
 Open access Proceedings Article DOI:10.1145/258734.258847

View-dependent simplification of arbitrary polygonal environments — Source link

David Luebke, Carl Erikson

Institutions: University of North Carolina at Chapel Hill

Published on: 03 Aug 1997 - International Conference on Computer Graphics and Interactive Techniques

Topics: Boolean operations on polygons, Polygon, Rendering (computer graphics) and Vertex (geometry)

Related papers:

 View-dependent refinement of progressive meshes

 Progressive meshes

 Surface simplification using quadric error metrics

 Dynamic view-dependent simplification for polygonal models

 Multi-resolution 3D approximations for rendering complex scenes

Share this paper:

View more about this paper here: https://typeset.io/papers/view-dependent-simplification-of-arbitrary-polygonal-
54r55u3e2x

https://typeset.io/
https://www.doi.org/10.1145/258734.258847
https://typeset.io/papers/view-dependent-simplification-of-arbitrary-polygonal-54r55u3e2x
https://typeset.io/authors/david-luebke-23x39c64sy
https://typeset.io/authors/carl-erikson-12i7k1e4hr
https://typeset.io/institutions/university-of-north-carolina-at-chapel-hill-1436f8fx
https://typeset.io/conferences/international-conference-on-computer-graphics-and-3o6a2mkj
https://typeset.io/topics/boolean-operations-on-polygons-2svpwh01
https://typeset.io/topics/polygon-uc7ce1p0
https://typeset.io/topics/rendering-computer-graphics-2x538szh
https://typeset.io/topics/vertex-geometry-mtlatfmx
https://typeset.io/papers/view-dependent-refinement-of-progressive-meshes-1n3ik1m527
https://typeset.io/papers/progressive-meshes-kgvhyftum6
https://typeset.io/papers/surface-simplification-using-quadric-error-metrics-r9zm14jwq8
https://typeset.io/papers/dynamic-view-dependent-simplification-for-polygonal-models-3sp6m50mt0
https://typeset.io/papers/multi-resolution-3d-approximations-for-rendering-complex-2bg7szax02
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/view-dependent-simplification-of-arbitrary-polygonal-54r55u3e2x
https://twitter.com/intent/tweet?text=View-dependent%20simplification%20of%20arbitrary%20polygonal%20environments&url=https://typeset.io/papers/view-dependent-simplification-of-arbitrary-polygonal-54r55u3e2x
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/view-dependent-simplification-of-arbitrary-polygonal-54r55u3e2x
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/view-dependent-simplification-of-arbitrary-polygonal-54r55u3e2x
https://typeset.io/papers/view-dependent-simplification-of-arbitrary-polygonal-54r55u3e2x

View-Dependent Simplification Of Arbitrary Polygonal Environments
David Luebke, Carl Erikson

Department of Computer Science
University of North Carolina at Chapel Hill

1. ABSTRACT

Hierarchical dynamic simplification (HDS) is a new approach
to the problem of simplifying arbitrary polygonal environments.
HDS operates dynamically, retessellating the scene
continuously as the user’s viewing position shifts, and
adaptively, processing the entire database without first
decomposing the environment into individual objects. The
resulting system allows real-time display of very complex
polygonal CAD models consisting of thousands of parts and
hundreds of thousands of polygons. HDS supports various
preprocessing algorithms and various run-time criteria,
providing a general framework for dynamic view-dependent
simplification.

Briefly, HDS works by clustering vertices together in a
hiera rchical fashion. The simplification process continuously
queries this hierarchy to generate a scene containing only
those polygons that are important from the current viewpoint.
When the volume of space associated with a vertex cluster
occupies less than a user-specified amount of the screen, all
vertices within that cluster are collapsed together and
degenerate polygons filtered out. HDS maintains an active list
of visible polygons for rendering. Since frame-to-frame
movements typically involve small changes in viewpoint, and
therefore modify the active list by only a few polygons, the
method takes advantage of temporal coherence for greater
speed.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling - surfaces and object representations.

Additional Keywords: polygonal simplification, level of detail, view

dependent rendering.

2. INTRODUCTION

2.1 Polygons In Computer Graphics

Polygonal models currently dominate the field of interactive
three-dimensional computer graphics. This is largely because
their mathematical simplicity allows rapid rendering of
polygonal datasets, which in turn has led to widely available
polygon-rendering hardware. Moreover, polygons serve as a
sort of lowest common denominator for computer models, since
almost any model representation (spline, implicit-surface,
volumetric) can be converted with arbitrary accuracy to a
polygonal mesh.

In many cases the complexity of such models exceeds the
capability of graphics hardware to render them interactively.
Three approaches are used to alleviate this problem:

• Augmenting the raw polygonal data to convey more

visual detail per polygon. Gouraud shading and
texture mapping fall into this category.

• Using information about the model to cull away large
portions which are occluded from the current
viewpoint. The visibility processing approach of
Teller and Sequin is an excellent example [Teller
91].

• Polygonal simplification methods simplify the
polygonal geometry of small or distant objects to
reduce the rendering cost without a significant loss in
the visual content of the scene. HDS is one such
method.

2.2 Polygonal Simplification

Polygonal simplification is at once a very current and a very
old topic in computer graphics. As early as 1976, James Clark
described the benefits of representing objects within a scene at
several resolutions, and flight simulators have long used hand-
crafted multi-resolution models of airplanes to guarantee a
constant frame rate [Clark 76, Cosman 81]. Recent years have
seen a flurry of research into generating such multi-resolution
representations of objects automatically by simplifying the
polygonal geometry of the object. This paper presents a new
approach which simplifies the geometry of entire scenes
dynamically, adjusting the simplification as the user moves
around.

2.3 Motivation

The algorithm presented in this paper was conceived for very
complex hand-crafted CAD databases, a class of models for
which existing simplification methods are often inadequate.
Real-world CAD models are often topologically unsound (i.e.,
non-manifold), and may entail a great deal of clean-up effort
before many simpl ification algorithms can be applied.
Sometimes such models even come in “polygon-soup” formats
which do not differentiate ind ividual objects, but instead
describe the entire scene as an unorganized list of polygons.
No existing algorithm deals elegantly with such models.

Even when the model format delineates objects,
simplifying complex CAD datasets with current schemes can
involve many man-hours. To begin with, physically large
objects must be subdivided. Consider a model of a ship, for
example: the hull of the ship should be divided into several
sections, or the end furthest from the user will be tessellated as
finely as the nearby hull. In addition, physically small objects
may need to be combined, especially for drastic simplification.
The diesel engine of that ship might consist of ten thousand
small parts; a roughly engine-shaped block makes a better
approximation than ten thousand tetrahedra. Finally, each
simplification must be inspected for visual fidelity to the
original object, and an appropriate switching threshold
selected. This can be the most time-consuming step in the
simplification of a complicated model with thousands of parts,
but few existing techniques address automating the process. 1

These considerations led to a new approach with three
primary goals. First, the algorithm should be very general,

1 Notable exceptions include work by Cohen et al, and by Shirley and

Maciel [Cohen 96, Maciel 95].

Copyright Notice
Copyright ©1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to distribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Supplemental Materials
Supplemental materials for this paper are available in the papers/luebke directory.

making as few assumptions as possible about the input model.
The algorithm must therefore deal robustly with degenerate and
non-manifold models. Second, the algorithm should be
completely automatic, able to simplify even a polygon-soup
model without human intervention. This implies that the
algorithm must simplify the entire scene adaptively rather than
relying on simplifying objects within the scene. Third, the
algorithm should be dynami cally adjustable, supplying the
system with a fine-grained interactive “dial” for trading off
performance and fidelity. This final requirement implies that
the algorithm must operate at least partially at run time.

2.4 Hierarchical Dynamic Simplification

Hierarchical dynamic simplification has some novel features.
Rather than representing the scene as a collection of objects,
each at several levels of detail, the entire model comprises a
single large data structure. This is the vertex tree, a hierarchy
of vertices which is queried dynamically to generate a
simplified scene. The vertex tree contains information only
about the vertices and triangles of the model; manifold
topology is not required and need not be preserved. Each node
in the vertex tree contains one or more vertices; HDS operates
by collapsing all of the vertices within a node together to a
single representative vertex. Triangles whose corners have
been collapsed together become redundant and can be
eliminated, decreasing the total polygon count. Likewise, a
node may be expanded by splitting its representative vertex
into the representative vertices of the node’s children.
Triangles filtered out when the node was collapsed become
visible again when the node is expanded, increasing the
polygon count.

The entire system is dynamic; nodes to be collapsed or
expanded are continuously chosen based on their projected
size. The screenspace extent of each node is monitored: as the
viewpoint shifts, certain nodes in the vertex tree will fall below
the size threshold. These nodes will be folded into their parent
nodes and the now-redundant triangles removed from the
display list. Other nodes will increase in apparent size to the
user and will be unfolded into their constituent child nodes,
introducing new vertices and new triangles into the display list.
The user selects the screenspace size threshold and may adjust
it during the course of a viewing session for interactive control
over the degree of simplification. Nodes will be folded and
unfolded each frame, so eff icient methods for finding, adding,
and removing the affected triangles are crucial.

3. STRUCTURES AND METHODS

3.1 Active Triangle List

The purpose of the active triangle list is to take advantage of
temporal coherence. Frames in an interactive viewing session
typically exhibit only incremental shifts in viewpoint, so the
set of visible triangles remains largely constant. The active
triangle list in its simplest form is just a sequence of those
visible triangles. Expanding a node appends some triangles to
the active triangle list; collapsing the node removes them. The
active list is maintained in the current implementation as a
doubly-linked list of triangle structures, each with the following
basic structure:

struct Tri {
Node * corners[3];
Node * proxies[3];
Tri *prev, *next;

};

The corners field represents the triangle at its highest
resolution, pointing to the three nodes whose representative

vertices are the original corners of the triangle. The proxies
field represents the triangle in the current simplification,
pointing to the first active ancestor of each corner node
[Figure 1].

Before Simplification After Simplification

(b) Arrows point at proxies(a) Arrows point at corners

Figure 1: A triangle’s corners reference the initial vertices; its
proxies point to the current simplification of each corner.
Clus tering vertices to the representative vertex of their quadrant
(circled) collapses all but the darkened triangle.

3.2 Vertex Tree

Created during a preprocessing stage, the vertex tree controls
the order in which vertices are collapsed and stores data
necessary to collapse and uncollapse these vertices quickly.
Unfolded nodes in the vertex tree are labeled active, and
folded nodes are labeled inactive ; the active nodes of the
vertex tree comprise a contiguous region called the active tree.
Active nodes with no active children are a special case; these
nodes form the boundary of the active tree and are labeled
boundary nodes[Figure 2].

Boundary Nodes

Active Tree

Vertex Tree

Figure 2: The vertex tree, active tree, and boundary nodes.

Each node in the vertex tree includes the basic structure
described below (explanations of the individual fields follow):

struct Node {
BitVec id;
Byte depth;
NodeStatus label;
Coord repvert;
Coord center;
float radius;
Tri * tris;
Tri * subtris;
Node * parent;
Byte numchildren;
Node ** children;

};

• id: a bit vector which labels the path from the root of
the vertex tree to the node. In a binary vertex tree,
each bit specifies the left or right branch at that level
of the tree. For the vertex octree described in section
7.1, each 3-bit triple denotes the correct branch at
that level.

• depth: the depth of the node in the vertex tree. The
depth and id together uniquely identify the node.

• label : the node’s status: active, boundary, or
inactive .

• repvert : the coordinates of the node’s representative
vertex. All vertices in boundary and inactive nodes
are collapsed to this vertex.

• center, radius: the center and radius of a bounding
sphere containing all vertices in this node.

• tris: a list of triangles with exactly one corner in the
node. These are the triangles whose corners must be
adjusted when the node is folded or unfolded.

• subtris : a list of triangles with two or three corners
within the node, but no more than one corner within
any child of the node [Figure 4]. These triangles will
be fil tered out if the node is folded, and re-introduced
if the node is unfolded.

• parent, numchildren, children: the parent and
children of this node in the vertex tree.

The fundamental operations associated with nodes in the
vertex tree are collapseNode() and expandNode(). These
functions add or remove the subtris of the specified node from
the active triangle list and update the proxies of the node’s tris:

collapseNode (Node *N)
N->label = boundary;
foreach child C of N

// label all children inactive
if (C->label == active)

collapseNode(C);
C->label = inactive;

foreach triangle T in N->tris
// update tri proxies
foreach corner c of {1,2,3}

T->proxies[c] =
firstActiveAncestor(T->

corners[c]);
foreach triangle T in N->subtris

// remove subtris from active list
removeTri(T);

expandNode (Node *N)
foreach child C of N

C->label = boundary;
N->label = active;
foreach triangle T in N->tris

// update tri proxies
foreach corner c of {1,2,3}

T->proxies[c] =
firstActiveAncestor(T->

corners[c]);
foreach triangle T in N->subtris

// add subtris to active list
addTri(T);

4. VIEW-DEPENDENT SIMPLIFICATION

The data structures and methods described so far provide a
framework for dynamic view-dependent simplification. Any
cri terion for run-time simplification may be plugged into this
framework; each criterion takes the form of a function to
choose which nodes are folded and unfolded each frame. The

current implementation incorporates three criteria: a
screenspace error threshold, a silhouette test, and a triangle
budget.

4.1 Screenspace Error Threshold

The underlying philosophy of HDS is to remove triangles which
are not important to the scene. Since importance usually
diminishes with size on the screen, an obvious run-time
strategy is to collapse nodes which occupy a small amount of
the screen. To formulate this strategy more precisely, consider
a node which represents several vertices clustered together.
The error introduced by collapsing the vertices can be thought
of as the maximum distance a vertex can be shifted during the
collapse operation, which equals the length of the vector
between the two far thest vertices in the cluster. The extent of
this vector on the screen is the screenspace error of the node.
By unfolding exactly those nodes whose screenspace error
exceeds a user-specified threshold t, HDS enforces a quality
constraint on the simplification: no vertex shall move by more
than t pixels on the screen.

Determining the exact screenspace extent of a vertex
cluster can be a time-consuming task, but a conservative
estimate can be efficiently obtained by associating a bounding
volume with each node in the vertex tree. The current
implementation uses bounding spheres, which allow an
extremely fast screenspace extent test but often provide a poor
fit to the vertex cluster. The function nodeSize(N) tests the
bounding sphere of the node N and returns its extent projected
onto the screen. The recursive procedure adjustTree() uses
nodeSize() in a top-down fashion, evaluating which nodes to
collapse and expand:

adjustTree(Node *N)
size = nodeSize(N);
if (size >= threshold)

if (N->label == active)
foreach child C of N

adjustTree(C);
else // N->label == Boundary

expandNode(N);
else // size < threshold

if (N->label == active)
collapseNode(N);

4.2 Silhouette Preservation

Silhouettes and contours are particularly important visual cues
for object recognition. Detecting nodes along object
silhouettes and allocating more detail to those regions can
therefore dispropor tionately increase the perceived quality of a
simplification [Xia 96]. A conservative but efficient silhouette
test can be plugged into the HDS framework by adding two
fields to the Node structure: coneNormal is a vector and
coneAngle is a floating-point scalar. These fields together
specify a cone of normals [Shirman 93] for the node which
conservatively bounds all the normals of all the triangles in the
subtree rooted at the node [Figure 5]. At run time a viewing
cone is created that originates from the viewer position and
tightly encloses the bounding sphere of the node [Figure 6].
Testing the viewing cone against the cone of normals
determines whether the node is completely frontfacing,
completely backfacing, or potentially lies on the silhouette. If
any normal in the cone of normals is orthogonal to any
direction contained within the viewing cone, the node is
potentially on the silhouette [Figure 7]:

Figure 4: Showing the subtris of three nodes. These are the
triangles which appear and vanish as the nodes fold and unfold.
Here the subtris of each circled node are darkened.

coneNormal

(Nview)

coneAngle (α)

Figure 5: On the left, a node containing four triangles plus its
bounding sphere. On the right, the node’s cone of normals.

viewConeNormal (Nview)

viewConeAngle (β)

θ

Figure 6: The viewing cone on the left originates from the viewer
and tightly encloses the bounding sphere of the node. The angle
between Ncone and Nview is denoted θ in the pseudocode below.

testSilhouette(Node *node, Coord eyePt)
α = node->coneAngle;
Ncone = node->coneNormal;
β = calcViewConeAngle(eyePt, node);
Nview = calcViewConeNormal(eyePt, node);
θ = cos-1(Nview • Ncone);
if (θ - α - β > π/2)

return FrontFacing;
if (θ + α + β < π/2)

return BackFacing;
return OnSilhouette;

Silhouette preservation dovetails nicely with the
screenspace error metric approach presented above: the
testSilhouette() operation determines which nodes may be on
the silhouette, and these nodes are then tested against a tighter
screenspace error threshold than interior nodes [Plate 2]. The
adjustTree() operation is easily modified to incorporate this
test:

adjustTree(Node *N)
size = nodeSize(N);
if (testSilhouette(N) == OnSilhouette)

testThreshold = Ts;
else // testSilhouette(N) ==

Interior
testThreshold = TI;

if (size >= testThreshold)
if (N->label == active)

foreach child C of N
adjustTree(C);

else // N->label == Boundary
expandNode(N);

else // size < testThreshold
if (N->label == active)

collapseNode(N);
Note that hierarchical backface culling falls out of the

silhouette preservation test if polygons of backfacing nodes are
not rendered [Kumar 96].

4.3 Triangle-Budget Simplification

The screenspace error threshold and silhouette test allow the
user to set a bound on the quality of the simplified scene, but
often a bound on the complexity (and rendering time) is
desired instead. Triangle budget simplification allows the user
to specify how many triangles the scene should contain. HDS
then minimizes the maximum screenspace error of all
boundary nodes within this triangle budget constraint. The
intuitive meaning of this process is easily put into words:
“Vertices on the screen can move as far as t pixels from their
original position. Minimize t.”

The current system implements triangle budget
simplification as a priority queue of boundary nodes, sorted by
screenspace er ror. The node N with the greatest error is

unfolded, removing N from the top of the queue and inserting
the children of N back into the queue. This process iterates
until unfolding the top node of the queue would exceed the
triangle budget, at which point the maximum error has been
minimized. The simplification could further refine the scene
by searching the priority queue for the largest nodes which can
still be unfolded without violating the triangle budget, but this
is unnecessary in practice. The initial minimization step works
extremely well on all models tested, and always terminates
within twenty triangles of the specified budget. Pseudocode for
this procedure is straightforward:

budgetSimplify(Node *rootnode)
// Initialize Q to rootnode
Heap *Q(rootnode);
Node *topnode = rootnode;

Q->initialize(root);
while (topnode->nsubtris < tribudget)

topnode = Q->removeTop();
expandNode(topnode);
Q->insert(topnode->children);
tribudget -= topnode->nsubtris;

5. OPTIMIZING THE ALGORITHM

A straightforward implementation of the HDS algorithm runs
with adequate speed on small models, no larger than 20,000
triangles or so. Three kinds of optimizations together increase
the speed of the dynamic simplification by almost two orders
of magnitude: exploiting temporal coherence, using visibility
information, and parallelizing the algorithm.

5.1 Exploiting Temporal Coherence

HDS assumes a high degree of frame-to-frame coherence in
the position of the viewer. The design of the active triangle
list in particular is based on the assumption that relatively few
triangles will be added or removed to the scene each frame.
One especially frequent operation that can also take advantage
of coherence is the firstActiveAncestor() function, used
heavily by co llapseNode() and expandNode().
FirstActiveAncestor(N) searches up the vertex tree for the
nearest ancestor of node N which is tagged Active or
Boundary. Storing the result of each search as a field of N and
going up or down from that node speeds up the next search
considerably. The id field of the Node structure provides the
information necessary to traverse down the tree along the
correct path.

5.2 Visibility: Culling the Active Triangle List

The active triangle list as described exploits temporal
coherence but does not lend itself to efficient culling of
invisible triangles. View-frustum culling techniques clump
polygons together, often using a spatial hierarchy to quickly
reject clumps which lie ou tside the view frustum, but clumping
is hard to maintain in the ever-changing active list. A different
approach for HDS would be to distribute the active triangles
across the vertex tree, associating each triangle with the
smallest node which contains all three of the triangle’s corners.
Rendering the scene would then consist of a top-down traversal
of the vertex tree, evaluating each node’s visibility and
rendering the associated triangles of visible nodes. While
enabling efficient visibility culling, this scheme loses the
advantage of temporal coherence, since every visible active
node must be visited every frame. On complex models the
overhead of traversing a deep active tree undermines the
benefit of rendering fewer triangles.

In practice a hybrid approach works well: the active
triangle list is split into several lists, each associated with a
high-level node of the vertex tree. Nodes with an active list

are termed cul lNodes; triangles added by expandNode() are
appended to the active list of the smallest cullNode containing
the corners of the triangle. Restricting cullNodes to the high
levels of the vertex tree results in a coarse-grained culling
without the overhead of a full active tree traversal, thus
exploiting both visibility culling and temporal coherence.

5.3 Visibility: Avoiding Irrelevant Nodes

Distributing the active list across multiple nodes speeds up
rendering, since invisible nodes are not visited. HDS may still
need to examine such nodes, however, since the tris and
subtris of an invisible node may still be visible [Figure 8].
Some nodes are not only invisible but irrelevant , that is,
expanding or collapsing the node cannot possibly affect the
scene. An invisible node is irrelevant if it does not contain a
corner of any potentially visible triangle; the simplification
traversal can save time by not visiting these nodes. In an
interactive walkthrough session, the vast majority of invisible
nodes are usually irrelevant, so testing for irrelevance provides
a significant speedup. An exact test is diff icult, but a
conservative test for irrelevant nodes is easily constructed by
adding a container field to each node in the vertex tree. The
container node C of a node N is the smallest node which
contains every tri and subtri of N and N’s descendants. C thus
contains every triangle which might be affected by operations
on the subtree rooted at N. If C is invisible, N is irrelevant and
can be safely ignored by the simplification traversal.

Irrelevant Invisible

Figure 8: Invisible nodes are completely outside the view
frustum. Irrelevant nodes are invisible and contain no vertices of
visible triangles.

5.4 Asynchronous Simplification

An important strategy for speeding up any algorithm is to
parallel ize it, distributing the work over multiple processors.
Computer graphics applications most commonly accomplish
this by parallel izing the major stages of the rendering
computation in a pipeline fashion. A traditional level-of-detail
system might be divided into SELECT and RENDER stages:
the SELECT stage decides which resolution of which objects
to render and compiles them into a display list, which the
RENDER process then renders. Meanwhile, the SELECT
process prepares the display list for the next frame [Funkhouser
93, Rohlf 94]. If S is the time taken to select levels of detail
and R is the time taken to render a frame, parallel izing the two
processes as a pipeline reduces the total time per frame from
R+S to max(R,S).

HDS also divides naturally into two basic tasks, SIMPLIFY
and RENDER. The SIMPLIFY task traverses the vertex tree
folding and unfolding nodes as needed. The RENDER task
cycles over the active triangle list rendering each triangle. Let
the time taken by SIMPLIFY to traverse the entire tree be S
and the time taken by RENDER to draw the entire active list
be R. The frame time of a uniprocessor implementation will
then be R+S, and the frame time of a pipelined

implementation will again be max(R,S). The rendering task
usually dominates the simplification task, so the effective
frame time often reduces to R. The exception is during large
shifts of viewpoint, when the usual assumption of temporal
coherence fails and many triangles must be added and deleted
from the active triangle list. This can have the distracting
effect of slowing down the frame rate when the user speeds up
the rate of motion.

Asynchronous simplification provides a solution: let the
SIMPLIFY and RENDER tasks run asynchronously, with the
SIMPLIFY process writing to the active triangle list and the
RENDER process reading it. This decouples the tasks for a
total frame time of R, eliminating the slowdown artifact
associated with large viewpoint changes. When the viewer’s
velocity outpaces the simplification rate in asynchronous
mode, the SIMPLIFY process simply falls behind. As a result
the scene rendered for the viewer is somewhat coarse in
quality until the SIMPLIFY process catches up, at which point
the scene gradually sweetens back to the expected quality.
This graceful degradation of fidelity is less dis tracting than
sudden drops in frame rate.

A straightforward implementation of asynchronous
simplification is relatively easy to code on a shared-memory
multiprocessor system, but care must be taken to avoid
“dropouts”. Characterized by triangles that disappear for a
frame, these transient art ifacts occur when the RENDER
process sweeps through a region of the active list being
affected by the SIMPLIFY process. For example, the
collapseNode() operation removes triangles and fills in the
resulting holes by adjusting the corner positions of neighboring
triangles. If those neighboring triangles have already been
rendered during the frame when collapseNode() adjusts their
corners, but the triangle to be removed has not yet been
rendered, a hole will appear in the mesh for that frame.

Dropouts are fundamentally caused by failure to maintain a
consistent shared database in an asynchronous system. They
are difficult to eradicate with simple locking schemes.
Locking the triangles to be affected before every
collapseNode() and expandNode() operation will not suffice,
since the triangles may not be near each other in the active
triangle list. Since the active triangle list is divided among the
high-level nodes for culling purposes, another possibility would
be to lock all nodes affected by the co llapse or expand
operation. 2 This strategy prevents dropouts, but proves
prohibitively expensive in practice.

The update queue provides one solution to the dropout
problem. The update queue was motivated by the observation
that the time spent performing collapseNode() and
expandNode() operations is a small fraction of the time taken
by the SIMPLIFY process to traverse the vertex tree and
determine which nodes to fold and unfold. Rather than
actually performing the updates, the SIMPLIFY process
accumulates them into the update queue, marking the node
Dirty and placing a Collapse or Expand entry in the queue.
The update queue acts as a buffer: at the beginning of every
frame the RENDER process performs the first n updates in the
queue, collapsing or expanding each node before marking it
Clean again.3 All changes to the active triangle list take place
as a batch before any triangles are rendered; the shared
database is thus kept consistent and dropouts are eliminated.

2 This turns out to be the subtree rooted at the container node of the

node being collapsed or expanded.

3 As with any buffer, care must be taken to empty the update queue

fast enough; n was set to 1000 for all models tested.

6. PREVIOUS WORK

6.1 Constructing the Vertex Tree

Many excellent polygonal simplification algorithms have been
described in the recent literature [Cohen 96, Hoppe 96, Eck
95]. HDS is not a competing algorithm, but a framework into
which many existing algorithms can be incorporated. Any
algorithm which can be expressed in terms of vertex collapse
operations can be used to create the vertex tree. The
construction of the vertex tree determines the order in which
vertices are collapsed, which in turn determines the quality of
the simplification HDS can create. In addition, the
construction of the vertex tree affects the run-time performance
of HDS, since a well-balanced tree will reduce the traversal
time of the SIMPLIFY task. Possible algorithms form a
spectrum, ranging from fast, simple approaches with moderate
fidelity to slower, more sophisticated methods with superb
fidel ity. The choice of algorithm for constructing the vertex
tree is heavily application-dependent. In a design-review
setting, CAD users may want to visualize their revisions in the
context of the entire model several times a day. Preprocessing
times of hours are unacceptable in this scenario. On the other
hand, a walkthrough of the completed model might be desired
for demonstration purposes. Here it makes sense to use a
slower, more careful algorithm to optimize the quality of
simplifications and prevent any distracting artifacts.

6.1.1 Simplest: Spatial Subdivision

One of the simplest techniques is to classify the vertices of the
model with a space-partitioning structure such as an octree.
An adaptive version of the spatial binning approach introduced
by [Rossignac 92], the spatial subdivision method was first
introduced for view-dependent simplification by [Luebke 96].
Vertices are ranked by importance using local criteria such as
edge length and curvature. Beginning at the root of the octree,
the most important vertex within each node is chosen as that
node’s representative vertex. The vertices are then partitioned
among the node’s eight children and the process is recursively
repeated. In this way vertices are clustered roughly according
to proximity. Neighbor ing vertices are likely to get collapsed
almost immediately, whereas distant vertices tend to merge
only at high levels of the tree.

Unless the vertices of the model are uniformly distributed,
the straightforward approach just described will result in highly
unbalanced octrees. CAD models are often locally dense but
globally sparse, consisting of highly detailed components
separated by areas of low detail or empty space. In this
situation a more adaptive partitioning structure such as a K-D
tree will produce a more balanced tree, yielding better run-
time performance. An even simpler structure is the tight
octree, in which each node of the octree is tightened to the
smallest axis-aligned cube which encloses the relevant
vertices before the node is subdivided. This approach seems to
adapt very well to CAD models, and most results presented in
this paper used tight-octree spatial subdivision to cluster
vertices.

Top-down spatial subdivision clustering schemes possess
many advantages. Their simplicity makes an efficient, robust
implementation relatively easy to code. In addition, spatial
parti tioning of vertices is typically very fast, bringing the
preprocess time of even large models down to manageable
levels: preprocessing the 700,000 polygon torpedo room model,
for example, takes only 158 seconds [Table 1]. Finally,
spatial-subdivision vertex clustering is by its nature very
general. No knowledge of the polygon mesh is used; manifold
topology is neither assumed nor preserved. Meshes with

degeneracies (such as cracks, T-junctions, and missing
polygons) are unfortunately quite common. Spatial-subdivision
vertex clustering schemes will operate despite the presence of
degeneracies incompatible with more complex schemes.

6.1.2 Prettiest: Simplification Envelopes,
Progressive Mesh Algorithm

On the other end of the spectrum, some very sophisticated
recent simplification algorithms could be used to build the
vertex cluster tree. Cohen et al present Simplification
Envelopes , offset surfaces of a polygonal mesh modified to
prevent self-intersection and bounded to a distance ε of the
mesh. By generating a simpler triangulation of the surface
without intersecting the simplification envelopes, the authors
guarantee a simplification which preserves global topology and
varies from the original surface by no more than ε [Cohen 96].
Simplification envelopes could be used to construct the vertex
tree in HDS by applying successively larger values of ε, at
each stage only clustering those vertices which do not cause
the mesh to intersect the envelopes. The value of ε used to
generate each cluster would then become the error metric
associated with that node in the vertex tree, resulting in an
HDS simplification with excellent fidelity. Unfortunately, it is
not clear how to extend simplification envelopes to allow
merging between different objects, or to allow drastic topology-
discarding collapse operations at high levels of the tree.

Hoppe describes an optimization approach which creates a
series of edge collapses for the Progressive Meshes
representation [Hoppe 96]. Each edge collapse corresponds to
a node in HDS with two children and one or two subtris. The
stream of edge collapse records in a progressive mesh contains
an implicit hierarchy that maps directly to the HDS vertex tree.
A progressive mesh may thus be viewed without modification
in an HDS sys tem, though this has disadvantages. A
progressive mesh never collapses more than two vertices
together at a time, which may result in an unnecessarily deep
vertex tree. A modified optimization step which could
collapse multiple vertices seems possible, and would address
this problem. Also, progressive meshes co llapse only vertices
within a mesh, so separate objects never merge together.
Finally, restricting edge collapses to those which preserve the
manifold topology of the mesh limits the amount of
simplification possible.4 For these reasons, a direct embedding
of a progressive mesh is not optimal for the drastic
simplification necessary to visualize very complex models.

Along with progressive meshes, Hoppe introduces a very
nice framework for handling surface attributes of a mesh during
simplification. Such attributes are categorized as discrete
attributes, associated with faces in the mesh, and scalar
attributes, associated with corners of the faces in the mesh.
Common discrete attributes include material and texture
identifiers; common scalar attributes include color, normal,
and texture coordinates. Hoppe’s method of maintaining
discrete and scalar attributes as vertices are co llapsed extends
directly to HDS, and is used without modification in the
current implementation.

6.1.3 A Hybrid Approach

Both the simplification envelope and progressive mesh
approaches can be combined with top-down spatial subdivision
to allow drastic simplification and merging of objects. The
result of either approach on a collection of objects in a scene

4 For example, our implementation could not reduce the 69,451-

triangle bunny model beyond 520 triangles.

is a collection of vertex trees. When the vertex tree for each
object is adequate, the spatial subdivision algorithm unifies
this “vertex forest” into a single tree. A tight octree or similar
structure merges nearby vertices from the same or different
object, without regard to topology. The final vertex tree
exhibits both high fidelity (at low levels of the tree) and
drastic simplification (at high levels).

The sphere and bunny simplifications in the color plates
were generated with this type of hybrid approach. Since this
model was intended to illustrate silhouette preservation as a
run-time criterion, it was important to merge vertices so as to
minimize the normal cones of the resulting vertex cluster.
Also, the curvature of a non-manifold mesh is not well defined,
so only adjacent vertices in the mesh could be collapsed.
These considerations led to a two-stage clustering algorithm.
First, a progressive mesh representation of the model was
created, in which the edge collapse order was chosen to
minimize normal cones and to maintain a balanced tree. Edge
collapses which resulted in normal cone angles greater than
135o were disallowed. When the model could be simplified no
further with these restrictions, a tight octree was applied to the
remaining vertex clusters to produce a single HDS vertex tree.

6.2 Other Related Work

Xia and Varshney use merge trees to perform view-dependent
simplifications of triangular models in real-time [Xia 96]. A
merge tree is similar to a progressive mesh, created off-line
and consisting of a hierarchy of edge collapses. Selective
refinement is applied based on viewing direction, lighting, and
visibility. Xia and Varshney update an active list of vertices
and triangles, using frame-to-frame coherence to achieve real-
time performance. In addition, extra information is stored at
each node of the merge tree to specify dependencies between
edge collapse operations. These dependencies are used to
eliminate folding artifacts during the visualization of the
model, but also constrain the tessellation to change gradually
between areas of high simplification and areas of low
simplification. This restriction limits the degree of drastic
simplification possible with a merge tree, as does the inability
of merge trees to combine vertices from different objects. Xia
and Varshney also assume manifold models, which together
with the limited simplification available makes their approach
less appropriate for large-scale CAD databases.

The error bounds described in Section 4 provide a useful
ind icator of the simplification fidelity, but screenspace error
and silhouette preservation are only two of the many criteria
that determine the view-dependent perceptual importance of a
region of a scene. Ohshima et al. [Ohshima 96] investigate a
gaze-directed system which allocates geometric detail to
objects according to their calculated visual acuity. Objects in
the center of vision have a higher visual acuity than objects in
the periphery and are thus drawn at a higher level of detail.
Similarly, stationary objects are assigned a higher visual
acuity than rapidly moving objects, and objects at the depth of
the user’s binocular fusion are assigned a higher visual acuity
than objects closer or farther than the distance at which the
user’s eyes currently converge. These techniques show
promise for further reducing the polygon count of a scene in
immersive rendering situations, and could be integrated into
the HDS framework as additional run-time simplification
criteria.

7. RESULTS

HDS has been implemented and tested on a Silicon Graphics
Onyx system with InfiniteReality graphics.

The models tested span a range of categories. Bone6 is a
medical model created from the Visible Man volumetric
dataset. Sierra is a terrain database originally acquired from
satellite topography. Torp and AMR are complex CAD models
of the torpedo and auxiliary machine rooms on a nuclear
submarine, each comprised of over three thousand individual
objects. Bunny is a digitized model from a laser scanner.
Finally, Sphere is a simple procedurally-generated sphere
created to illustrate silhouette preservation and backface
simplification. Table 1 details the size of each database along
with the preprocessing time for the tight-octree algorithm of
Section 6.1.1 and the hybrid algorithm of Section 6.1.3.
Polygon counts and error thresholds for specific views of each
model are provided with the color plates.

8. REMARKS

Polygonal simplification is a process of approximation. As
with any approximation, a simplification algorithm taken to the
limit should recover the original object being approximated.
This holds true for the HDS algor ithm: as the screenspace area
threshold approaches subpixel size, the visual effects of
collapsing vertices become vanishingly small. Note that the
polygon counts of large and complex enough scenes will be
reduced even under these extreme conditions. This is
important; with complex CAD models, finely tessellated laser-
scanned objects, and polygon proliferating radiosity algorithms
all coming into widespread use, databases in which many or
most visible polygons are smaller than a pixel are becoming
increasingly common.

View-dependent simplification is inherently an immediate-
mode technique, a disadvantage since most current rendering
hardware favors retained-mode display lists. Experiments on
an SGI Onyx with InfiniteReality graphics, for example,
indicate that Gouraud-shaded depth-buffered unlit triangles
render two to three times faster in a display list than in a
tightly optimized immediate mode display loop [Aliaga 97].
Relatively small models will prove more efficient to render
using existing static multiresolution techniques, since the
levels of detail for each object can be precompiled into a
display list. As scenes approach the size and complexity of
the AMR and Torp datasets, the speedups possible in an
adaptive view-dependent framework begin to exceed the
speedups provided by display lists. For very large, complex
CAD databases, as well as for scenes containing degenerate or
polygon-soup models, HDS retains the advantage even on
highly display-list oriented hardware.

9. SUMMARY AND FUTURE WORK

HDS provides a framework for the dynamic view-dependent
simplification of complex polygonal environments. This
framework is robust, operating solely at the level of vertices

Model Category Vertices Triangles

 Preprocessing Time

(Tight Octree) (Hybrid)

 Bone6 Medical 3,410,391 1,136,785 445 seconds —

 Sphere Procedural 4,098 8,192 1.2 seconds 2.5

minutes

 Bunny Scanned 35,947 69,451 12 seconds 20

minutes

 Sierra Terrain 81,920 162,690 33 seconds —

 AMR CAD 280,544 504,969 121 seconds —

 Torp CAD 411,778 698,872 158 seconds 87 minutes

Table 1: Sizes and preprocessing times of models pictured in
color plates. Note that the hybrid vertex clustering algorithm
(described in Section 6.1.3) is not optimized for speed.

and triangles and thus insensitive to topological degeneracies,
and adaptive, able to merge objects within a scene or even
operate on polygon-soup databases. Any simplification method
reducible to a series of vertex clustering operations can be
used by the preprocessing stage of HDS. The tight-octree
spatial subdivision method described in section 7.1 and the
two-stage hybrid approach described in section 7.3 have been
implemented and demonstrate two such preprocessing
strategies. Different run-time criteria for collapsing and
expanding vertices may also be plugged into the HDS
framework; the current system supports a screenspace error
tolerance, a triangle budget, and silhouette preservation. Many
optimizations of the HDS run-time algorithm have been
incorporated, including an asynchronous simplification scheme
which decouples the rendering and simplification tasks.

Many avenues for future work remain. HDS in its current
form is limited to static scenes; even the fast spatial
subdivision schemes for vertex tree construction cannot keep
up with a model that changes significantly in real time. An
incremental algorithm for creating and maintaining the vertex
tree might allow simplification of truly dynamic scenes. More
sophisticated run-time cri teria are certainly possible. The
bounding spheres in the current implementation can be a poor
fit for the vertices of a cluster, resulting in unnecessarily
conservative error estimates. More sophisticated bounding
volumes such as ellipsoids or oriented bounding boxes would
complicate the nodeSize() operation, but could provide a
much better fit. Nodes might also be unfolded to devote more
detail to regions containing specular highlights in the manner
of [Cho 96] and [Xia 96], or to perceptually important regions
using the gaze-directed heuristics described in [Oshima 96].

10. ACKNOWLEDGMENTS

Special thanks to Fred Brooks, Greg Turk, and Dinesh
Manocha for their invaluable guidance and support throughout
this project. Funding for this work was provided by DARPA
Contract DABT63-93-C-0048, and Lockheed Missile and
Space Co., Inc. Additional funding was provided by National
Center for Research Resources Grant NIH/NCCR P4RR02170-
13. David Luebke is supported by an IBM Cooperative
Fellowship; Carl Erikson is supported by an NSF Graduate
Fellowship.

11. REFERENCES

[Aliaga 97] Aliaga, Daniel. “SGI Performance Tips” (Talk). For more

information see: http://www.cs.unc.edu/~aliaga/IR-perf.html .

 [Cho 96] Cho, Y., U. Neumann, J. Woo. “Improved Specular

Highlights with Adaptive Shading”, Computer Graphics International

96, June, 1996.

 [Clark 76] Clark, James H. “Hierarchical Geometric Models for

Visible Surface Algorithms,” Communications of the ACM, Vol 19, No

10, pp 547-554.

[Cohen 96] Cohen, J., A. Varshney, D. Manocha, G. Turk, H.

Weber, P. Agarwal, F. Brooks, W. Wright. “Simplification

Envelopes”, Computer Graphics , Vol 30 (SIGGRAPH 96).

[Cosman 81] Cosman, M., and R. Schumacker. “System Strategies to

Optimize CIG Image Content”. Proceedings Image II Co nference

(Scotsdale, Arizona), 1981.

[Eck 95] Eck, M., T. DeRose, T. Duchamp, H. Hoppe, M.

Lounsbery, W. Stuetzle. “Multiresolution Analysis of Arbitrary

Meshes”, Computer Graphics , Vol 29 (SIGGRAPH 95).

 [Funkhouser 93] Funkhouser, Thomas, and Carlo Sequin. “Adaptive

Display Algorithm for Interactive Frame Rates During Visualization of

Complex Virtual Environments”. Computer Graphics , Vol 27

(SIGGRAPH 93).

[Hoppe 96] Hoppe, Hugues. “Progressive Meshes”, Computer

Graphics, Vol 30 (SIGGRAPH 96).

[Kaufman 95] Taosong He, L. Hong, A. Kaufman, A. Varshney, and

S. Wang. “Voxel-Based Object Simplification”. Proceedings

Visualization 95 , IEEE Computer Society Press (Atlanta, GA), 1995,

pp. 296-303.

 [Kumar 96] Kumar, Subodh, D. Manocha, W. Garrett, M. Lin.

“Hierarchical Backface Computation”. Proc. Of 7th Eurographics

Workshop on Rendering , 1996.

 [Maciel 95] Maciel, Paulo, and Shirley, Peter. “Visual Navigation of

Large Environments Using Textured Clusters”, Proceedings 1995

SIG GRAPH Symposium on Interactive 3D Graphics (Monterey, CA),

1995, pp. 95-102.

[Luebke 96] Luebke, David. “Hierarchical Structures for Dynamic

Polygonal Simplification”. University of North Carolina Department of

Computer Science Tech Report #TR96-006, January, 1996.

[Oshima 96] Ohshima, Toshikazu, H. Yamamoto, H. Tamura. “Gaze-

Directed Adaptive Rendering for Interacting with Virtual Space.” Proc.

of IEEE 1996 Virtual Reality Annual Intnl. Symposium. (1996), pp 103-

110.

[Rohlf 94] Rohlf, John and James Helman. “IRIS Performer: A High

Performance Multiprocessing Toolkit for Real-Time 3D Graphics”,

Computer Graphics , Vol 28 (SIGGRAPH 94).

 [Rossignac 92] Rossignac, Jarek, and Paul Borrel. “Multi-Resolution

3D Approximations for Rendering Complex Scenes”, pp. 455-465 in

Geometric Modeling in Computer Graphics, Springer-Verlag, Eds. B.

Fa lcidieno and T.L. Kunii, Genova, Italy, 6/28/93-7/2/93. Also

published as IBM Research Report RC17697 (77951) 2/19/92.

[Schroeder 92] Schroeder, William, Jonathan Zarge and William

Lorenson, “Decimation of Triangle Meshes”, Computer Graphics , Vol

26 (SIGGRAPH 92)

[Shirman 93] Shirman, L., and Abi-Ezzi, S. “The Cone of Normals

Tec hnique for Fast Processing of Curved Patches”, Computer Graphics

Forum (Proc. Eurographics ‘93) Vol 12, No 3, (1993), pp 261-272.

[Teller 91] Teller, Seth, and Carlo Sequin. “Visibility Preprocessing

for Interactive Walkthroughs”, Computer Graphics , Vol 25

(SIGGRAPH 91).

[Turk 92] Turk, Greg. “Re-tiling Polygonal Surfaces”, Computer

Graphics, Vol 26 (SIGGRAPH 92).

[Varshney 94] Varshney, Amitabh. “Hierarchical Geometry

Approxim ations”, Ph.D. Thesis, University of North Carolina

Department of Computer Science Tech Report TR-050

[Xia 96] Xia, Julie and Amitabh Varshney. “Dynamic View-

Dependent Simplification for Polygonal Models”, Visualization 96 .

Plate 1: Bone6 model shown at original resolution (1,136,785 faces), 0.5% error tolerance (417,182 faces), and 1% error
tolerance (172,499 faces).

Plate 2: Sphere model shown at original resolution (8,192 faces), at 1% error threshold with backface simplification (3,388
faces), and at 1% silhouette error threshold with a 20% interior error tolerance (1,950 faces).

Plate 3: Bunny model shown at original resolution (69,451 faces), 1% error tolerance (19,598 faces), and 5% error
tolerance (2,901 faces).

Plate 4: Bunny model shown with 1% Plate 5: Sierra model shown at original resolution (154,153 faces) and 1.5%
silhouette, 6% interior (13,135 faces). error tolerance (54,847 faces).

Plate 6: AMR model shown at original resolution (501,550 faces), 0.7% error tolerance (123,106 faces), and 2.5% error
tolerance (34,128 faces).

Plate 7: AMR model shown at the same error tolerances as Plate 6, but drawn with wireframes on.

Plate 8: Torp model shown at original resolution (673,728 faces), 0.8% error tolerance (129,446 faces), and 1.5% error
tolerance (76,404 faces).

Plate 9: Torp model shown at the same error tolerances as Plate 8, but drawn with wireframes on.

