the impact of pre-mapping certain nodes in the common

subgraph between the two graphs. The size of the common subgraph was kept at 75%

of the parent graph size, with fifteen as the size for the set of node types. We varied

the number of pre-mapped nodes from 25% to 75% of the size of the common subgraph

and plotted the performance in Fig. 5.5. The result shows that the running time of the

algorithm reduces substantially as the number of pre-mapped nodes increases. This is

explained by the observation that as more nodes are pre-assigned between the two graphs,

the initial size of the VMM becomes smaller. As the search progresses, the algorithm is able

to rapidly prune search branches much earlier by taking advantage of the extra mapping

information for the nodes. We see that the graph for 75% common subgraph without any

nodes pre-mapped (in Fig. 5.4) has a much larger running time than any of the times

for the same common subgraph size with pre-mapping information included. This result

suggests that pre-mapping view elements has a significant benefit on the performance of the

MCS algorithm. There is a trade-off between the number of view elements that a designer

should pre-map to how long the algorithm will take to find the consistent elements.

5.6.3 Monomorphism Performance

For tests with the monomorphism algorithm, the number of nodes in the graphs were varied

from 50 to 500, and the first monomorphism found was returned. The running times for

the algorithm are faster compared to those for the MCS search because a large number

of branches can be pruned very early in the monomorphism check, since the algorithm is

not trying to construct a common subgraph. As for the MCS test, we increased the size

of the source graph from 25% to 75% of the target graph size and plotted the performance

in Fig. 5.6. The result shows that the running time of the algorithm increases as the size

of the source graph increases. This is explained by the observation that it is easier for

the algorithm to find a smaller matching, compared to a larger matching. As a best-case

example, let the source graph be of size one (one common node of the same type between
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Figure 5.5: MCS performance with varying size of pre-mapped nodes.
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Figure 5.6: Monomorphism performance with varying size of common subgraph.
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the two graphs). The algorithm can quickly find the common node and return the result.

However, as the source graph grows, a larger number of tests have to be carried out for the

structural compatibility of newly added nodes from the target graph. This leads to longer

running times, as reflected in the results.

5.7 Tool Framework for View Consistency

The Acme view editor allows the user to check for consistency between the view and BA,

once required mappings between them have been defined using the map creation capabilities

of the editor. The user brings up a consistency checker pane with buttons for the following

options:

• Run a view conformance or view completeness check for the current view.

• Run the MCS algorithm to find the set of maximally matched elements, if consistency

checking has failed.

• Add the complete system map returned by the consistency checker or MCS algorithm

to a map file.

• Add a selected element map (component or connector) to a map file.

In Fig. 5.7, a screenshot of the view editor containing the hardware view and BA is shown,

along with the pane containing options for running the graph consistency checkers. The

user clicks on the Find Consistency button to run the monomorphism check between the

view and BA graphs. The graph checker runs as a background process so that the user

can still use the editor to perform other tasks. Since the hardware view is structurally

consistent with the BA for this example, the graph checker returns a set of successful

mappings between the view and BA. In the current example, we have restricted the checker

to return a single mapping (Option 1 in Fig. 5.8).

The map information includes the names of the mapped elements, along with the

associated map type of each map instance. Clicking on any map instance highlights the
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corresponding elements visually as is seen in Fig. 5.8. In this case, the highlighted map

shows that Motor 1 in the BA has been mapped to Act 1 in the hardware view using the

ActuatorMapT maptype. The user can decide to add this mapping to the current map file

or delete the mapping and run another type of consistency check. The user also has the

option to define new element mappings at this state. The tool automatically deletes all

those mappings from the set that do not contain the newly defined map(s). This feature

allows the uses to eliminate undesired mappings from the set of results, based on new

information.

5.8 Summary

In this chapter, we define structural consistency of architectural views with the BA as the

existence of a morphism relation between the graphs of the view and BA. We introduce

view conformance and view completeness as two types of consistency conditions, based

on whether a monomorphism or an isomorphism exists between the view and BA graphs,

respectively. We describe our graph morphism and MCS algorithms that are used to check

for consistency or find the set of maximal consistent elements between the view and BA,

respectively, and evaluate their performance on a set of randomly generated graphs. We

also describe our tool framework for view consistency support in AcmeStudio that allows

the designer to run consistency checkers and visually edit the element maps between a view

and the BA.
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Chapter 6

Case Study I : STARMAC

In this chapter we present the first of two case studies that demonstrate the application of

our approach to real-world systems. The case study is based on an autonomous avionics

system, the STARMAC quadrotor, and is an example of how our architectural approach

can be applied to an existing system for which legacy models and implemented code are

already present. We first create multiple views of the quadrotor that are derived from

the heterogeneous models used for the system’s analysis and design. We then check the

consistency of each architectural view with the quadrotor’s base architecture using our tool

framework in AcmeStudio. We elaborate on the mismatches discovered and their impact

on the integrity of the implemented system.

6.1 Introduction

The Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control (STARMAC)

[3] is a quadrotor platform developed to test algorithms that enable autonomous operation

of aerial vehicles. As shown in Fig. 6.1, the aircraft has four rotors arranged symmetrically

about its body frame. The rotors are powered by lightweight, brushers DC motors with a

maximum thrust of 8 Newton per rotor. The body frame is a light-weight, custom-made

structure to securely contain the controller boards, sensor suite, and batteries.

The STARMAC has a hierarchical control system, with a low-level attitude controller
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Figure 6.1: The STARMAC quadrotor [3].

(AC) running on a Robostix embedded processor, and a high-level position controller (PC)

running on a powerful Intel Atom-based board (or a Gumstix or PC104 board variant).

The different hardware variants used for the PC reflect the capabilities needed for different

mission scenarios. The ground station controller (GSC) is a high-level motion planner

and coordinator for the quadrotor. It generates reference trajectories for the quadrotor

to follow, displays telemetry data received from the vehicle, and manages coordination

among multiple aircraft. The ground station also has joysticks for control-augmented

manual flight, when desired. The two onboard controllers communicate through a serial

link connecting the Robostix and Atom boards. Communications between the vehicle and

the GSC are managed over a WiFi network, using the UDP protocol.

The STARMAC design team has documented the software subsystems and the hard-

ware architecture of the vehicle. The complete source code for the software running on the

Robostix and Atom boards as well as the GSC were made available to us. In addition, an
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existing detailed Simulink model (henceforth called SM-1) for the closed-loop quadrotor

system containing position and attitude controllers, a six degree-of-freedom (DoF) plant

model with nonlinear blade-flapping dynamics, and sensor and actuator models was pro-

vided by the quadrotor’s control design team. The SM-1 model includes certain platform-

level details which are reflected in the model architecture, with subsystems for the Robostix

and Atom boards, as well as for the GPS and IMU sensor modules.

Hence, the quadrotor design artifacts include the complete source code, a Simulink

model, papers describing the vehicle dynamics with equations of motion, and hardware

configuration diagrams. In the following section, we describe the creation of the BA of the

STARMAC quadrotor using the available design artifacts.

6.2 Base Architecture

The BA of the quadrotor is created in the CPS style, which allows for the unified rep-

resentation of the cyber components (control algorithms and real-time software) and the

physical dynamics (forces and torques acting on the vehicle frame). Figure 6.2 illustrates

the use of the CPS style to model the quadrotor in AcmeStudio. On the cyber side, each

controller in the system (AC, PC, and GSC) is mapped to a separate computation com-

ponent (Flyer, Starmac, GndStation) that implements the control algorithm. The names

of the components are derived from the names of the corresponding main threads in the

source code. The communication of setpoints from a higher-layer controller to a lower-layer

controller is modeled as a send-receive connector. The periodic relaying of vehicle state

from the lower control layer to the higher layer is modeled as a publish-subscribe connector.

This illustrates the use of distinct connector types to represent different communication

patterns between the same components. Since there is no direct communication chan-

nel between the attitude controller and the ground station, no connector exists between

them. Each cyber port represents a distinct data unit exchanged between components.

The names and types of ports are derived from the names and types of data being passed
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Figure 6.3: Acme representation of the Flyer component.

between the corresponding processes in the source code.

We model the quadrotor’s physical architecture from first principles, and by studying

the six DoF vehicle subsystem in the SM-1 model. The vehicle frame is modeled as a

rigid-body mechanical component, whose mass and moment of inertia (MI) are affected by

the forces and moments acting at its physical ports, according to the dynamic equations

of motion. Each rotor assembly and motor actuator (with its controller) is modeled as a

single C2P transducer called Act, containing an input cyber port and two mechanical ports,

one each for the translational and rotational domains. The Act component models the

conversion of cyber actuation commands from the attitude controller to an output thrust

(force) and torque acting on VehicleFrame. Each Act is connected to the VehicleFrame by

two equal position physical connectors, one for force balance and one for moment balance.

These connectors model the action and reaction mechanical coupling between each rotor

assembly and the vehicle frame.
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Figure 6.4: Acme representation of the Starmac component.

The drag force is described as a dissipative component, whose magnitude depends on

the wind velocity (modeled as an effort source) and the aircraft velocity, among other

parameters. The complex empirical relationship of drag force to the velocities at its ports

is annotated as a behavior property of the component. Gravitational force is modeled as a

flow source component, since it exerts a constant downward force on the quadrotor, and is

connected to the vehicle frame by a physical connector. The IMU, sonar, and GPS are all

modeled as P2C transducers, since they perform filtering on their raw sensor readings. On

the cyber side, they are connected to their respective controllers by publish-subscribe cyber

connectors, since these sensors send periodic streams of data to the controllers. On the

physical side, they are connected by measurement connectors to the vehicle frame. The

sonar component is annotated with device parameters including detection beam width,

effective range, and resolution. The IMU and GPS devices are similarly annotated with

their performance parameters.

Several components in the BA are refined further to add structural detail to the ar-

chitecture. For example, each of the cyber controllers has an Acme representation that

contains components for the various threads or functions that make up the code for each
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controller. The internal structure of the Flyer component is shown in Fig. 6.3. Since the

Flyer is a multi-threaded process, each sub-component represents a single active thread.

The various Handler threads (IMU,GPS,Ground) are created for the concurrent commu-

nication between the Flyer and other devices on the quadrotor. There is also a main

Controller thread for position control. The Estimator thread implements an extended

Kalman filter that is used to combine GPS and raw inertial measurements for accurate

full-state estimation. The internal structure of the Starmac component is shown in Fig.

6.4. The Starmac code is implemented as a single thread and each sub-component rep-

resents various functions in the thread. The ports on the sub-components represent the

parameters passed between these functions.

Similarly, there are Acme representations for each of the Act components, and for the

VehicleFrame. Each Act representation (shown in Fig. 6.6) has a sub-structure with a

Pulse-Width Modulation (PWM) motor controller, a motor, and a rotor as separate com-

ponents. The PWM controller is a C2P transducer that converts the controller’s actuation

command into a physical voltage that drives the motor. The motor component converts

an input voltage into a torque output at its shaft. The torque is transmitted through

the physical coupling connector to the rotor component’s mechanical input port. Based

on the torque from the motor and the aerodynamic parameters of the rotor blades, the

rotor transmits a resultant force and torque on the quadrotor frame. The VehicleFrame

representation (shown in Fig. 6.5) currently contains a simple decomposition of the vehicle

body into mass and MI components, with all input forces acting on the mass and all input

torques acting on the MI.

6.3 Architecture Views

In this section we describe the creation of five views of the quadrotor, based on the models

created in the software, control, hardware, and physical design concerns.
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Figure 6.5: Acme representation of the VehicleFrame component.

Figure 6.6: Acme representation of the Act component.
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6.3.1 Software View

To study the safety properties of the control software implemented onboard the quadrotor,

we have modeled the behavior of the source code as a Finite State Process (FSP) [55]

specification. FSP is a process algebra where behavior is modeled in terms of event pat-

terns, called processes, that denote sets of event traces. Each event in a trace represents a

discrete transition of a system. Parallel processes synchronize on shared events, which can

also be used to pass values between processes. In general, FSP captures the behavior of

cyber elements fairly well, while physical elements are described by abstracting away their

continuous dynamics.

The Labelled Transition System Analyzer (LTSA) is a verification tool that uses FSP

to model the behavior of concurrent systems [55]. We use LTSA’s capability to perform

compositional reachability analysis to exhaustively search for violations of the following

system safety property: the quadrotor should never receive a command to turn off all

rotors while the vehicle is flying. The source code of the attitude controller contains

logic (shown below) to turn off the rotors based on certain conditions being met, such as

intermittent communication with the position controller or ground station.

if (refState.loopcount>MAX_LOOPS)

{

LED_ON(BLUE); // Indicate time out

emergencyOff = TRUE;

}

else

{

LED_OFF(BLUE); // Indicate normal

emergencyOff = FALSE;

}
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if ((refState.command.trigger!=1)||emergencyOff){

for (motor=0; motor<NUM_MOTORS; motor++)

setpoint[motor] = 0; // TURN OFF MOTORS

}

The FSP model was created by studying the source code (written in C) of the pro-

grams that implement the onboard controllers and ground station, and the communication

protocol between the controllers and with the sensors of the STARMAC. The behavior of

each controller and sensor has been modeled by a primitive FSP processes, and the data

exchanged is represented as shared events between the processes. The GSC process sends

waypoints to the PC and accepts telemetry data from it. In addition, the GSC periodically

sends a trigger packet to the AC through the PC as mechanism to check that the commu-

nication channel is active. The lossy nature of the wireless medium between the GSC and

PC is modeled by allowing the GSC process to drop one or more packets (the event does

not occur in the process). The PC relays the trigger packet as well as attitude setpoints to

the AC and accepts feedback readings from it. Concurrently, the PC also reads in position

data from the GPS. The AC waits for a setpoint from the PC, reads the IMU and sonar

data, calculates the motor commands, and sends them to the quadrotor. If the AC does

not get any trigger packet from the GSC or a setpoint from the PC within a certain interval

of time, it sends a command to turn off all motors (and hence all attached rotors). This

behavior is modeled with a tick event in the AC process, which leads to a set of sendOff

events, once a certain number of ticks have occurred. Since the PC and AC are connected

by a serial link, the communication between them is modeled with a lossless link i.e., the

PC sends all the packets to the AC, and the AC never drops any information.

Each sensor is modeled as a simple FSP process which senses the state of the quadrotor

process, generates a reading, and sends it to the appropriate controller. The quadrotor’s

complex dynamics are abstracted by an FSP process (QUADROTOR) with three states:
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Flying, Not Flying, and Crash. The process enters the Crash state any time a command

to turn off all four rotors is received while the quadrotor is flying. On checking the safety

condition of the FSP model with LTSA, we obtain a trace that confirms that quadrotor can

receive a “rotors Off” command while it is flying. This is due to the lossy communication

medium between the GSC and PC that allows the possibility of multiple trigger packets

being dropped, leading to the AC timing out and commanding the rotors to turn off while

the vehicle may still be in flight. This analysis shows how assumptions about the behavior

of the communication channel (a cyber property) affects the controlled dynamic behavior

of the quadrotor (a physical property).

The software view for the quadrotor is created by mapping each process in the FSP

specification to a software component. Each port on a component represents the events

that the associated FSP process can share with other processes. In Fig. 6.7, a portion

of the FSP model is shown, where the GND STN and ATTITUDE CTRL processes are

mapped to corresponding components of type Controller. Two shared events of the ATTI-

TUDE CTRL process (recvSonar and sendOn) are mapped to corresponding ports on the

AttitudeCtrl component. A connector between two components represents the synchroniza-

tion of shared events on the attached ports. For example, the shared trigger events between

the GND STN and POSITION CTRL processes, and between the POSITION CTRL and

ATTITUDE CTRL processes are represented by explicit connectors between the respec-

tive components in the view. In the general case, a connector could also be defined by

an FSP process, e.g., a connector that describes the protocol for interaction between the

position and attitude controller processes. The QUADROTOR process is mapped to the

corresponding component of type Device, and represents the abstraction of the physical

quadrotor behavior in relation to the software functionality.

The mapping between the software view and the BA of the quadrotor is shown in

Fig. 6.8. Since the FSP model abstracts the data communication between the controllers
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Figure 6.8: Mapping between software view and BA of quadrotor.
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through single events, all data connectors between the GndStation and Flyer components

in the BA are mapped to a single connector between the GndStation and PositionCtrl com-

ponents in the view. A similar mapping exists for each set of multiple connectors between

components in the BA, to a single connector in the software view. The encapsulation of

connectors in this way reflects the abstraction made in the view about the details of the

data being exchanged between software components. Since the focus of analysis in the

FSP model is the communication protocol between controllers and the type of data being

exchanged to maintain the safety property of not crashing, the connectors for telemetry

and feedback data in the BA are abstracted away as single connectors in the view.

6.3.2 Control View

For the quadrotor, there are two control views, one for each existing Simulink model. The

first control view corresponds to the SM-1 model (created by the Stanford team) that

contains a detailed nonlinear dynamic model of the quadrotor, the inner and outer loop

controllers, the ground station, as well as the dynamics of the IMU and GPS sensors. The

creation of the control view from the SM-1 model is shown in Fig. 6.9. The structure of the

Simulink model (and hence the view) reflects some of the hardware configuration of the

quadrotor, with separate top-level subsystems for the robo stix and gum stix processors,

as well as individual blocks for the two sensors. The vehicle dynamics are contained in the

starmac dynamics block. Each top-level Simulink block is mapped to a component in the

control view, and each group of signal lines between blocks to connectors, resulting in the

control view’s AV , as shown in Fig. 6.9.

The mapping between the control view and the BA of the quadrotor is shown in Fig.

6.10. The physical components and connectors representing the dynamics of the vehicle

frame in the BA are mapped to the single Quadrotor component in the view. This repre-

sents the encapsulation of the quadrotor’s physical dynamics as a single block defined in the

corresponding Simulink model. The Quadrotor component can internally contain details
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Figure 6.11: Creating control view from CMU Simulink model.
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Figure 6.12: Mapping between control view for SM-2 and BA of quadrotor.
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about the physical structure and this internal representation can be mapped to and com-

pared with the internal structure of the corresponding Simulink block (starmac dynamics)

in a hierarchical manner. The two controllers and sensors in the view are mapped to

appropriate elements in the BA as well.

Our team at Carnegie Mellon created another Simulink model (henceforth called SM-

2) that focuses on the control design of the quadrotor only, with the model’s architecture

based on the standard controller-plant feedback configuration. The creation of the control

view from the SM-2 model is shown in Fig. 6.11. The architecture does not contain

any elements representing sensors or actuators, since these are typically encapsulated into

the plant dynamics in a traditional controller-plant feedback configuration. The mapping

between the control view’s AV and the quadrotor’s BA is shown in Fig. 6.12. The physical

plant dynamics are encapsulated as a single view component, which now includes all the

sensors in the system. The controllers in the BA are mapped to individual components

in the view. The number and type of connectors in this view are different from those in

the SM-1 control view. This reflects the different assumptions made in each view about

the types and sources of the control and feedback data available to the controllers, and

indicates the possibility of different control algorithms being used in the corresponding

Simulink models.

6.3.3 Hardware View

The hardware view describes the hardware architecture of the complete quadrotor system,

which includes the aerial vehicle and the remote ground station. The hardware architecture

documentation of the STARMAC that is used by the Stanford team is shown in Fig. 6.13.

Based on this design specification and the layout of the physical hardware on the vehicle,

the hardware model was created in AADL using the open-source OSATE framework [23].

The vehicle is equipped with three sensors for full state estimation. A Microstrain

3DMG-X1 IMU provides three-axis attitude, attitude rate, and acceleration measurements.
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Figure 6.13: Quadrotor hardware architecture [3].

Height above the ground is determined using a sonic ranging sensor, either the Devantech

SRF08 or the Senscomp Mini-AE. Three-dimensional position and velocity measurements

are made using differential GPS relying on the Novatel Superstar II GPS unit. The Ro-

bostix and Gumstix (or Atom/PC104) communicate via a 115 kbaud RS-232 (serial) link.

Communications between the high-level computers and the ground station are managed

through UDP over a WiFi network. The Gumstix uses 802.11b, and the PC104 uses

802.11g. The sonar sensor and IMU are connected to the Robostix through I2C and serial

links, respectively. The GPS is connected to the Gumstix board through a serial link as

well.

The hardware view is created from the AADL model, as shown in Fig. 6.14. Each AADL

processor and device is mapped to a component with the corresponding type, and each

communication bus is mapped to a corresponding connector. The mappings were created

manually for this example. One could envision a plugin that automatically creates the view

by translating the textual specification file of the AADL model into the corresponding view
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elements, based on the association between the AADL hardware element types and the

view’s architectural style.

The mapping between the hardware view and the BA of the quadrotor is shown in Fig.

6.15. Since a connector between two hardware components represents a communication

channel between them, all data connectors between two components in the BA are mapped

to a single connector in the view. This is a semantically meaningful encapsulation for

hardware connectors because multiple types of data between system elements can go over

the same physical communication channel. The software components are mapped to the

hardware processors on which they run in the actual system.

6.3.4 Physical View

The physical view models the dynamics of the quadrotor in terms of the forces and torques

applied by the rotors to the vehicle frame. With reference to Fig. 6.16, the roll, pitch

and yaw angles (φ, θ, and ψ, respectively) are controlled by providing differential thrust

to the vehicle frame via the motors. Differential thrust between opposite motors provides

roll and pitch torques while differential thrust between the two pairs of counter-rotating

motors provides yaw torque. Position control with respect to the inertial (North-East-

Down) coordinate frame is accomplished by controlling the magnitude and direction of the

total thrust. A drag force, DB, also acts on the vehicle in the direction opposite to that of

the vehicle’s velocity, eV .

The nonlinear dynamics of the quadrotor can be modeled by a point mass m with

moment of inertia Ib ∈ R3×3, location ρ ∈ R3 in the inertial frame, and angular velocity

ω ∈ R3 in the body frame. The vehicle undergoes forces F ∈ R3 in the inertial frame and
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Figure 6.16: Free-body diagram of quadrotor dynamics.

moments M ∈ R3 in the body frame, yielding the equations of motion,

~F = −DB~eV +mg~eD +RB
I

4
∑

i=1

Ti~zB

~M =
4

∑

i=1

Ti(~ri × ~zB)

where g is the acceleration due to gravity, and RB
I is the rotation matrix from body

coordinates to inertial coordinates.

We have implemented the dynamics model of the quadrotor in the Modelica language

using the OpenModelica tool [56]. The creation of the physical view from the Modelica

model is shown in Fig. 6.17. The physical architectural style enables the formal repre-

sentation of such dynamic behavior in the overall system architecture. The semantics of

the physical view are defined in terms of components representing physical phenomena,

interacting through the non-causal interconnections between the effort and flow variables

of each attached component’s ports. Since the Modelica language also has equation-based

108



Table 6.1: Models and Views created for STARMAC quadrotor.

Model View Analysis

FSP Software Safety properties of the control
software

Simulink SM-1 Control Stability and control performance
with platform and device details

Simulink SM-2 Control Stability and control performance
with idealized control design

AADL Hardware Processor and bus requirements
for implementation platform

Modelica Physical Quadrotor dynamics with rotor
forces and torques

semantics, there is an almost direct mapping between the elements in the model and in

the view.

The mapping between the physical view and the BA of the quadrotor is shown in Fig.

6.18. Since the architectural style of the physical view is derived completely from the

physical style of the CPS family, there is again an almost direct mapping between the

view elements and the physical elements in the BA. However, force and torque connec-

tors between the Act components and the VehicleFrame in the BA are mapped to single

connectors in the view. This is due to the fact that Modelica allows multiple conjugate

variables to be defined on a single port, while our CPS style currently makes each pair of

conjugate variables explicit by defining separate ports (and hence individual connectors)

for each pair.

This encapsulation of multiple, semantically equivalent connectors in the BA to a single

connector in the view has also occurred in the other views, and seems to be a common map

pattern for the models that we have studied so far. The multiple views for the quadrotor

that are created based on the existing analysis models are summarized in Table. 6.1.
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6.4 View Consistency

In this section, we apply the view conformance and view completeness checks to the views

of the quadrotor, and highlight what inconsistencies were uncovered and their impact on

the consistency of the complete system.

6.4.1 Software View

We first run a conformance check between the software view and the BA of the quadrotor,

using the AcmeStudio view editor tool. The check fails and the view editor gives us the

option to find the maximal set of mapped elements. In general, the MCS algorithm returns

a number of feasible mappings between the view and the BA. For the case study, we have

limited the number of maximal mappings returned to the first one found, so that there is a

practical time bound for the algorithm to return the search result. The returned mapping

from the MCS algorithm is shown in Fig. 6.19. Using the option to display only unmapped

elements in the view, the editor has highlighted the connector between GndStation and

PositionCtrl and the connector between PositionCtrl and AttitudeCtrl components, along

with their associated roles and ports. These elements represent the sending of trigger

packets from the GSC to the AC via the PC. Since the BA did not have any corresponding

connectors, the consistency check failed and the MCS algorithm returned all view elements

as mapped, except this set of missing elements.

We realise the fact that since the software view for this case study is comparatively

small in size, the missing connectors could have been noticed by visual inspection as well.

However, one could envision the view-to-BA mapping for larger systems being done auto-

matically, either by having consistent names for corresponding architectural elements, or

by having a set of structural patterns in the view being mapped to a corresponding set of

patterns in the BA, using graph grammar specifications. In such cases, manually finding

inconsistent elements in the view can become a non-trivial task, and the MCS algorithm
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could prove useful in discovering the set of such missing view elements.

Once the inconsistent elements are discovered, we choose to modify the BA by adding

the missing connectors between the respective components, so that the significance of the

trigger protocol for the safety of the quadrotor is highlighted in every other view of the

system. This is an example of how the BA of the system can be modified during the design

flow, so that important details about system structure or function that are discovered in

a particular view can be made available to every other view in the future. The BA and

each view of the system evolve throughout the system design process, as new information

about the system is discovered through the analysis of the associated models.

Once the missing connectors are added in the BA, we run the conformance check again

for the software view. In Fig. 6.20, the mappings returned by the checker are displayed.

The trigger connector between GndStation and PositionCtrl in the view is now correctly

mapped to the newly added corresponding connector in the modified BA. A similar map-

ping is returned for the view connector between the PositionCtrl and the AttitudeCtrl

components. We use the modified BA of the quadrotor as the new BA for subsequent

consistency checks with the other system views.

6.4.2 Control View

For the first control view, the conformance check with the BA fails. Hence, we run the

MCS algorithm to find the set of maximal common elements. As before, from the mapping

returned by the MCS algorithm, we determine all the view elements that remain unmapped.

Our tool post-processes the result, and highlights all the architectural elements attached

to the unmapped elements as well. In this example, the MCS algorithm returns a set of

unmapped ports in the view. Hence, all connectors (and roles) attached to those ports are

also inconsistent. The set of inconsistent elements in the first control view are highlighted

in Fig. 6.21.

There are two causes of inconsistency between the control view and BA. The first
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inconsistency arises due to the connectors existing between the sensor output ports of the

GPS and the input ports of the AttitudeCtrl component in the control view. However,

according to the BA topology, the GPS sensor is connected to the position controller (Flyer

component) directly. The second inconsistency is caused by an extra connector between

the AttitudeCtrl and PositionCtrl components. This connector represents velocity readings

from the GPS sensor, passed through by the AttitudeCtrl to the PositionCtrl. No such

corresponding connector (with compatible type and direction of data flow) exists in the

BA. Both of these inconsistencies can be traced back to the SM-1 model, as shown in Fig.

6.22.

This is an example where the system model is functionally correct, i.e., the control

system designed in the SM-1 model achieves attitude and position tracking within the

performance requirements. However, the model is not architecturally consistent, i.e, it

does not respect the connectivity constraints imposed by the BA. As a result, there is

a mismatch between how the hardware and software components are connected on the

physical vehicle and the topology assumed by the SM-1 model. Such architecture-level

mismatches are caught by the view consistency definition, since the misplaced/missing

connectors prevent a successful morphism between the view and the BA graphs.

The reason that the SM-1 model works correctly in this instance is because the robo stix

block passes the GPS signals untouched to the gum stix block, where they are actually used.

However, the ramifications of these mismatches could be serious. Suppose, for example,

that the stability of the attitude controller is verified based on the assumption that the

GPS signal is directly available to it. When the final quadrotor system is implemented

based on the actual hardware architecture, the attitude controller has no access to the

GPS sensor. Hence, the stability results obtained in the control view are not applicable to

the actual system. This is an unintended and potentially dangerous consequence of having

inconsistent views (and models).
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We correct the inconsistency in the view (and the SM-1 model) by connecting the

GPS sensor directly to the position controller and removing the extra connector from the

attitude controller to the position controller. The conformance check for the corrected

control view succeeds. Since the focus of a control view is on the complete system (both

cyber and physical concerns), we also check for view completeness, which fails. We run

the MCS algorithm to find out which elements in the BA are not being mapped to any

elements in the view. The resulting set of elements, displayed in the AcmeStudio view

editor, is shown in Fig. 6.23.

There are three sets of connectors (and their associated roles and attached ports) that

cause view incompleteness. The first set represents telemetry data that the position con-

troller periodically sends to the ground station for mission status updates, and the trigger

connectors added to the BA due to the software view analysis. This type of mismatch

is an example of communication between components that is typically neglected in the

control view, since the data does not contribute to the functional correctness of the control

algorithm. However, it has an impact on the specification of the channel bandwidth and

the quality of the wireless link between the vehicle and the ground station, as well as on the

execution time of the position controller component. The absence of the trigger connectors

in the control view shows an important software protocol that is not accounted for in the

control design.

The second set of connectors represents aerodynamic correction factors and the altitude

setpoint sent by the position to the attitude controller. This type of mismatch indicates

that the types of data used for control actions in the SM-1 model and in the implemented

software are different. In fact, the control software on the actual vehicle uses estimation

components to filter readings inside the position and attitude controllers. These com-

ponents are present in the detailed representations of the components in the BA of the

quadrotor. The controllers used in the SM-1 model do not have the same implementa-
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tion as those in the source code. Even though structural view consistency cannot detect

behavioral inconsistency between components, it is possible that indications of behavior

mismatch can be detected based on the differences in the types of data that used by the

components to implement their functional requirements.

The third set of connectors consists of a single connector between the Sonar sensor and

the Starmac component (representing the attitude controller) in the BA. This connector

represents height readings from the sonar which are used in maintaining a set altitude in the

attitude controller. This connection is missing in the view because an incorrect assumption

is made in the SM-1 model that height readings are given to the attitude controller by the

GPS sensor. The missing connection from the sonar sensor can have serious consequences.

Since there is an assumption that height readings are only obtained from the GPS, the

robo stix block contains an LQG controller based on a linearized version of the quadrotor.

However, the control code implemented on the actual vehicle is more complex, based

on two cascaded PID controllers, one for attitude and another for height control. This

approach is necessitated because the low-cost sonar sensor suffers from non-Gaussian noise

in the form of frequent false echoes and dropouts. The inconsistency between the sensor

characteristics assumed in the SM-1 model and the sensors being used on the quadrotor

leads to an inconsistency between the designed control algorithm and the implemented

controller on the vehicle.

For the second control view (created from the SM-2 model), the view conformance

check succeeds. However, the view completeness check fails and the resulting unmapped

elements in the BA are shown in Fig. 6.24. There are four sets of connectors (and their

associated roles and attached ports) that cause view incompleteness. Three of the sets are

the same as those for the first control view. The fourth set (highlighted with a dotted

circle in Fig. 6.23) represents feedback data (attitude, attitude rates, and altitude) that

the attitude controller sends back to the position controller onboard the actual vehicle.
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The set also includes a connector from the IMU to the attitude controller that represents

measured acceleration data. The implemented position controller uses the altitude data to

obtain a more accurate vehicle position by comparing the height with the GPS readings.

The implemented attitude controller uses the acceleration to compensate for the tilt of the

vehicle for height measurement.

This mismatch once again highlights the possibility of different controllers being used

in the SM-2 model and the actual system. This can be verified by comparing the internal

structure of the controller blocks in the model with the actual code. The SM-2 model

contains two PID controllers but no estimation or filtering logic since the assumption is

that all sensor readings are noise-free and completely accurate. In addition, there is no

logic to incorporate acceleration for height calculations. This assumption could lead to

potential problems during system integration, if the controllers in the SM-2 model are

directly used for code generation without verifying the system sensor behavior against this

assumption.

6.4.3 Hardware View

The hardware view is concerned with the hardware implementation of the embedded system

onboard the quadrotor, and not with the vehicle dynamics. Hence, the view is checked

for conformance with the BA, and this check is successful. The resulting map returned by

the graph morphism checker, and displayed in the multi-view editor, is shown in Fig. 6.25.

If the architect instead checks for view completeness, then the algorithm returns with a

failed result. In order to have completeness with the BA, the hardware view would have to

include a device component that represents the encapsulation of the vehicle frame, gravity

and wind drag components, as well as connectors from this new component to the sensor

components in the view. For example, the architect can choose to represent the missing

quadrotor dynamics as a new processor component that runs a detailed simulation model

of the quadrotor. This could be useful for HILS testing of the controller code, similar to the
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approach followed in the Vanderbilt toolchain [57], and in our second case study (described

in Chap. 7).

6.4.4 Physical View

The physical view is concerned with a subset of the CPS architecture, namely the dy-

namics of the vehicle frame, and the forces imparted by the rotors connected to it. This

is another illustration of a view that focuses on a portion of the entire system. We run

a view conformance check that is successful, as shown in Fig. 6.26. However, the view

completeness check fails since all the cyber elements in the BA are absent in the physical

view, because of the nature of the associated design concern that the model is created

in. If view conformance is needed, then the view (and associated Modelica model) has to

include components representing the hierarchical controllers and the ground-station, along

with the associated sensors.

We summarize the types of inconsistencies discovered by applying our view consistency

analysis to the STARMAC quadrotor system in Table 6.2.

6.5 Summary

In this chapter we present a case study based on an avionics system, the STARMAC quadro-

tor, to check for view consistency. The case study is an example of how our architectural

approach can be applied to an existing system, for which legacy models and implemented

code are already present. We create the BA of the quadrotor, and multiple views that

are derived from the heterogeneous models used for the system’s analysis and design. We

check the structural consistency of each architectural view with the quadrotor’s BA using

our view conformance and completeness tools implemented in AcmeStudio. We elaborate

on the mismatches discovered and their impact on the integrity of the implemented system.
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Table 6.2: Consistency analysis for STARMAC quadrotor.

View Inconsistency Type Inconsistent Elements Impact

Software View Conformance Additional data
connectors in view
representing trigger
packets between
ground station and
onboard controllers

Represents important
safety protocol in
implemented control
software that is
missing in both control
design models

Control I View Conformance Misplaced connectors
in view between GPS
sensor and attitude
controller

Wrong assumption in
model about how
connectivity of
hardware and software
components

Control I View Conformance Additional connector
in view from attitude
to position controller

Wrong assumption in
model about type of
data exchanged
between controllers

Control I View Completeness Additional connectors
in BA for telemetry
between position
controller and gnd
station

Affects wireless
bandwidth and
execution time of
position controller

Control I View Completeness Additional connector
in BA for safety
protocol between gnd
station and controllers

Affects stability and
safety guarantees from
control model for
implemented system

Control I View Completeness Additional connectors
in BA for control data
sent between position
and attitude controller

Data for control
actions in model and in
software different.
Possible behavior
mismatch

Control I View Completeness Additional connector
in BA between sonar
and attitude controller
for height readings

Wrong assumption in
model about source of
sensor readings.
Possible behavior
mismatch

Control II View Completeness Additional connectors
in BA for feedback
data between position
and attitude controllers

Data used for control
actions in model and in
software different.
Possible behavior
mismatch
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Chapter 7

Case Study II : XILS

In this chapter, we demonstrate the use of architectural views to manage variants of models

used in “In-Loop-Simulation” testing scenarios in the automotive industry. We apply the

concept of an architectural view in a novel way to describe the common structure and

interconnection interfaces of the models. Each view is created as an abstraction of a

detailed base architecture that is derived from the physical implementation of the closed-

loop vehicle testbed. This case study illustrates the design flow where we have the freedom

to create the base architecture and each view of the system from a clean slate, based on

the requirements of the problem. Each system model is constructed so that the structure

of the model conforms to the corresponding view architecture.

We check each XILS view for consistency and conformance with the BA of the system.

However, we do not check any existing simulation models for conformance with the view,

since the focus of the case study is on defining standardized architectures for the design

models in various XILS scenarios.

7.1 Introduction

An urgent concern in current engine control development is the significant number of man-

hours being spent in calibration and testing due to the increasing complexity of control

software. In the current process, control algorithm validation is performed with the pro-
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duction software running on the actual Engine Control Unit (ECU), physically interfaced

with the vehicle’s engine in most cases. This makes it difficult to separate the impact of the

software, the ECU hardware, and the physical engine while evaluating the performance of

the closed-loop system. The tight coupling of these elements is also a major source of delay

during the debugging phase when engineers are trying to isolate the source of a problem.

One solution is to create a closed-loop simulation environment that uses an engine model

in place of the actual engine from the early stages of design. Being required to incorpo-

rate the physical engine much later in the design flow makes it possible to achieve rapid

prototyping and faster turnaround time for engine control testing and validation.

Such a simulation environment is called an X-In-The-Loop Simulation (or XILS) en-

vironment, where the ‘X’ stands for either ‘Model’, ‘Software’, or ‘Hardware’. The three

variants (shown in Fig. 7.1) are created to test the control algorithm specification, controller

software, and integration with an ECU, respectively.

• MILS: In this environment, the controller and the plant both exist as models in

the native simulation tool. For example, a typical MILS would contain a Simulink

model of the controller connected in a feedback configuration with a Simulink model

of the engine. The execution semantics in this case is that of the selected Simulink

differential equation solver. Such a configuration is used in the early design phase for

control algorithm development. The goal is to check whether the functional behavior

of the controller and the dynamics of the plant conform to the given specifications.

The models are generally simple and are idealized abstractions of the underlying

system to be designed.

• SILS: In this environment, the controller model created in MILS is converted into

controller software, either manually but more commonly with an automatic code

generator. For example, a common way to convert Simulink models to C or C++

code contained in an S-function block is by using Simulink Coder in MATLAB [58].
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The software can include code to model simple platform-level details such as fixed-

point or integer data types. The plant model at this level can be carried over as is

from the MILS environment, or refined to add more behavioral details, or changed to

a completely different type of model if required by the specifications to be validated.

The interface between the controller and the plant is still made in software. However,

the types of signals exchanged between them can (and generally do) change because

of the details added to both entities at this level. The purpose of SILS is to test a

major part of the controller software as early as possible in the design cycle.

• HILS: In this environment, the controller software (integrated with an operating

system or scheduler if required) is run on the production ECU, and a detailed plant

model is run on a real-time simulator. The purpose is to validate the complete

controller integrated with ECU hardware without requiring the physical plant to be

ready at this stage. The connections between controller and plant are made through

hardware I/O boards between the ECU and the computer running the simulator,

and the wiring harnesses are commonly custom-made for each test scenario. HILS

is a time-consuming process because of the customization of hardware as well as the

need to change the plant model input-output signals to match the signals accepted

by the ECU’s hardware interface.

7.2 Limitations of Current XILS Environments

A majority of automotive companies currently use XILS environments in their control de-

velopment process for rapid prototyping and early testing of design. Widespread adoption

of XILS is limited because of the necessity of maintaining controller and plant models of

different levels of fidelity and different types. We are working with Toyota to formulate

the architectural requirements for their XILS environments. Currently, the plant models

that Toyota creates do not have a well-defined structure, with a clear separation of the

core dynamics, sensors, and actuators. Because of this, an engineer has to modify the
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Figure 7.1: XILS scenarios for controller-plant testing.
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existing models substantially if certain sensors or actuators are encapsulated in the plant

dynamics. Similarly, Toyota’s controller models have varying structure and missing or dif-

ferent components between XILS environments. For example, an engine model may need

to be simulated with the assumption of varying air-fuel ratio. An injection control scheme

is then necessary to keep the air-fuel ratio constant when the air charge model and the

fuel behavior model are implemented independently. However, an engine may be modeled

under the assumption that the air-fuel ratio is constant. In this case, the controller model

is created without a fuel injection control module.

Multiple models also lead to variation in the number and types of signal connections

between the controller and plant in different XILS scenarios. For example, typical control

signals between an engine controller and the engine are the throttle opening angle (TOA)

and fuel injection rate. At the MILS and SILS level, these are represented as physical

signals with the units for TOA in degrees and the fuel injection amount in mm3/cycle.

However, in HILS the signals to be received at the ECU and the plant model are given

by the TOA converted to voltage and the time for which the fuel injector remains open

(On-Time) in µs.

Managing the different controller and plant models (and their interconnections) for each

XILS environment, and converting models between environments is currently a manual,

time-consuming, and error-prone process. For example, at Toyota a pair of spreadsheets is

created for each environment, one for signals going to the ECU from the plant simulator

and the other for signals coming from the ECU to the plant simulator. The spreadsheets

describe the set of all signals that could be present for that XILS scenario as well as the

subset of signals that are valid for particular controller-engine instances being tested. As a

result, the spreadsheets are huge and very difficult to decipher. Before the start of a test,

an engineer manually checks to see if the signal connections between the controller and

the plant are valid (whether in software or hardware), and makes the necessary changes
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to the model’s internal structure and input-output blocks if there is incompatibility. The

spreadsheets serve as a checklist for the engineer, but there is no automatic flagging of

incorrect combinations of signals, nor any aid to make appropriate changes to the models.

The automotive industry requires a framework to manage the model variants in the

XILS environments in a consistent manner. In particular, the following issues should be

addressed:

• a way to standardize the physical architecture and input-output interface for plant

models based on physical variables; and

• a way to enable controller and plant models to be structurally consistent between

environments and to automate consistency checking as much as possible

The first requirement allows the sharing of the same plant model between different

XILS environments with minimal or no change required. It also allows plant models with

the same input-output behavior (but with varying degrees of detail) to be interchanged

within the same environment, and exchanged between different environments. The second

requirement reduces the error-prone manual process of modifying the internal structure

of each new controller-plant instance, when testing in a XILS environment. Comparing

simulation results with different controllers using the same plant model enables the degree

of error in the algorithm to be clearly indicated, to determine if the simulation results are

within range. This also makes it possible to determine if the cause of an error is on the

controller or plant side because plant models would have been functionally checked earlier

in the design flow.

7.3 Architectural Approach to XILS Testing

We address Toyota’s requirements by using architectural views and view consistency to

manage models in XILS environments for engine control testing. We have extended the

CPS style to include thermal and fluid elements (described in Sec. 7.4) to create well-

defined physical architectures for engine plant models. The physical architecture has a
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standardized input-output interface based on physical effort and flow variables and their

interconnections. The input-output physical interface is defined at the actuators and sen-

sors of the plant architecture. Plant models with the same functional specification but

varying in implementation detail are created using different actuator and sensor com-

ponents, so that the model’s input-output signals conform to the standardized physical

interface defined for the associated XILS view.

We model a particular XILS level as an architectural view of the underlying system’s

base architecture (BA). The level of abstraction increases as we move from HILS to MILS,

with the HILS environment being closest in detail to the BA. We use view relations to allow

the engineer to define mappings between the elements in each XILS view and elements

in the BA. Checking that an XILS controller-plant model is structurally consistent with

the system becomes a question of whether the corresponding XILS architectural view is

consistent with the system’s BA. The architectural requirements for the controller and plant

models for each XILS environment are provided by Toyota, based on their experience with

in-house vehicle testing.

This case study illustrates the design flow where we have the freedom to create the base

architecture and each view of the system from a clean slate, based on the requirements of

the problem. There are no pre-existing legacy models that the BA or views are derived

from. In fact, in this case, each model should be created with conformance to the associated

view by construction. If there are existing models that need to be integrated, then their

architecture can be checked with the appropriate view for conformance and completeness.

Formally defining the architecture of controller and plant models in this fashion, along with

the components that are different when switching between different XILS environments,

allows different models to be plugged into an XILS test scenario, as long as the models

maintain the same structure and input-output signal interface.

To apply our approach to XILS scenarios for engine control, we proceed as follows. To
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create detailed plant architectures for the engine, the CPS family is extended to include

thermodynamic and fluid elements, as described in the next section. In Sec. 7.5, we create

the BA for the complete engine control system that includes the controller software and

engine dynamics. The three variants of XILS environments are created as views of the BA

in Sec. 7.6 for MILS, Sec. 7.7 for SILS, and Sec. 7.8 for HILS. We demonstrate how the

structure of the controller-plant models changes as we move from a MILS view to a HILS

view, and create mappings to capture the differences in element configurations.

7.4 ThermoFluid Family

The engine components belong to both the thermodynamic and fluid physical domains. In

the thermodynamic domain, the effort variable is temperature T (in ◦ Celsius) and the flow

variable is heat flow rate q (in Joules per second). In the fluid domain, the effort variable is

pressure P (in Pascal) and the flow variable is mass flow rate ṁ (in kilograms per second).

We have created a new physical subfamily, called the ThermoFluid family, that represents

components and connectors from both the physical domains. Each component contains a

single four-variable port, with the set of pairs of conjugate variable {(T, q), (P, ṁ)} from

the two domains associated with each port. Since the semantics of the physical architecture

is based on interconnection of elements and coupling of physical variables only, there is no

restriction that the product of conjugate variables has to represent energy or power flow

in general. This is less restrictive than the semantics of bond graph or port-Hamiltonian

system representation, and allows us to create flexible architectural elements as needed by

the application scenario.

Based on the commonly occurring physical phenomena in the two domains, we have

created a set of component types that are summarized in Table 7.1. Some examples

are: Pipe to represent transport of fluid (and associated heat energy) from one point to

another, Vessel to represent the storage of fluid in an enclosed volume, Valve to model a

physical valve whose opening and closing is controlled with an external signal, Reservoir to
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represent a flow source or flow sink in the ThermoFluid domain. The ability to create a new

physical architectural family flexibly to suit the requirements of new modeling formalisms

and systems is useful in scenarios like the XILS case study. A Thermofluid connector

between two components represents an incompressible fluid flow from one component to

the other. The semantics of connectors enforce that the pressures and temperatures at

the connected ports are equal, and the mass flows and heat flows from all connected ports

should sum to zero. Hence, the connector semantics represent the laws of conservation of

both mass and energy for the fluid flow.

We can connect a Pipe component to a Vessel component by a thermo-fluid connec-

tor. The connector semantics enforce that the pressure and temperature at the connection

interface of the pipe and vessel are equal, and the fluid and heat flowing out the pipe is

transferred into the volume without any losses. Hence, the semantics of the ThermoFluid

family are physically meaningful and allow the representation of the heat exchanged due

to the air-fuel mixture flowing between engine components, as well as the temperature and

pressure changes occurring due to this flow in the complete engine system. All existing

elements from the physical family are inherited in the new ThemoFluid family. In partic-

ular, elements from the Mechanical family, with torque (or force) and angular (or linear)

position as the conjugate variables, are also included since these are needed to model the

mechanical load to the engine.

7.5 Base Architecture

The base architecture for the underlying system consists of the physical architecture of the

actual engine, the architecture of the control software running on the ECU, and the inter-

face elements converting the software commands into physical signals and sensed physical

variables into cyber readings.
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Figure 7.2: Base Architecture for the engine control system.

138



Table 7.1: Elements of Thermo-Fluid family.

Element Description

Pipe Transport of non-compressible fluid between two points

Vessel Storage of fluid in an enclosed volume

Valve Physical valve controlled with an external signal

Reservoir Infinite volume to model flow source or flow sink

Cylinder A Vessel with mechanical piston and input and output ports
for fluid flow

Manifold A Pipe with behavior annotations for different types of fluid
flow

ThermoFluid Connector Equates pressure and temperature between connected ports.
Enforces conservation of mass and energy between
connected components.

7.5.1 Engine Architecture

The engine architecture shown in Fig 7.2 represents a generic version of a single cylinder

internal combustion (IC) engine. The intake system consists of Intake Source, Throttle, In-

take Manifold, Intake Port, and Intake Valve components, and is a simpler representation

of the real-world system. For example, the complex dynamics of the air and fuel mixing

are not modeled and a homogenous mixture is assumed throughout the intake stage. The

Intake Source represents the flow of the air-fluid mixture from the environment at a con-

stant air-fuel ratio (AFR) into the engine. The connector between the Intake Source and

the Throttle represents fluid flow as well as pressure equalization between the components.

The Throttle regulates the flow of air-fuel into the Intake Manifold, based on the throttle

position set by the Throttle Motor actuator. The Intake Manifold represents a physical

transport for the mixture into the Cylinder through the Intake Valve. The Intake Valve

does not store any flow quantities such as mass or heat energy. However, the tempera-

ture and pressure can be different at each end of the valve. The Intake Port represents

the injection of fuel into the engine, based on the fuel quantity set by the Fuel Injector
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actuator.

The Cylinder has a fluid input port for air-fuel flowing into the component and a fluid

output port for exhaust gases flowing out. The Spark Plug actuator is connected to the

input port of the Cylinder by a physical signal connector. The connection represents the

timing of the spark in units of degrees Before Top Dead Center (BTDC). In addition,

the Cylinder is connected to the moving Piston by a mechanical (translational) connector

that represents the conversion of chemical energy released during the burning of fuel into

translational mechanical motion of the Piston. A Connecting Rod is a physical transducer

component with a translational port on one end and a rotational port on the other. It

represents the conversion of translational motion to rotational motion. The Crank repre-

sents the crank shaft and all connected subsystems, and is a purely rotational mechanical

component. The Crank delivers mechanical power to the Load, which models all vehicle

systems (including air-conditioning) that place power demands on the engine. The set

of mechanical connectors from the Cylinder to the Load represent the torque (force) and

angular (linear) displacement at various points in the mechanical subsystems of the engine

model.

The Exhaust Valve component is identical in function to the Input Valve, except that

the burnt products from the Cylinder flow through it. The Catalyst represents the filter-

ing of emissions from the exhaust before they reach the Exhaust Sink component. The

Exhaust Sink is a Reservoir because it represents the unidirectional flow of gases into the

environment following the exhaust stroke of the engine operation.

The dynamic behavior of each component is represented through mathematical equa-

tions, expressed in terms of rates of change of conserved quantities such as mass, momentum

and energy, and other relevant physical parameters such as density, and mass fractions of

the species. These equations can be annotated as properties of individual components and

connectors for different kinds of analyses. The engine model reflects the four strokes of
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the engine cycle: intake, compression, power, and exhaust strokes. The interacting com-

ponents represent the following physical processes: the flow of air-fuel mixture from the

intake system to cylinder, and that of the exhaust gas from the cylinder to the exhaust,

the combustion of the air-fuel mixture into the exhaust product and the subsequent re-

lease of energy in the cylinder due to combustion, and the mechanical action of the crank

mechanism.

7.5.2 Controller Architecture

The engine controller architecture shown in Fig 7.2 represents the software running on the

ECU, and is made up of four main components. The Engine State component receives all

sensor values from the engine and determines the current state, i.e., whether the engine

is starting up, accelerating, or in warm or cold state. The engine state is given as an

output to the Spark Ctrl, which controls the timing of the spark plug (in degrees BTDC)

based on the current state. The Engine State component also passes all sensor readings

(including the engine state) to the Throttle Ctrl and Fuel Ctrl controller components. The

Throttle Ctrl calculates a new throttle position (in degrees) based on the engine state,

throttle position, and engine speed. The Fuel Ctrl calculates how much fuel should be

injected (in mm3/cycle) based on the engine state, air-fuel ratio, and air-flow.

The IO Throttle C2P transducer converts the throttle position command (in degrees)

from Throttle Ctrl into a corresponding voltage signal that is sent to Throttle Motor. This

component represents the I/O software and hardware that translates setpoints in phys-

ical units from the controller into the electrical signals required by the throttle hard-

ware. Similarly, the IO Fuel component converts the commanded fuel injection amount

(in mm3/cycle) to an electrical signal that remains high for a time proportional to the set-

point. The IO Spark C2P transducer converts the controller command in degrees BTDC

to a proportional voltage signal. The IO Sensors transducer components perform the func-

tion of converting physical sensor readings from the plant into physically meaningful units
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that the Engine State and controller components recognize. For example, the EngineSpeed

sensor outputs the speed as a series of electrical impulses per second, while the controller

software assumes the units to be in revolutions per minute (RPM). The IO Sensor is re-

sponsible for all such conversions so that the input to the controllers is in physical units

that are standardized across controller models.

7.5.3 Standardized Input-Output Interface

The IO transducer components between the controllers and the plant’s actuators and

sensors structure the control software to maintain a consistent set of input-output signals

based on physically meaningful units. For this engine control case study, the controller

outputs are defined as the throttle position (in degrees), the fuel injection amount (in

mm3/cycle), and the spark timing (in degrees BTDC). The controller inputs are defined

as throttle position (in degrees), engine speed (in RPM), air-fuel ratio (dimensionless),

and air flow rate (in kg/sec ). The IO components represent the software (and associated

hardware) that is responsible for converting between the types of signals needed by the

controller software and the types of signals present at the actuator-sensor interface of the

plant (physical or model).

Similarly, the architectural separation of a plant’s core dynamics from the actuators

and sensors makes it possible for all plant models adhering to the physical architecture

to be interchangeable, as long as they maintain the set of physical input-output variables

defined at the actuator-sensor interface. For the engine control example, the plant out-

puts are defined as throttle position (in degrees), engine speed (in RPM), air-fuel ratio

(dimensionless), and air flow rate (in kg/sec ). The plant’s inputs are defined as the throt-

tle position (in degrees), the fuel injection amount (in mm3/cycle), and the spark timing

(in degrees BTDC). For different XILS environments, the actuator components define the

transformation between the types of control signals received and the types of physical

signals used in the plant model.
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In a MILS scenario, the throttle control signal is in degrees, i.e., the same physical units

that are used in the MILS plant model. Hence, the Throttle Motor actuator in a MILS

model will not contain any dynamics to convert the input command to degrees. However,

for a HILS setup, the control signal for throttle position is a voltage. Hence, the actuator

component in a HILS plant model will contain dynamics that relate how the input voltage

affects the movement of the throttle into the desired position (in degrees). In a similar

way, the sensor components allow consistent physical variables to be used across all XILS

plant models, and model the translation of measured quantities into output signals that

are required for the particular XILS environment. For example, the engine speed sensor in

a MILS model will output the value in RPM, as required by the controller. However, for

a HILS, the sensor component will have to model the translation of RPM into an impulse

train, which is the input required by the ECU hardware.

In the following three sections, we create the architecture of each XILS environments

as a view of the base architecture, and identify the changes to the structure of each view

through element mappings.

7.6 MILS View

The MILS view is shown in Fig. 7.3 with those elements highlighted that are different with

respect to the BA. The controller architecture in the view is chosen to be the same as the

underlying BA. The plant model for a MILS is generally simpler than in SILS or HILS.

This is reflected by the encapsulation of the Throttle and Intake Manifold in the BA to a

single Intake System in the view. Similarly, the dynamics of the crankshaft, rod, and piston

assembly have been encapsulated in a single Crank System view component, as shown in

Fig. 7.4. We note that the MILS architecture enforces that the IO components and the

actuator-sensor interface are included in every model that conforms to (or is created from)

the MILS view. This makes it possible to use different models with varying levels of details

in the same MILS environment, provided that each model’s structure and input-output
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Figure 7.3: MILS view of the engine control system.
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interface adheres to the architecture of the MILS view.

The signals exchanged between the controllers and the plant are in physical units,

because a MILS environment does not include any platform-level details. Hence, the IO

components, and actuator-sensor components simply pass through all input signals, since

no transformation has to be performed on the signal set.

7.7 SILS View

The SILS view is shown in Fig. 7.5 with those elements highlighted that are different

with respect to the BA. The SILS view contains the same types and number of controller

elements as the MILS, since the controllers in SILS are created by generating code from

the corresponding MILS models. However, the plant models can be significantly different,

depending on what requirements for the controller are being validated. In Fig. 7.6, the

Throttle and Intake Manifold components in the BA have been encapsulated as the single

Intake System component in the view. The mapping captures the abstraction that the

associated SILS model makes about the physical elements in the underlying system, and is

used to check the structural consistency of every model used for SILS testing. The crank

shaft assembly has a more detailed structure compared to the MILS view. The signals

exchanged between the controller and plant are still in physical units. However, some

platform-level details, such as fixed-point data types, may require the IO components to

contain logic to convert between data formats in going from controller to plant.

As demonstrated for MILS and SILS, the standardization of the physical signals for

plant models is implemented by defining the same set of sensor-actuator components for

each XILS view. The components have different implementations in each XILS scenario

and are responsible for converting between the physical signals in the plant model and

the signals required by the connected controller software for that scenario. Similarly, the

standardization of controller signals is implemented by defining IO transducer components

that are responsible for converting between signals required by the controller software and
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Figure 7.5: SILS view of the engine control system.
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the signals exchanged with the hardware and plant.

7.8 HILS View

The HILS view is created from the requirements given to us for typical models used in

the HILS test scenarios. The controller components (including the IO transducers) are

identical to the BA, since the code used in HILS is supposed to be exactly the same as

that used in the production vehicle. This assumption is reflected in the HILS view shown

in Fig. 7.7 with those elements highlighted that are different with respect to the BA. The

number and types of cyber components, and their interconnections, are unchanged from

the corresponding elements in the BA.

However, the structure of the plant model used in a HILS test is, in general, different

from the actual plant in the production vehicle. This is due to several reasons. One reason

is the plant model has to be simulated in real-time to keep up with the sampling rates of

the ECU controllers. Hence, many detailed subsystems are replaced by lookup tables or

coefficients from test data to speed up the performance of the model. The second reason is

the use of actual hardware to replace some parts of the plant model while testing. This is

done when certain physical parts of the engine cannot be modeled with the desired fidelity

and performance together, and replacing those subsystems in the plant model with the

actual hardware is easier/more accurate for controller validation. An example of this is

highlighted in Fig. 7.8, where the Throttle and Intake Manifold in the BA is replaced by an

Air Estimation component in the HILS view. In addition, there is an additional physical

component Throttle Hardware to represent the actual throttle. The throttle position is

now measured from Throttle Hardware actuator, which makes the HILS view inconsistent

with respect to the BA.

This change is necessitated for the following reasons. First, the behavior of the throttle

for HILS is tested by using the actual hardware to get accurate response times, and the

position measured by the throttle sensor is used by the ECU. Second, the controllers in

148



F
ig
u
re

7.
6:

E
n
ca
p
su
la
ti
on

of
in
ta
ke

sy
st
em

in
S
IL
S
v
ie
w
.

149



Figure 7.7: HILS view of the engine control system.
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the ECU use a lookup table for estimation of airflow, based on the engine state. To ensure

that the behavior of the plant model (with respect to air estimation) is consistent with

that assumed in the ECU, the intake system in the plant model is replaced by an air

estimation component that uses the same calculations as those used in the ECU. The

controller software sends the throttle command to the throttle hardware, the hardware

sends its position as feedback to the ECU, and also sends a physical throttle command

signal to the Throttle Motor component in the HILS plant model. the Throttle Motor

contains logic to convert the electrical signal units into physical units for TOA (in degrees)

and this is given as input to Air Estimation. The Air Estimation component uses the

throttle angle, along with the physical signal from the Intake Source, and calculates the

required mass flow rate that flows to the Intake Port. The architecture of the rest of the

HILS plant model remains the same as that of the BA.

The HILS view is an example of an architectural view that is inconsistent with the BA

by design. The view conformance check highlights the inconsistent elements, which are

the throttle hardware component and the throttle position connector. This ensures that

when any model that conforms to the HILS view is being tested, the engineer is cognizant

of the assumption that an air estimation module is being used in the model in place of

the physical dynamics of throttle and intake manifold. The software represented by the

IO components for HILS is responsible for transforming between the electrical signal units

defined by the ECU interface and the physical units required by the controller software.

Similarly, the actuator-sensor interface converts between the electrical signals at the I/O

interface of the PC running the plant simulator and the physical signals used in the plant

model itself, as described for the Throttle Motor component.

7.9 Summary

In this chapter, we demonstrate the use of architectural views to manage variants of mod-

els used in “In-Loop-Simulation” testing scenarios in the automotive industry. To create
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a detailed physical BA of the engine and controller testbed, we extend the physical family

to the thermal and fluid domains. We create the architecture for each XILS scenario as

a view of the underlying BA of the vehicle testbed. View mappings capture the architec-

tural abstractions between the BA and each XILS environment. We check the structural

consistency of each XILS view with the BA to highlight the changes in structure between

the different testing scenarios. Currently, we have not created any controller or plant sim-

ulation models to validate the XILS approach. However, the assumption we make is that

all models will be created with structural conformance with the associated view.

The standardization of the physical signals for plant models is implemented by defining

the same set of sensor-actuator components for each XILS view, with different implemen-

tations for physical signal conversion for the associated XILS environment. Similarly, the

standardization of controller signals is implemented by defining IO transducer components

that are responsible for converting between signals required by the controller software and

the signals exchanged with the hardware and plant.
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Chapter 8

Conclusions

In this final chapter, we summarize the technical contributions made in this thesis and

suggest several directions for future research.

This thesis presents an architectural approach to relate the structure and semantics of

heterogeneous models used in CPS design. There are two main contributors to today’s

exponential growth in the cost of designing CPSs [9]. The first is the lack of support to

detect design defects as early as possibly in the design process. The second is the existence

of multiple versions of the system in different analysis models. These impact the following

areas of system design:

• The number of system-level faults introduced during the design phase.

• The number of system-level faults detected during the design phase.

• The cost of fault removal during the complete life cycle.

• Limited ability to use analyses from different models to derive system-level properties

because of multiple versions of the underlying system.

Our approach impacts each of these areas in the following ways. Because there is a single,

unifying representation of the system in terms of its base architecture, there is a single

ground truth that every system model has to be structurally consistent with. The important

constraint is that the presence or absence of ports and connectors in either the architectural
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view or the BA must be reflected in the other structure through one-to-one or many-to-one

associations from BA to view. Such a constraint rules out the possibility that a view can

introduce a “back-door” communication channel not present in the reference structure,

a property called communication integrity in software architectures [20]. This helps in

reducing the number of mismatched assumptions introduced in a model about the structure

and connectivity of system elements, and directly impacts the number of faults introduced

during design. This is demonstrated in the XILS case study (refer to Chap. 7), in which

the creation of a standardized architecture for system models in different scenarios limits

the potential of a model being created with wrong assumptions about the system.

Checking a view for consistency with the BA every time the associated model is modified

can catch structural errors early in the design flow, directly impacting the number of faults

detected. This is demonstrated by the STARMAC case study (refer to Chap. 6), in which

multiple wrong assumptions about component connectivity and types of data exchanged

were caught by the view conformance and view completeness checks. When errors are

caught in the design phase rather than the integration phase, the cost of fault removal is

impacted and reduces by a large factor [1]. The ability to use analyses from different models

is also enhanced when each model is structurally consistent with the BA. This is because

structural mismatches can point to implementation errors or behavioral mismatches in

many cases, as demonstrated by the missing altitude controller being detected by the

missing sonar connectors in the STARMAC control view consistency checks.

8.1 Contributions

There are two fundamental shortcomings of current architecture modeling capabilities that

limit their potential to fully address the engineering problems of large-scale, heterogeneous

CPSs: [i] limited vocabulary to represent physical elements and their interactions; and

[ii] inadequate ways to support consistency relations between heterogeneous architecture

views of the same system.
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This thesis addresses the first shortcoming through the development of an architectural

style that serves as a common representation of the complete system, and the second

shortcoming through the abstraction of architectural views to compare the structure and

semantics of corresponding heterogeneous models to the CPS architecture. In particular,

we make the following contributions:

1. Extending architecture to represent continuous dynamical physical ele-

ments and their coupling. We have created a CPS architectural style that sup-

ports a unified representation of both physical and cyber elements and their interac-

tions in the same architectural framework. This ability allows the architect to create

a common base architecture (BA) for a CPS that provides a unified point of reference

for multi-domain system models.

2. Using architecture as the common system representation to relate the

structure and semantics of heterogeneous models. The architectural view is

used as the mechanism to represent the architectures of system models as abstractions

and refinements of the underlying shared BA. In this context, well-defined mappings

between a view and the BA are used to identify and manage semantically equivalent

elements (and their relations) between each model and the underlying system.

3. Defining and evaluating consistency between architectural views and the

system’s BA. View consistency defines when an architectural view conforms to the

structural and semantic constraints imposed by components and connectors in the

system’s BA. Such a notion of consistency ensures that the model elements adhere to

the connectivity constraints and physical laws present between elements in the BA.

This guarantees that the models used for design and evaluation are not based on

assumptions about the system’s design that are inconsistent with the actual system

as reflected in the BA. We define view consistency as the existence of an appropriate

morphism between the typed graphs of a view and the BA. Depending on the type
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of morphism present, two notions of consistency are defined: view conformance and

view completeness.

4. Tools for automated consistency checking of architectural views. The first

tool is a mechanism (Acme Maps) to define the types of maps possible between each

view type and the BA as well as map instances between the elements of a view and the

BA . Acme Maps is an extension of the core Acme Architecture Description Language

(ADL) that allows the creation and type checking of view relations and element

correspondences. The second tool is a graphical editor to compare views visually,

define element correspondences (including encapsulations) that must be maintained,

and display the results of consistency checking to the user. The third tool is a set

of graph morphism algorithms that find the largest set of semantically consistent

element mappings between a view and the BA, based on the pre-mapped elements

and the type compatibility defined by the user. All tools are implemented as plugins

in the AcmeStudio architecture design framework [10], so that they can be extended

easily for future enhancements.

5. Evaluation of multi-view architecture framework. We illustrate the applica-

tion of our architectural approach with two case studies. The first one demonstrates

how heterogeneous models of an avionics system (the STARMAC quadrotor) can be

created as views of the baseline architecture. The choice of the modeling domains is

motivated by the analysis and verification activities typically found in an embedded

control system design process. We apply the consistency check to each view and

highlight the mismatches that are detected between the models and the actual im-

plemented system. The second case study illustrates the usefulness of architectural

views to manage model variants for X-In-the-Loop Simulation (XILS) environments

for engine control of vehicles. We show how each simulation scenario can be captured

as a view of the system under test, and how view consistency can help the engineer in
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checking consistency of controller-plant models between various XILS environments.

8.2 Future Work

The architectural consistency of multiple views (and associated models) is a rich problem

with many directions where extensions can be made.

• Translating from models to views. Currently, there is limited support for trans-

lating from a domain-specific model to the corresponding architectural view in a

formal or an automated way. This capability is important to enable the practical use

of an architectural framework in multi-domain CPS design. Semantic anchoring [59]

is a promising approach to transform between system models that concentrates on

the specification of the dynamic semantics of each model’s DSML and the relation-

ship to pre-defined DSMLs. One possibility is to leverage the machinery of semantic

anchoring to define transformations between the DSMLs of system models and the

architectural style of each view.

• Automatic creation of view maps. Currently, all element maps between views

are created manually, which is not scalable for large systems. To make our approach

applicable in practice, support for automated map creation is needed. Graph gram-

mars provide a theoretical foundation to transform from source to target patterns

between two graphs and could be useful to generate specific maps between two views.

In addition, view maps could be used to focus the search space of the consistency

checkers. For example, if all view elements are mapped to a small part of the BA, then

the consistency checkers could use this information to limit the search for morphisms

over that part alone.

• Richer analysis of views and relations. New types of view relations have to

be added to support different kinds of view analyses. For example, an important

relation between system components is the fact that they should not be connected
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in a view. This constraint can be useful when two components are replicas of each

other, and a structural constraint for not deploying them on the same processor (to

avoid common failure) has be added to the architecture.

View relations can also be used to define metrics for model and system-level coverage.

For example, a simple metric to evaluate model coverage by a view would be the

number of encapsulations being made in the view. Too many encapsulations point to

a lot of abstraction about the model. Another intuitive metric for system coverage

is to check whether all system elements have been represented in at least one system

view. If a set of elements is not present in any view, it might point to incomplete

analysis of the underlying system. In a similar way, if a certain set of system elements

are present in a majority of the views, this set may need to have stricter behavioral

and structural checks, since these elements impact multiple design concerns.

• Support for variants in base architecture. Currently, there is limited support in

the approach for the BA to represent product line variants. This is especially useful

in the automotive industry, where onboard diagnostics, entertainment systems, and

safety features all lead to a system architecture with multiple optional elements. All

these have to be represented in a unified way in the BA, and each view has to be

created with the missing elements made explicit.

• Analyzing map types. We currently create the map types between a view style and

the base architecture style based on engineering judgement and domain knowledge of

the design concern. However, creating map types manually could lead to infeasible

or inconsistent map instances between two views. Although there are numerous tools

to help in the analysis of architectures for individual systems, relatively less work has

been done on tools to help in the design of architectural styles. In particular, there

is no support (to the best of our knowledge) to analyze map types between two ar-

chitectural styles. Kim and Garlan have shown how to analyze an architectural style

160



formally by mapping it into a relational model that can be checked for consistency

properties [60]. Such work could be extended to analyze the consistency of map types

between styles as well.

• Creating a formal semantics for Acme Maps. Currently, Acme Maps does

not have a formalized semantics, in contrast to Acme’s semantics. We would like to

integrate Acme Maps into Acme, so that relations between views become a first-class

construct of the ADL. We believe that the problem of creating well-defined structural

maps between architectures holds promise in enabling general consistency checking

between different views.

• Semantic relations between views. Our approach is limited to structural con-

sistency between architectural views with limited checking of semantic properties.

The work has to be extended toward the specification and analysis of inter-view (and

inter-model) consistency at the semantic (behavioral) level. In this context, well-

defined structural mappings between a view and the base architecture can be used as

the basis for identifying and managing the semantic dependencies among the various

analysis models, and to evaluate mutually constraining design choices. This concept

forms the basis of our initial work in this area [47]. There is also a need to incorpo-

rate the assumptions of the different analysis algorithms used in system models for

semantic checking. A first step in this direction is the approach proposed by Nam,

de Niz et al. [61].

• Tool support for multi-view consistency. The current tools for architectural

design (including those developed by us) are not yet scalable to large-scale systems in

terms of usability and performance. The current morphism and MCS algorithms will

have to be implemented to take advantage of today’s parallel processing hardware, if

they are to be used in real systems. The creation, editing, and display of hierarchical

architecture views and their maps have to be enhanced for practical use as well.
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