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Recognizing social interactions, e.g., two people shaking hands, is important for obtaining

information about other people and the surrounding social environment. Despite the

visual complexity of social interactions, humans have often little difficulties to visually

recognize social interactions. What is the visual representation of social interactions and

the bodily visual cues that promote this remarkable human ability? Viewpoint dependent

representations are considered to be at the heart of the visual recognition of many visual

stimuli including objects (Bülthoff and Edelman, 1992), and biological motion patterns

(Verfaillie, 1993). Here we addressed the question whether complex social actions acted

out between pairs of people, e.g., hugging, are also represented in a similar manner.

To this end, we created 3-D models from motion captured actions acted out by two

people, e.g., hugging. These 3-D models allowed to present the same action from different

viewpoints. Participants’ task was to discriminate a target action from distractor actions

using a one-interval-forced-choice (1IFC) task. We measured participants’ recognition

performance in terms of reaction times (RT) and d-prime (d’). For each tested action we

found one view that led to superior recognition performance compared to other views.

This finding demonstrates view-dependent effects of visual recognition, which are in line

with the idea of a view-dependent representation of social interactions. Subsequently,

we examined the degree to which velocities of joints are able to predict the recognition

performance of social interactions in order to determine candidate visual cues underlying

the recognition of social interactions. We found that the velocities of the arms, both feet,

and hips correlated with recognition performance.
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INTRODUCTION

Humans are social beings who daily physically interact with other

humans, e.g., when greeting a friend with a hug. We refer to

these non-verbal physical interpersonal interactions such as shak-

ing hands, kissing, or fist fighting as social interactions. The

visual recognition of physical social interactions is important for

humans to successfully navigate through their social and physical

environment, for example, when avoiding a street in which people

are fighting. Shedding light onto the visual processes underly-

ing visual social interaction recognition helps understanding how

humans achieve this feat.

Relatively little is known about the visual processes underly-

ing the visual recognition of social interactions. Previous research

has mainly focused on elucidating the mechanisms underlying

the recognition of individual actions. For example, research on

biological motion highlighted the importance of dynamic infor-

mation in the recognition of individual actions, e.g., walking

(Blake and Shiffrar, 2007), and a large body of neuroscientific

work has examined the contributions of the motor system to

action recognition of individual actions (Kozlowski and Cutting,

1978; Prinz, 1997; Gallese and Goldman, 1998; Keysers et al.,

2010—see Jacob and Jeannerod, 2005; Mahon and Caramazza,

2008; Hickok, 2009 for a debate on this issue). However, the visual

recognition of social interactions has received scant attention

(Neri et al., 2006).

There is strong evidence that the underlying representation

of visual recognition is view-dependent (for alternative views

on this topic see e.g., Biederman, 1987). View dependencies in

visual recognition are taken as evidence for the underlying visual

representation being tuned to certain views and thereby high-

light an important organizational principle of visual recognition.

Previous research has shown view dependencies in the recog-

nition of static objects (Bülthoff and Edelman, 1992; Tarr and

Buelthoff, 1995), and faces (Hill et al., 1997). A special kind

of view dependency, namely orientation sensitivity, has been

demonstrated for the visual recognition of static body postures

(Reed et al., 2003). Overall, view dependencies in the recognition

of static visual patterns are frequently observed and indicate that

the underlying visual representation is view-dependent.

Actions are inherently dynamic resulting in a change of body

posture over time. This biological motion information is con-

sidered to be critical for action recognition. Point light displays

are an elegant way to examine the ability of the visual sys-

tem to recognize biological motion (Johansson, 1973) as these

displays consist mainly of motion but little structural informa-

tion. Previous research using point light displays demonstrated
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that biological motion informs the observer about the executed

action (Dittrich, 1993) and about socially relevant information.

For example, humans are able to readily recognize the gender

(Kozlowski and Cutting, 1977, 1978; Pollick et al., 2005), emo-

tions (Atkinson et al., 2004), and the identity (Loula et al., 2005;

Jokisch et al., 2006) of point light walkers.

View dependencies have also been reported for the recogni-

tion of dynamic biological motion patterns of walkers (Verfaillie,

1993; Troje et al., 2005). For example, identification of biologi-

cal motion patterns was found to be better for the trained view

than for novel views (Troje et al., 2005). In the light of recent

suggestions that the motor systems contributes to action under-

standing (Kozlowski and Cutting, 1978; Prinz, 1997; Gallese and

Goldman, 1998; Keysers et al., 2010—although this view is not

undebated: Jacob and Jeannerod, 2005; Mahon and Caramazza,

2008; Hickok, 2009), recent evidence from a physiological study

can be interpreted in favor for view-dependencies in visual action

recognition. Here, Caggiano et al. (2011) reported that in mon-

keys motor-visual neurons, which are considered to be important

for action understanding (Gallese et al., 2004), exhibit view-

dependent responses when processing object-directed actions.

However, view dependencies in the visual recognition of dynamic

social actions occurring between pairs of people, such as two

person shaking hands, has not been investigated yet.

Here we examined viewpoint dependencies in the recogni-

tion of complex social actions, in particular social interactions.

We motion captured interactions (high five; handshake; hug)

acted out by pairs of participants and created 3-D models of

these interactions. In the actual experiment, participants saw

these interactions one at a time and had to report whether the

shown interaction matched a predefined interaction (1IFC task).

We manipulated the type of interaction (hug, high-five, or hand-

shake) and the viewpoint [behind, side, top, 45◦ (angled) view]

from which participants saw the interaction. Moreover, because

previous research has shown that visual recognition is very rapid

(Thorpe et al., 1996; Furl et al., 2007; de la Rosa et al., 2011), we

probed the visual recognition of interactions at different presen-

tation times. We recorded participants’ accuracy (as measured by

d-prime) and reaction time to identify a predefined social interac-

tion. We reasoned that if visual recognition of social interaction is

view-dependent, then recognition performance should vary with

the viewpoint.

If visual recognition of social interactions is view-dependent,

then low level visual cues (e.g., velocity of bodily joints projected

onto the viewing plane), which change over different views, might

be able to explain the visual recognition of social interactions.

To answer the question, which visual cues might support the

recognition performance of social interactions, we analyzed the

physical body motion patterns to determine candidate visual cues

that participants might have used for the recognition of social

interactions. Specifically, we calculated the velocity of each joint

(e.g., left elbow) after it had been projected on the viewing plane.

We used these velocities and also the correlations between oppo-

nent joints (e.g., left and right elbow) velocities as predictors for

the recognition performance observed in the experiment. The

latter velocities had been calculated since movement of oppo-

nent limbs is considered to be critical for the action recognition

of point light actors (Casile and Giese, 2005). In addition, we

correlated the joint velocities between corresponding joints of

the two actors (e.g., the velocity of Person’s A left elbow with

the velocity of Person’s B left elbow). The purpose of these cor-

relations was to capture the temporal synchronization between

actors, which influences social interaction recognition (Neri et al.,

2006). We then used the velocities of individual joints, opponent

joint correlations, and the correlation between corresponding

joints as predictors for the recognition performance obtained in

experiment. We expected that joints that correlate highly with

the recognition performance are candidate visual cues that par-

ticipants might have used for the visual recognition of social

interactions.

METHODS

PARTICIPANTS

Ten right-handed participants (mean age = 26.4; sd = 6.6)

recruited from the local community in Tübingen participated

in the experiment. All participants gave their written informed

consent prior to the experiment. All participants had normal or

corrected-to-normal vision. The experiment was conducted in

accordance with the Declaration of Helsinki.

STIMULI AND APPARATUS

The stimuli were motion captured actions (handshake, hug, high

five) acted out by 17 different pairs of actors using MVN suits

(Xsens Technologies B.V., Eschede, Netherlands) (recording sam-

pling rate: 120 Hz). Actors were facing each other in an empty

room and always started out from the same resting position,

which was a standing pose at a predefined spatial position. A

sound served as a start signal for actors to act out one of the three

actions as instructed by the experimenter. After the acting, actors

went back into their resting position. Each pair of actor acted out

each action at least five times.

The motion capture data was post-processed in Blender and

Matlab: The motion capture clips were chopped in such a way

that they started displaying 40 ms of resting position and stopped

40 ms after the apex of the interaction had been reached (e.g., the

moment when the actors first touched each other). The motion

capture was animated using a stick figure by wrapping an orange

cylinder around each limb and an orange symmetrical sphere on

the joints (see Figure 1). In the end, 5 different 3D models for

each of the three interactions (handshake, hug, high five) were

used. During the experiment each model was shown 144 times

across all experimental conditions. We used the custom writ-

ten software based on Matlab and the Psychophysics toolbox3

(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) to display the

stimuli in the experiment on a Dell LCD screen using a Dell PC.

The Horde3D engine was used within the Psychophysics toolbox

to display the stick figure animations from different viewpoints.

PROCEDURE

Participants sat in front of the computer screen and orally

received the following information about the experiment from

the experimenter. The experiment consisted of three experimental

blocks which were run consecutively on the same day. An exper-

imental block started by presenting a white word in the center of
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the black computer screen. This word indicated the target interac-

tion (hug, high five, or handshake) that participants had to look

out for during the experimental block. After pressing the space

bar the screen turned black and the experiment started by pre-

senting the experimental trials. An experimental trial consisted of

the presentation of an interaction (two stick figures on a black

screen) followed by a two second answer interval, which con-

sisted of a black screen. If participants think they saw the target

interaction, they pressed the “>” key and “z” otherwise (1IFC).

Participant could give their answer at any time during the presen-

tation. The reaction time was measured from the beginning of the

presentation. The pressing of an answer key resulted in the imme-

diate skipping forward to the end of the current trial. Trials were

separated by a 500 ms inter-stimulus-interval consisting of a black

screen. An experimental block consisted of 144 experimental

trials. Participants were instructed to answer as accurately and fast

as possible.

Each experimental block tested the recognition of one of the

three interactions. Every participant had to recognize every inter-

action. The testing order of interactions (and hence experimental

blocks) was randomized across participants. Every experimen-

tal block tested all possible combinations of the two factors of

interest: four viewpoints (profile, half profile, behind, top; see

Figure 1) and five presentation times (0.4, 0.6, 0.8, 1.0, 1.61 s).

Each combination of viewpoint and presentation time was tested

36 times within an experimental block. 18 of these 36 trials were

target trials and 18 were non-target trials. The 18 non-target trials

consisted of a counterbalanced presentation of the two non-target

interactions. Hence an experimental block consisted of 4∗5∗36 =

720 trials. The trials were presented in random order. Participants

completed three of these experimental blocks (each aiming for a

different action and randomized order across participants) for a

total of 2160 trials. The experiment lasted around 2 h.

The factors viewpoint, action, presentation time were com-

pletely crossed within subject factors. The dependent variables

were reaction time (measured in s) and accuracy (as mea-

sured by d′).

FIGURE 1 | Example stimuli for each viewpoint and action condition

showing the last frame from an action movie used in the experiment.

Different actions are shown across rows (handshake, high five, hug) and

different viewpoints of the action are shown across columns (angled,

behind, side, top).

RESULTS

We removed trials in which participants did not give an answer or

where responses were faster than 200 ms (5% of the total trials).

These latter responses were considered uninformed guesses.

REACTION TIMES

The mean reaction times (RT) for trials, in which participants

correctly identified the target, are shown in Figure 2. Reaction

time increases with increasing presentation time for all actions

and viewpoints. The effect of viewpoint on RT seems to vary

across actions. We examined the observed RT patterns by means

of a three-factorial completely crossed within subjects ANOVA.

Viewpoint, action, and presentation time served as within sub-

ject factors and mean RT as a dependent variable. We report

Greenhouse-Geisser corrected p-values in order to counteract

observed violations of sphericity. The main effect of presen-

tation time, F(4, 36) = 18.863, p > 0.001, and action, F(2, 18) =

9.618, p = 0.004, were significant. The main effect of view-

point was non-signficant, F(3, 27) = 1.322, p = 0.290. The inter-

action between action and presentation time, F(8, 72) = 0.716,

p = 0.564, and the interaction between presentation time and

viewpoint, F(12, 108) = 1.192, p = 0.331, were non-significant.

However, the interaction between action and viewpoint was sig-

nificant, F(6, 54) = 4.786, p = 0.005. The three-way interaction

between viewpoint, action, and presentation time was non-

significant, F(24, 216) = 1.109, p = 0.369. The significant inter-

action between action and viewpoint indicates that viewpoint

influences visual recognition for some actions more than for

others.

Figure 3 shows the significant interaction between presenta-

tion and action. Clearly, the effect of viewpoint on action was

different across the three actions. While there seems to be lit-

tle influence of viewpoint on RT for the recognition of high five

actions, the RT to hug and handshake actions seem to depend

on the viewpoint. Specifically, the behind view resulted in the

shortest RT for handshakes and the top view resulted in the short-

est RT for the hugs. We conducted all pairwise comparisons of

FIGURE 2 | Mean reaction times as a function of presentation time

shown for each action and viewpoint separately.
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viewpoints for each action separately using the Holm correc-

tion. For handshake and high five actions, none of the viewpoint

comparisons produced a significant result (p > 0.05). The only

significant difference was found for the recognition of hug actions

when viewed from the top compared to when viewed the profile

view, t(9) = 3.77; pHolm corrected = 0.026. The top view allowed

faster recognition. Overall the analysis of RT shows a significant

effect of viewpoint on RT for the recognition of hug actions.

D-PRIME

D′ provides a measure for participants’ ability to discriminate

the target from non-targets with higher d′ values indicating

better discrimination performance. The mean d′ increases as

a function of presentation time for each viewpoint and action

(Figure 4) indicating that participants were better able to tell the

target from non-targets with increasing presentation time. The d′-

presentation time curves seem to differ for different viewpoints of

the same action.

FIGURE 3 | Mean reaction times given for each action and viewpoint

separately (collapsed across presentation duration). Bars indicated one

standard error from the mean.

FIGURE 4 | Mean d′ as a function of presentation time shown for each

action and viewpoint separately.

We analyzed the effect of presentation time, viewpoint, and

action on d′ in a completely crossed within subject ANOVA.

Because we observed deviations from sphericity for some effects,

we report Greenhouse-Geisser corrected p-values where appro-

priate. The main effect of presentation time, F(4, 36) = 60.52,

p < 0.001, and angle was significant, F(3, 27) = 3.59, p = 0.027.

The main effect of action was non-significant, F(2, 18) = 0.433,

p = 0.655. The interaction between action and presentation

time, F(8, 72) = 1.279, p = 0.268, and the interaction between

viewpoint and presentation time, F(12, 108) = 1.111; p = 0.367,

was non-significant. The interaction between viewpoint and

action was significant, F(6, 54) = 6.670; p < 0.001. The three

way interaction between viewpoint, action, and presentation

time was non-significant, F(24, 216) = 0.956; p = 0.468. Overall,

the ANOVA suggests that discrimination of target from non-

targets dependent on the particular combination of action and

viewpoint.

Figure 5 shows the significant interaction between action and

viewpoint. The modulation of d′ with viewpoint is stronger

for the recognition handshakes and high-fives than for the

recognition of hugs. To examine the effect of viewpoint on d′

in more detail we conducted all pairwise comparison of the

four viewpoint d′ for each action separately using the Holm

correction. As for handshakes, we only found the following com-

parisons to be significant. D′ of top views were significantly

higher than of angled views, t(9) = 3.396; p = 0.040, and d′ of

behind views were significantly higher than of angled views,

t(9) = 5.149; p = 0.004. High-fives when seen from the side

view were associated with a significantly higher d′ than when

seen from the top, t(9) = 4.513; p = 0.009. None of the other

viewpoint d′ comparisons for high five actions were signifi-

cant (p > 0.05). Finally we did not find any differences with

respect to d′ differences across viewpoints for hugging actions

(p > 0.05). In sum the d′ analysis demonstrates viewpoint mod-

ulations of d′ for the recognition of handshake and high-five

actions.

FIGURE 5 | Mean d′ given for each action and viewpoint separately

(collapsed across presentation duration). Bars indicated one standard

error from the mean.
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CORRELATING PHYSICAL MOTION PATTERNS WITH RECOGNITION

PERFORMANCE

The experiment suggests that social interaction recognition per-

formance is not the same across all views and therefore, support

the hypothesis that not all social interactions are represented in

a view invariant fashion. What are candidate visual cues that

participants might have used for the visual recognition of social

interactions? One reasonable assumption is that visual cues used

during the visual recognition of social interactions should corre-

late with observed recognition performance. Specifically, we used

the velocities of bodily joints (e.g., the left elbow) to predict the

observed recognition performance of the previous experiment.

We used joint velocities within our analysis because biological

motion information as provided by joint movements are critical

for the recognition of actions (Blakemore and Decety, 2001; Blake

and Shiffrar, 2007).

We used linear regression to predict recognition performance

from joint velocities. We employed three types of predictors. First,

we used the velocity of individual joints (individual joint veloc-

ities). Second, we correlated the velocities of joints that occur

on both the left and right side of the same body (e.g., left and

right elbow) across time because previous research suggest that

opponent or antiphase movement of these joints is critical for

action recognition (Giese and Poggio, 2003; Casile and Giese,

2005; Thurman and Grossman, 2008). We will refer to this type

of correlation as opponent joint correlations. As the third type

of predictor served the correlation between the velocities of cor-

responding joints from the two actors of the same pair (joint

velocity correlations). The motivation for the use of this type of

predictor stems from previous research demonstrating the impor-

tance of temporal synchrony between actions of the interaction

partners for the visual recognition of social interactions (Neri

et al., 2006). Because we only used symmetric interactions in

which both actors were doing very similar movements, one way to

measure this interpersonal synchrony is by measuring the veloc-

ities of corresponding joints on the two actors across time, e.g.,

correlate the velocity of the right elbow of Person A with the

velocity of the right elbow of Person B.

In the following analysis, we combined RT and d-prime into

a single performance measure (RT corrected d prime) to facili-

tate the interpretation of our results using a univariate regression

analysis instead of a multivariate regression analysis.

METHODS

BODY MODEL

For the analysis we used the joints as specified by the bvh body

model provided by MVN. This body models consisted of 23 joints

(see spheres in Figure 1).

DATA ACQUISITION

We used MATLAB and the Motion Capture Toolbox (Lawrence,

2009) to determine the 3D position of each joint for each

action, view, actor, and animation frame. Note that an individ-

ual joint can move because the actor is moving as a whole (global

body motion) or because the joint itself is moving (local joint

movement). Moreover, note that the global position of the body

in 3D space of the MVN bvh body model is given by the position

of the central hip joint. In order to separate global body motion

from the local limb movement, we subtracted the hip 3D space

coordinates form all other joint 3D coordinates. As a result, the

hips indicate global body position while the remaining joints indi-

cate local joint movement. We then calculated the 2D projections

of the 3D joint positions on the viewer’s plane. Subsequently, the

velocities of each joint in 2D space was calculated as the Euclidean

distance of the 2D positions between two successive animation

frames. All analysis was carried out on these joint velocities

that were obtained for each action, view, actor, and animation

frame.

DATA ANALYSIS

We used linear regression to predict recognition performance

from joint velocities. Because we had two measures of recogni-

tion performance in the experiment (d prime and reaction time),

we combined the two measures into a single measure for the sake

of ease of interpreting univariate regression results: We calculated

the d prime values adjusted for reaction time by using reaction

time as a covariate in the d prime ANOVA model of the results

section of the experiment. In particular, we used the inverted reac-

tion time as a covariate to ensure that for both reaction time and d

prime, better performance is associated with a larger values. The

adjusted mean d prime values served as the dependent variable

for the regression analysis.

For the individual joint velocity predictors we integrated the

velocities for each joint, actor, action, and view across time.

Specifically, this integration of velocities was done for the five

probed presentation times (0.4, 0.6, 0.8, 1.0, 1.61 s) separately.

The opponent joint velocities were simply the correlation of cor-

responding left and right joints across time calculated for each

presentation time separately. As for the joint velocity correlations,

we calculated the correlations between velocities of correspond-

ing joints on the two actors of the same pair across time. This

correlation was calculated separately for each of the five probed

presentation times. The resulting joint velocities and joint velocity

correlations were then used as predictors. There were 8 opponent

joint velocity predictors, 23 individual joint velocity predictors,

and 23 correlated joint velocity predictors.

In the frist step, stepwise multiple regression was used to

reduce the initial set of 54 predictors to a smaller set of predic-

tors suitable for recognition performance prediction. We used

stepAIC function from the statistical package R with forward

and backward elimination using the Akaike information criterion

(AIC) as selection criterion. The starting model for the stepwise

regression procedure was one that contained only the intercept.

Stepwise regression returned a model with 33 predictors explain-

ing 98.68% of the variance in the recognition performance. In a

second step, we simplified this model using all subset regression.

The best subset regression returned the best model for all possible

model sizes (1–33). A visual inspection of the plot of adjusted-

r2 and the BIC criterion (of the best fitting models) against the

model size (not shown here) showed that adjusted-r2 and BIC

changed only slightly with model size (i.e., the function asymp-

totes) for models containing more than 15 predictors (benefit of

a model with 16 parameters compared to one with 15 parame-

ters: r2: less than 0.75% at a 94% fit; BIC less than −4.29 at a BIC
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value of −105). Hence, we chose the best fitting model with 15

predictors as our final model.

Relative importance of the predictors of the final model were

determined by calculating the average r2 across all predictor

orderings (Grömping, 2006). Relative importance measures the

average amount of variance in the recognition scores explained

by predictor.

RESULTS

The final model contained 15 predictors from 11 joints and

explained 94.22% of the variance of the d prime values (Figure 6).

FIGURE 6 | d′ values adjusted for mean RT of the behavioral

experiment (dotted lines and crosses) and the predicted d’

performance from the regression model (solid circles).

Table 1 | Predictors of the final model used to predict recognition

performance from joint velocities.

Predictor Pr(>|t|) Relative

importance

(average r2)

1. Right wrist 6.97E-014 0.14873565

2. Ankle (opponent joint correlation) 1.64E-006 0.09743588

3. Hip (opponent joint correlation) 9.85E-006 0.09048241

4. Left toe 1.78E-011 0.0824363

5. Right elbow 1.10E-011 0.08204858

6. Toe (opponent joint correlation) 0.000406 0.07884528

7. Right toe 3.75E-008 0.07465615

8. Right ankle 8.14E-006 0.06588832

9. Right shoulder 3.34E-007 0.05590034

10. Chest 0.000177 0.05561856

11. Right ankle (joint velocity correlation) 0.005193 0.02904772

12. Elbow (opponent joint correlation) 2.83E-006 0.02521843

13. Left collar (joint velocity correlation) 0.0007 0.02314838

14. Left toe (joint velocity correlation) 0.000103 0.02093676

15. Right wrist (joint velocity correlation) 2.83E-006 0.01180915

If no predictor type is specified in brackets, predictors refer to individual joint

velocities.

The predictors are listed in Table 1 and the corresponding joints

are shown in Figure 7. The model contained predictors refer-

ring to individual joint velocities, opponent joint velocities, and

joint velocity correlations. These predictive joints were mostly

located on the feet, the right arm, and the upper body. The rel-

ative importance of each predictor as measured by the average

R2 across different predictor orderings indicated that the individ-

ual joint velocities of the right wrist explains most of the variance

in the recognition performance. Other important predictors as

measured by relative importance were opponent joint movements

of hips (i.e., left and right hip) and feet. On average, individ-

ual joint velocities and opponent joint correlations explained

most of the variance (Table 1) and the correlated joints veloci-

ties explained a smaller amount of variance in the recognition

performance. Interestingly, the distance between the two per-

sons did not turn out to be a significant predictor of recognition

performance as indicated by the lack of the central hip as a pre-

dictor in the model. In summary, this analysis demonstrates that

low level visual cues (individual joint movements and correlated

joint movements) provide one possible explanation for the view-

dependent visual recognition of social interactions including the

the optimal view of social interactions.

So far we assessed the predictors in terms of their ability to pre-

dict the overall recognition performance, i.e., the recognition per-

formance across all experimental conditions. However, it is likely

that not all joints are equally informative across all experimental

conditions. For example, the hands might be more informative

for recognition performance changes across different viewpoints

FIGURE 7 | The joints whose velocity profile was most predictive for

the recognition performance as observed in the experiment.
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than across different actions. To gain greater insight about which

predictors are most predictive for individual experimental factors,

we addressed the question to what degree the predictors listed in

Table 1 are able to predict performance changes for each experi-

mental factors separately (viewpoint, presentation time, action).

For the experimental factor under scrutiny, we regressed recog-

nition performance on the two other experimental factor (not

under scrutiny) and obtained the residuals from the fitted model.

Note that these residuals have been adjusted for all experimental

effects except for the experimental factor in question and there-

fore, carry mostly information about the experimental factor in

question. Using these residuals, we regressed recognition perfor-

mance on the predictors in Table 1. Finally, we determined the

relative importance of each predictor, to determine the predictor

is most predictive for the recognition performance changes across

the experimental factor in question. The results are shown in

Figure 8. The 15 predictors have different predictive power across

the three experimental manipulations. The best predictor for per-

formance changes across different viewpoints is the opponent

hips correlation. The right wrist is best for predictor for differ-

ent recognition performances across presentation times. Finally,

the end of left foot best predicted changes in recognition per-

formance across different actions. The high predictability of the

end of left foot arises from the different walking patterns associ-

ated with different actions. For example, actors stepped often only

one step forward during a high five and handshake action while

taking several steps when conducting a hug action. Moreover,

the step was faster during the handshake than during the high

five action.

Overall, the results of this analysis suggest that different pre-

dictors are associated with different predictive power for different

experimental manipulations. Yet, it is noteworthy that the pre-

dictor “end of left foot” is overall a good predictor for all three

experimental manipulations since it is associated with high rela-

tive importance for all three experimental manipulations.

FIGURE 8 | Relative importance of each predictor (numbers) of Table 1

shown for each experimental factor separately. The numbers refer to the

predictor number in Table 1.

DISCUSSION

The experiment investigated view dependencies in the visual

recognition of hug, handshake, and high-five actions. The exper-

iment showed that RT magnitude depended on the viewpoint for

hug actions and that d′ values depended on the viewpoint for high

five actions and handshake actions. Hence, the viewpoint had an

effect on either RT or d′ for each social interaction. These view-

point modulations of recognition performance are in line with

the idea that not all social interactions are recognized in a view

invariant manner.

The analysis of the relationship between joint velocities and

recognition performance revealed several candidate movements

that offer a possible explanation for view-dependent visual recog-

nition of social interactions based on low level visual cues. In

particular, we found joints relating to the right hand, the feet,

and to the upper body to be most informative about recogni-

tion performance. This result aligns with previous reports about

critical sources of visual information for the recognition of bio-

logical motion (see below). We also found that the correlation of

velocities of opponent limbs are particularly predictive of recog-

nition performance. Although we did not demonstrate a causal

relationship between opponent movement and recognition per-

formance in the present study, this finding is in line with the

suggestion that anti-phase limb movements are critical for bio-

logical motion recognition (Casile and Giese, 2005; Thurman and

Grossman, 2008). In addition, we also found that movements

between corresponding joints on the two persons (in particular

the arm, left collar, and the feet) were predictive of recognition

performance as it is expected from studies on the temporal syn-

chrony of interactive movements (Neri et al., 2006). In summary,

all three types of velocities are predictive of recognition perfor-

mance, which is in line with previous reports that opponent

movement and the temporal relationships between interaction

partners are important. Moreover, the bodily location of the

visual cues as suggested by this analysis are in line with previous

experimental results showing that the movement of extremi-

ties (leg and arms) (Troje and Westhoff, 2006; Thurman and

Grossman, 2008) and upper body (Thurman et al., 2010) is diag-

nostic for the recognition of point light walkers and stick figure

walkers.

Additional analysis showed that the predictors are to differ-

ent degrees indicative of recognition performance changes along

the three experimental manipulations (viewpoint, presentation

time, and action). For example, the opponent movement of the

hips was particularly predictive for performance changes across

viewpoints, the end of left foot was most predictive for the perfor-

mance changes across actions, and the right wrist was indicative

of performance changes with changes in the presentation time.

Hence not all predictors were equally effective for performance

changes associated with the three experimental manipulations.

This physical analysis of the velocity patterns is a first step

to understand which visual cues participants relying on during

the visual recognition of social interactions. We suggest candi-

date visual cues that carry information about social interactions

and therefore, might be used for the recognition of social interac-

tions. Although these cues are able to explain the view-dependent

recognition of social interactions on a theoretical level, additional
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experiments are required to verify whether participants indeed

use these visual cues for the recognition of social interactions.

CAN THE OBSERVED VIEW-DEPENDENCIES SOLELY EXPLAINED BY

VISUAL LEARNING OF LOCAL BODILY CUES?

An alternative explanation of the findings in our study is that

participants learned informative local bodily cues, e.g., the move-

ment patterns of the feet, and recognized actions based on these

local cues. If participants learned these local cues in a view depen-

dent manner and rely on them during recognition, one would

expect recognition performance of social interactions to depend

on the viewpoint. However, this type of view-dependent recogni-

tion performance would not speak to a view-dependent encoding

of social interactions but rather to a view-dependent encoding of

local bodily cues.

To asses the plausibility of learning of local bodily cues, we

examined the effect of stimulus on recognition performance in

the current experiment. First, we reasoned that if participants

learned to pick up subtle local differences due to the repeated

presentation of the stimuli, we would expect the observed effects

to change if the same analysis was conducted on a more limited

data set for which the number of stimulus repetitions was much

smaller (and hence learning was less pronounced). We analyzed

only the first 3 experimental blocks of each participant. For the

first 3 experimental blocks, all three interactions were tested for

8 out of the 10 participants (note that interaction presentation

order was randomized across participants). The subsequent anal-

ysis was, therefore, carried on the 8 participants for which we had

data for every interaction. The average repetition rate of stim-

uli within this limited data set was 15 repetitions per stimulus

(compared to 36 repetitions in the full data set). We ran the same

analyses on this more limited data set as reported in the results

section. The RT analysis on this limited data set showed the same

significant effects as the original analysis. Likewise, the d prime

analysis exhibited the same pattern of significant effects with the

limited data set as it did with the full data set. Hence restricting

the analysis to the first three experimental blocks of the data did

not change the pattern of the results.

Second, we addressed the issue of learning more directly by

conducted a mixed linear model analysis for both d prime and RT

data separately. We reasoned that if learning occurred, the perfor-

mance should improve the more often participants participated in

experiments and therefore, the more often they saw the stimuli.

The frequency of participants’ engagements in the experimental

task was measured by the variable experimental block. In both

the RT and d-prime analysis, participant was a random effect

and experimental block was a fixed effect, whose intercept and

slope was allowed to vary in a by-participant manner (i.e., the

effect of block was modeled for each participant separately). The

results show a non-significant effect of block on both the RT

[t(61) = −1.68; p = 0.09] and the d-prime [t(61) = 1.225, p =

0.225] analysis suggesting that RT and d-prime values did not

change significantly across time. It, therefore, seems unlikely that

performance largely changed with repeated presentation of the

stimuli.

Finally, one could argue that learning is rapid and, therefore,

is completed within the first experimental block. We therefore,

looked at the change of RT for correct target identifications over

trials within the first experimental block. We ran a mixed effects

model with trial number as a fixed factor and participant as

a random factor. The intercept and slope for trial was fitted

in a by-participant fashion to model the performance change

over time for each participant separately. The analysis showed a

non-significant effect of trial number indicating that RT did not

change significantly over time, t(1115) = −1.09, p = 0.275. We did

not calculate the analysis for d prime because the d prime analysis

requires averaging of participants’ responses across a reasonable

number of stimulus repetitions, which was not given for the data

of the first block.

Overall, the results of the additional analyses showed little evi-

dence for profound learning effects. We, therefore, think that the

observed effects are unlikely due to learning alone and that partic-

ipants did not rely solely on learned local visual cues during social

interaction recognition.

VIEW-DEPENDENT ENCODING OF SOCIAL INTERACTIONS OR

VIEW-DEPENDENT ENCODING OF INDIVIDUAL ACTIONS?

The recognition of individual actions as displayed by point light

walkers are known to be view-dependent (Verfaillie, 1993). One

could therefore, argue that the view-dependent recognition of

social interactions is simply due to the view-dependent visual

recognition of the individual actions. Is the view-dependent

recognition of social interactions due to view-dependent recogni-

tion of individual actions or due to view-dependent recognition

of the interactions? There is evidence that the recognition of

social interactions is more than the simply the recognition of the

constituent individual actions. If the recognition of an interac-

tion were simply the recognition of the constituting individual

actions, there should be no interaction between the interaction

and the recognition of individual actions. However, this is not the

case. Neri et al. (2006), for example, showed that synchronized

(meaningful) compared to desynchronized (meaningless) inter-

actions lead to better recognition performance of an individual

action constituting the interaction. Because the meaningfulness

of an interaction influences the recognition of individual actions,

their results suggests that the visual recognition of social interac-

tions is more than merely the recognition of individual actions.

In a similar vein, Manera et al. (2011) showed that participants’

were better to discriminate a point light actor from noise if this

actor was preceded by a communicative compared to a non-

communicative agent. Seeing the dyad rather than merely the

participating individuals also positively influenced the recogni-

tion of emotions within interpersonal dialog. Clarke et al. (2005)

showed that the recognition of love and joy was impaired if

the interaction partner was not shown. Therefore, perceiving the

another person’s action as part of a communicative interaction

improves recognition performance. Overall, these result provide

accumulating evidence that the visual recognition of interactions

goes beyond the mere recognition of the individual actions.

In line with these previous results, our analysis of the joint

velocity patterns suggests that correlations between velocities of

corresponding joints on the two actors are predictive of recog-

nition performance. Hence, joint velocity correlations between

the two actors carry social interaction specific information, which
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could potentially be used by participants in the visual recognition

of social interactions.

Despite the ability of these of joint velocity correlations to

predict recognition performance, individual joint velocities and

opponent joint velocities explain the bulk part of the recognition

performance. This suggests that view-dependent recognition of

individual actions might also contribute to the view-dependent

recognition of social interactions. Taken together, it seems plau-

sible to assume that both view-dependent processing of indi-

vidual actions as well as view-dependent processing of the

interactions contribute to the view-dependent recognition of

social interactions. However, a more detailed examination is

needed to tease apart the contributions of these two sources

to the recognition of social interactions. Our physical anal-

ysis provides a starting point for this investigation by sug-

gesting candidate visual cues that correlate with recognition

performance.

Motor-visual neural populations are often considered to be

critical for the recognition of actions although this view is

debated (Jacob and Jeannerod, 2005; Mahon and Caramazza,

2008; Hickok, 2009). If one adopts the former view, the observed

view dependent recognition of social interaction recognition align

with recent observations in macaque monkeys and humans.

Caggiano and colleagues found that the majority (74% of the

tested neurons) motor-visual neurons in area F5 exhibit view-

dependent response behavior (Caggiano et al., 2011). In humans,

a recent study demonstrated view-dependence of visuo-motor

cortical areas involved in action observation and action execution

(Oosterhof et al., 2012) using fMRI. Our findings also add to the

larger growing body of evidence that view-dependent encoding of

visual information is an underlying principle for several stimuli

including objects (Bülthoff and Edelman, 1992), faces (Troje and

Bülthoff, 1996), body postures (Reed et al., 2003), and biological

motion (Verfaillie, 1993).

The human ability to read actions from bodily movements is

most likely of high relevance in natural social interactions even

in the presence of other visual cues conveying social information

(e.g., facial expressions). First, facial expressions are indicative of

the emotional state of a person. Yet, they do not convey the kind

of action that is executed by a person. Hence, the recognition of

actions or social interactions requires the recognition of dynamic

bodily expressions. Second, the perception of facial expression

depends on the immediate situational context, which includes

bodily expressions. For example, the emotion that observers asso-

ciated with a facial expression depended on the body posture

and other object context that was presented along with the facial

expression (Aviezer et al., 2008). Hence, situational context inter-

acts with facial expression recognition. It seems plausible to

assume that the same holds true for bodily actions. We, therefore,

think that various social cues (including bodily social interac-

tion information) are integrated in a non-additive fashion during

recognition to obtain a social percept of other persons.

The current study examined the effect of viewpoint on the

visual recognition of three social interactions. Viewpoint influ-

enced the visual recognition of the three social interactions in

terms either of RT or d′. These observations extend previous

knowledge about viewpoint-dependencies in the visual recogni-

tion of individual body postures (Reed et al., 2003) and biological

motion of single persons (Troje et al., 2005) to two person inter-

actions and show that not all social interactions are encoded in

a view invariant manner. The correlation of the joint velocities

with actual recognition performance indicates that joint veloci-

ties of the upper body, the arms, and the lower leg correlate well

with recognition performance.
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