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ABSTRACT
Highly detailed models are a requirement for many applications in computer graphics. The necessary level of
detail, however, may vary depending on the application. To provide a tradeoff, mesh simplification is used to
generate approximations of a model which can be used to reduce processing time.
We present a parallel approach to triangle mesh simplification that is designed to allow fast, view-dependent
simplification of manifold triangle meshes. Our approach performs a vertex analysis on every vertex of a given
triangle mesh and selects a set of vertices for removal. Vertex removal is executed using the parallel half edge
collapse. Based on the half edge collapse that replaces an edge with one of its endpoints, we have devised a set of
boundaries that enable parallel application of half edge collapses even on neighbouring vertices.
Since the mesh topology may not allow removal of all vertices marked for removal in one step, we apply multiple
iterations of the parallel half edge collapse, reevaluating remaining vertices marked for removal for further
improvement of results.

Keywords
mesh simplification, level of detail, half edge collapse, computer graphics, view dependent simplification, real-time
rendering

1 INTRODUCTION
Simplification of triangle meshes has been a well
researched area for several decades [Cla76a]. Mesh
simplification is the process of applying a simplifica-
tion operator to a given triangle mesh with the effect of
reducing the number of vertices or triangles that make
up the mesh [Lue02a].
Mesh simplification is widely used as an approach to
reduce the resources needed for processing a mesh by
reducing the stored geometry data.
The disadvantage of simplification is usually a loss of
detail. The triangles of a mesh are used to represent
a surface shape. Removing triangles or vertices from
a triangle mesh therefore means the result cannot
represent the object as accurately as the original.
Simplification algorithms can be aimed either to
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remove a large amount of vertices or triangles, create a
simplification that represents the original object well or
to provide fast processing times.

Over the years a wide range of algorithms for tri-
angle mesh simplification has been developed with
varying results in terms of performance and quality of
the simplified mesh. The ones most important to this
paper can roughly be classified in three categories:

Vertex clustering This algorithm presented by
Rossignac and Borrell in [Ros92a] is designed
to work on arbitrary polygonal models. First the
bounding box of an object is determined. This
bounding box is then divided into a number of
cells. All vertices within a cell are clustered into a
single vertex and the faces of the model are updated
accordingly. While this approach can be very fast,
it can also cause drastic alterations to the topology
of a model and create low quality simplifications.
Attempting to improve these shortcomings, several
variants to cell generation have been devised
[Sch03a], [Low97a].

Vertex removal Presented in Schroeder et. al.
[Sch92a], the vertex removal approach removes a
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vertex and all its adjacent edges and triangles from
a mesh and then retriangulates the resulting hole.

Edge contraction Edge contraction provides mesh
simplification by removing edges from a mesh and
replacing it with a vertex [Hop93a]. This approach
is usually performed iteratively, selecting one edge
at a time and contracting it.

While many algorithms are designed to generate
a generic simplification of a mesh, some have been
devised for generating a view-dependent simplification.
The latter take a current camera position into account
and aim to minimize the visible differences between
the simplification and the original.
One example can be found in Hu et al. [Hu09a] with
the presentation of this approach being extended in
[Hu10a]. It describes a bottom up approach where a
simplified mesh is stored. During runtime the desired
level of detail is restored by applying precalculated
operations stored in a data structure.
Papageorgiou and Platis [Pap15a] present a GPU-
accelerated approach that also relies on edge collapses
with the goal to execute a number of edge collapses
in parallel and therefore speed up the simplification.
Their algorithm selects a number of independent areas.
Each area can safely be simplified by an edge collapse
without affecting other areas. Selection of independent
areas and execution of edge collapses is repeated, until
the desired simplification target is reached.
Another example is presented by DeCoro and
Tatarchuk [DeC07a]. It describes a GPU accelerated
implementation of vertex clustering to provide a fast,
view-dependent simplification of an arbitrary mesh.
In comparison to these approaches, the parallel half
edge collapse was designed not to rely on any precom-
puted simplification operations and provide a topology
preserving, parallel approach to simplification that
selects the simplification operations at runtime.

The parallel half edge collapse was designed to
enable view-dependent real time simplification of
manifold triangle meshes. The simplification operator
of choice is the half edge collapse.
The edge collapse operator (Figure 1) is applied to a
pair of vertices (V1,V2) connected by an edge e. It
collapses V1 and V2 into a single vertex V ′, removing
e and all triangles that contain it from the mesh
[Hop96a]. The position of V ′ is chosen freely. This
allows to optimize the replacement position for e and
achieve a better simplification as well as improve the
representation of the original mesh.
A more restrictive version of the edge collapse is the
half edge collapse (Figure 2). The half edge collapse
uses V1 or V2 as replacement for e. It therefore replaces
an edge with one of its endpoints and does not change
any vertex data like the stored normal.

Figure 1: Edge collapse

Figure 2: Half edge collapse

Figure 3: Edge collapse causing a mesh foldover

Figure 4: Edge collapse causing a topological inconsis-
tency

Although the edge collapse and the half edge collapse
are easy to implement, they can have a negative effect
on the simplified mesh by causing a foldover (see
Figure 3) or a topological inconsistency (Figure 4)
which has to be avoided [Lue02a].

2 ALGORITHM OVERVIEW
Initially a vertex analysis is performed on all vertices
of a given manifold mesh that selects a number of
vertices for removal.
Given a vertex V that has been selected for removal, the
algorithm determines all vertices N = {N1,N2, ...,Nq}
that share an edge with V . Each of these edges is
considered a possible half edge collapse. V is removed
by selecting a vertex pair V,Ni and performing a half
edge collapse on it. The replacement position for the
edge is Ni, since V is supposed to be removed from the
mesh.
To speed up the simplification a parallel approach
for the vertex removal is introduced. The algo-
rithm proposed in this paper analyses all vertices
V = {V1,V2, ...,Vn} of a mesh with the intention of
selecting a set of vertices R = {V R1,V R2, ...,V Ro} that
should be removed (S = {V S1,V S2, ...,V Sp},S =V \R,
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step 1 in Figure 5). Since every vertex in R is to be
removed from the mesh, not all the neighbours propose
a valid half edge collapse. Only edges connecting V Ri
to a vertex N j ∈ S are valid choices for a half edge
collapse.
For each vertex V Ri ∈ R the algorithm tries to:

• Find all neighbours N ∈ S of V Ri that share an edge.

• Select one edge ek connecting the pair N j,V Ri.

• Perform the half edge collapse on ek using N j as
the replacement position and removing V Ri from the
mesh.

The algorithm does not apply a series of iterative
edge collapses. It rather processes all vertices in R in
parallel. Although this approach has great potential to
speed up the simplification process, it causes several
difficulties:

• All neighbouring vertices of a vertex V Ri being in-
cluded in R can prevent V Ri from being removed
instantly.

• Parallel execution of half edge collapses on neigh-
bouring vertices may cause hard to detect mesh
foldovers and topological inconsistencies.

Not all vertices V R ∈ R may have a neighbour in S.
Since the algorithm only considers an edge connecting
a vertex V Ri to a neighbour N j ∈ S a valid half edge
collapse, it may be impossible for the vertex to be
removed.
The removal of the vertices in R has to be divided into
several iterative steps. In each step a list of removal
candidates C = {C1,C2, ...,Cn} is composed, contain-
ing all V R ∈ R that have at least one neighbour N j ∈ S
(step 2 in Figure 5). The algorithm tries to remove all
vertices in C in parallel (step 3 in Figure 5). The steps
of determining the candidate list and removing those
vertices is repeated iteratively, until all V R ∈ R have
been processed and no vertices remain in R.

Another problem arising due to the parallelism of
the algorithm is the selection of the individual replace-
ment positions for vertices in R. As described by Xia
et al. [Xia97a] a single edge or half edge collapse
performed on a mesh may cause a mesh foldover or
a topological inconsistency which has to be avoided.
While this is relatively easy to detect by checking
for rotations of normal vectors of an affected triangle
before and after a collapse, the parallel approach
chosen here renders this test invalid. It is possible that
a single half edge collapse is valid - it does not have
a negative effect on the mesh - the parallel execution

1. Classification

2. Selection of
removal candidates

3. Parallel half edge
collapse

removal candidates left
no removal
candidates left

Figure 5: Algorithm overview

of two valid half edge collapses however, can cause a
foldover or topological inconsistency.
To make sure that a possible replacement position for
a vertex does not cause the aforementioned problems,
a set of boundaries is defined. For each vertex V Ri ∈ R
an individual set of boundaries B(V Ri) is calculated. It
can be used to determine, which neighbouring vertices
N ∈ S can be safely used as a vertex pair for a half edge
collapse. Any neighbour N j ∈ S that lies within the
boundaries B(V Ri) can be used as a vertex pair V Ri,N j
for a half edge collapse.

Given two vertices V Ri,V R j ∈ R are connected
by an edge and have neighbours in S. V Ri and V R j
are to be processed in parallel and have one or more
possible half edge collapses. In order to avoid foldovers
and topological inconsistencies, the boundaries B(V Ri)
have to take all possible replacement positions for
V R j into account. The same condition is in effect
for B(V R j) and the replacement positions for V Ri.
The parallel half edge collapse was designed to avoid
communication between neighbouring vertex removals
to allow for a fast implementation. The boundaries are
created to block all half edge collapses that may cause
issues whenever a neighbouring vertex is removed in
parallel. This may result in combinations of half edge
collapses for neighbouring vertices in R that would not
cause foldovers or topological inconsistencies being
considered invalid.

The algorithm has to take into account that for some
vertices in C no replacement position, that would not
cause a foldover or a topological inconsistency, can be
found. A distinction has to be made whether this is
caused by the topology or by the restrictive boundary
due to the execution of parallel half edge collapses and
an isolated vertex removal could be safely executed.
Furthermore these restrictive boundaries may cause an
issue where neighbouring vertices in C may mutually
block a removal, effectively causing a deadlock and
preventing a region of the mesh from being simplified.
This situation has to be identified and resolved to
avoid vertices remaining in R indefinitely and keep the
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simplification from being completed.

3 VERTEX ANALYSIS
Given a manifold triangle mesh every vertex Vi is anal-
ysed and categorized either for being removed from the
mesh or remaining. Two sets of vertices are created.
R = {V R1,V R2, ...,V Rn} contains a list of vertices
that are to be removed while S = {V S1,V S2, ...,V Sm}
contains the remaining ones.
This initial classification of vertices does however not
determine a final list of vertices that are removed from
the mesh. Since several iterations of parallel half edge
collapses may be performed on the mesh and the results
of each iteration cannot be predicted, an additional
step is introduced. After a half edge collapse has been
executed on a vertex pair V Ri,V S j, all vertices V Rk that
were neighbours of V Ri are analysed again and may
be removed from R and added to S. This step allows
for an adaptation to the chosen half edge collapses
and may improve the overall result of the simplification.

For classification a vertex analysis is performed.
This step assigns an error value to each vertex of the
mesh. Since this vertex error has to be updated during
the reclassification step after each half edge collapse,
the error metric was chosen with data dependency and
computing time in mind.

The initial analysis is done on a per-vertex basis
and only takes the position of neighbouring vertices
into account. The error metric chosen here relies on
the distance of the neighbouring vertices from the
tangent plane of a vertex that is defined by the vertex
normal stored for the vertex. Although this only takes
the local effect of a vertex removal into account and
ignores a possible removal of neighbouring vertices, it
was chosen for two reasons. Firstly this error metric
requires little computing time and since it only relies
on neighbouring vertices, it does not require data
collection before a calculation, which allows for fast
updates after half edge collapses.
Secondly during reclassification after a half edge
collapse some neighbours of vertices in C may be
members of R and therefore marked for removal. These
do not provide relevant data since they may be removed
in subsequent iterations. The metric has to be easily
adaptable to take into account data from neighbours
only, that are to remain in the mesh.

Given a vertex V the tangential plane is constructed as
ax+by+cz+d = 0 with t = [a,b,c,d]. For each neigh-
bouring vertex Ni with the position n = [nx,ny,nz,1]
the quadratic distance from the tangential plane
d(V,Ni) = (t •n)2 is calculated (Figure 6).

The final error value for a vertex e(V ) is defined as

N1 N2

d1
d2

V

vn

Figure 6: Vertex error calculation

the average distance between the tangent plane and the
neighbouring vertices:

e(V ) =
∑

m
i=1(d(V,Ni))

m
(1)

For a view-dependent simplification e(V ) is scaled
using the angle between the view vector and the vertex
normal as well as the distance between vertex and
camera. This step has to be performed at runtime and
computes the per-vertex classification. While the error
e(V ) is computed from the static mesh data, the influ-
ence of the camera data allows for a view-dependent
simplification as the camera data is updated before the
simplification is computed.

Vertex classification into R and S is performed by
comparing the calculated vertex error e(V ) with a user
defined error threshold u. Any vertex with an error
value smaller than or equal to u is marked for removal
and stored in R. The remaining ones form S.
The problem that arises when using this approach is a
potential selection of a majority of vertices (if not all)
of a mesh for removal. Since the algorithm performs
a half edge collapse on an edge that connects a vertex
in R with one in S, the number of parallel operations
could be limited severely. In case of all vertices being
marked for removal, the execution of the parallel half
edge collapse would be impossible.
To guarantee the algorithm is always functional and
improve parallelism, an artificially modified vertex
error is introduced for some vertices.
This approach selects a number of vertices from the
mesh and assigns them a very high vertex error em. The
artificially assigned error is defined as em > u. This
guarantees these chosen vertices to always remain in
the mesh and the algorithm remains functional.
For further refinement of this approach several "layers"
of error manipulation are introduced. The first layer L0
contains the aforementioned vertices that are assigned
em(V ) > u. Each additionally created layer Li (i > 0)
selects additional vertices and assigns them a prede-
fined error value em(Li). This value is user defined.
Modifying the user threshold u can hence be used not
only to control the level of detail of the simplified
mesh, but also to select a set of vertices that is to
remain in the mesh with the purpose of accelerating the
execution of the simplification.
For this approach a number of vertices has to be
selected for each layer:
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Figure 7: Example point generation

Figure 8: Example volume generation

• The bounding box of the mesh is determined and a
3-dimensional grid of points G0 = {P0

1 ,P
0
2 , ...,P

0
n }

for layer L0 is created within and with an equal axial
distance from each other.

• Addition of layers Li with sets of points
Gi = {Pi

1,P
i
2, ...,P

i
o}. The new points are gen-

erated at halfway points between points in Gi−1.
The distance between two points in Gi is d(Gi). This
distance is separate for each axis (2-dimensional
example in Figure 7).

• For each point: generation of a volume B(Pi
j) cen-

tered around Pi
j with a side length of d(Gi) (trimmed

to the bounding box). Figure 8 shows the volumes
for the first two examples in Figure 7.

• For each volume: determination of all vertices V (Pi
j)

within the volume

• For each volume: selection of one vertex from V (Pi
j)

and manipulation of the vertex error

This approach creates a number of points and the corre-
sponding volumes. Then a number of vertices has to be
selected. For each point Pi ∈ G j the algorithm selects a
vertex that lies within the assigned volume - if any can
be found. The magnitude of the error manipulation de-
pends on the layer L j the point was created for and is
selected by the user for each L j.
The vertex selection takes the distance between a point
P j

i and the vertex as well as the vertex error into ac-
count. This is done to favour vertices close to the gen-
erated points and simultaneously consider the vertex er-
ror to choose vertices that are more likely to remain in
the mesh.
Given a point P j

i in set G j all vertices Vk within the
volume around P j

i are determined. Then the distance
between Vk and P j

i is calculated d(Vk,P
j

i ) = |p
j
i − vk|.

The value m(Vk,P
j

i ) is calculated using the maximum

side length l of the volume around P j
i and the error

e(Vk).

m(Vk,P
j

i ) = (l−d(Vk,P
j

i ))
2 ∗ e(Vk) (2)

The result of this calculation is a weighted vertex error.
For a point P j

i the vertex with the largest m(VK ,P
j

i )
within the corresponding volume is selected.
For each layer a minimum error is defined by the user.
If a vertex is selected by a point P j

i and the stored error
e(V ) is smaller than the user selected value e(L j), the
error is replaced by the user value.
Since the vertices are classified by comparison of the
vertex error with a threshold, the user can select which
set of vertices determined by this approach is to be
used for the simplification.

4 PARALLEL HALF EDGE COL-
LAPSE

The result of the vertex classification is all the mesh’s
vertices being divided into two sets: R containing all
vertices to be removed from the mesh and S with all
vertices to remain.
The algorithm only considers half edge collapses on
edges connecting a vertex in R to one in S. So the first
step of the actual simplification is to determine a list of
vertices C that contains all vertices Ci ∈ R that have at
least one neighbour N ∈ S.
For each Ci all possible half edge collapses are
determined and one of them has to be selected and
executed. The problem with half edge collapses lies
in topological inconsistencies and mesh foldovers that
may occur.
In order to allow for a fast implementation, the exe-
cution of half edge collapses on neighbouring vertices
in parallel has to be carried out without any exchange
of data. A simple approach to prevent negative effects
on the mesh would be to compare triangle normals
before and after the execution of the half edge collapse.
A maximum angle between the triangle normal of a
triangle before and after the collapse can be defined.
If the angle is greater than a defined threshold, the
collapse is considered invalid.
While this difference in angles works for isolated (half)
edge collapses, it cannot be applied to the parallel
half edge collapse, since two valid half edge collapses
executed on neighbouring vertices may cause foldovers
or topological inconsistencies. Figure 9 shows an
example for this effect. Executing just the half edge
collapse V4,V2 or V3,V1 creates a valid mesh. When
both are applied in parallel however, the result is a
folded triangle that has to be avoided. Here the original
triangle V3,V4,V5 and the modified triangle V1,V2,V5
are overlapping.
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V1

V2

V3

V4

V1V3
V2V4

V4/2

V4/2

V3/1

V3/1

V5

V5

V5

V5

Figure 9: Two valid half edge collapses cause an incon-
sistency

The approach used in the algorithm presented
here defines a set of boundaries for each vertex in C.
This takes any neighbouring vertices to be removed
in parallel into account and prevents foldovers and
topological inconsistencies. It is also designed for
view-dependent refinement and defines the boundaries
using the view vector of the camera.
Given a vertex V R that is a candidate for removal, all
triangles that contain V R have to be determined. For
each triangle a number of planes is calculated that form
the per-triangle boundaries and that are added to the set
of boundaries B(V R). Any potential half edge collapse
has to be checked against the entire boundary B(V R) to
make sure that none of the triangles containing V R are
affected by undesired effects. Since the result of any
half edge collapse executed in parallel on neighbouring
vertices is not known, the boundaries are defined in
a way that prevents the aforementioned effects, no
matter which half edge collapse a neighbouring vertex
chooses (if any at all). This has the negative side effect
of restricting the boundaries and possibly blocking
combinations of half edge collapses that would not
have negative effects on the mesh. In order to allow
a higher degree of freedom when choosing collapses,
the boundaries are created with regard to how many
vertices of a triangle are to be removed in parallel.
For a triangle, one of three sets of boundaries can be
created, dependent if one, two or all three vertices of
the triangle are current candidates for removal.

4.1 Test 1
The first case covers a triangle with only one vertex
subjected to a half edge collapse. One edge of the
triangle remains unchanged. While the aforementioned
simple test that checks for large variations in triangle
normals would suffice for this situation, the boundaries
are created here as well to provide a uniform test and
allow for a fast implementation.
Given the view-dependent approach of this algorithm
a foldover or a topological inconsistency is created
when the normal of a triangle before and after the

p

V2

V1

E

Figure 10: Boundary 1

VrV1

V2

V3

E p

Figure 11: Boundary test 1

manipulation changes orientation in relation to the
view vector (the dot product between the view vector
and the triangle normal changes sign). Therefore all
boundaries are created taking the camera position E
into account.

For a single vertex Vr to be removed in a triangle
composed of Vr,V1,V2, a plane p is defined. Since
V1 and V2 as well as the edge between them remain
unchanged, removing Vr rotates the triangle normal
around this edge. The plane p is defined using both V1
and V2, as well as the vectors −−−−→V1−E and −−−−→V2−E.
Figure 10 shows an example for such a boundary plane
with the camera looking down at the triangle from
above. In order to test whether a half edge collapse is
valid, the edge that is to be removed is intersected with
the plane. If an intersection can be found, the endpoints
of the edge lie on opposite sides of the plane and the
half edge collapse is considered invalid.

Figure 11 shows an example for such a test. The
edge Vr,V3 is to be collapsed into V3. While the vector−−−−→V3−Vr has an intersection with the plane, the edge
Vr,V3 does not and the half edge collapse is considered
valid.
This first boundary for an isolated half edge collapse
always computes the correct result. As mentioned
earlier, some boundaries can block valid half edge
collapses in order to allow for parallel execution. While
this is true for the following boundaries for two or three
candidates in one triangle, it does not apply here.

4.2 Test 2
Given a triangle where two vertices are candidates for
removal, the boundaries above are not valid anymore
since they do not take the half edge collapse executed
on neighbouring vertices into account. They would
only prevent collapses that individually cause foldovers
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V1

Vr1

Vr2
p1

p2

Figure 12: Boundary 2

or inconsistencies. See Figure 9 for an example.
Given a triangle with the vertices Vr1,Vr2,V1 with
Vr1,Vr2 being candidates for removal, there is no
edge that would remain unchanged and therefore no
predictable rotational axis for the triangle normal.
This results in a boundary consisting of two planes
(Figure 12 shows an example from the viewpoint of
the camera). They are designed to assign each removal
candidate an individual area where a replacement
position can be found. Any overlap between these two
areas would enable a change of orientation between the
triangle normal and the view vector.
The first plane p1 is defined using the vectors −−−−−→Vr1−Vr2
and −−−−→E−V1 as well as the point V1. It is therefore paral-
lel to the edge between the two removal candidates and
lies through the remaining vertex of the triangle.
The second plane p2 is defined to intersect the edge
between Vr1 and Vr2. For this purpose a median
was chosen. Plane p2 uses the vectors −−−−→E−V1 and−−−−−−−−−→Vr1 +Vr2

2
−V1 as well as the point V1.

The test for a valid half edge collapse works similarly
to the previous one. Given an edge that has to be tested
for possible foldovers, it is intersected with both p1
and p2 to check if the collapse would cause in issue
with this triangle. If an intersection between the edge
and either of the planes can be found, it is considered
invalid and will not be executed.
These boundaries can block valid half edge collapses
and even combinations of valid half edge collapses for
Vr1 and Vr2. This is however accepted in order to allow
for a parallel execution.

4.3 Test 3
The last case handles triangles where all 3 vertices
Vr1,Vr2,Vr3 are to be removed. Test 2 places both
planes p1 and p2 to contain the remaining vertex V1 of
the triangle. Since all three vertices are a candidate for
removal here as well, these boundaries are no longer
valid.

Given a triangle Vr1,Vr2,Vr3 test 3 creates two
planes per removal candidate as well. All planes
contain the centroid S of the triangle. Plane p1 for
vertex Vr1 uses the vectors −−−−−→Vr2−Vr1 and −−−→E−S. Plane
p2 uses −−−−−→Vr3−Vr1 and −−−→E−S.
Both these planes are parallel to the edges that contain

Figure 13: Boundary 3

the removal candidate and are again defined using
the view vector of the camera. While for test 2 the
two planes were identical for Vr1 and Vr2, here two
removal candidates only share a single plane. As
a result two planes have to be constructed for each
removal candidate, while three are necessary for the
entire triangle (Figure 13 shows an example from the
viewpoint of the triangle).
Testing of a half edge collapse is done as described in

test 2. Given a removal candidate Vr1 both necessary
planes are constructed and an edge e is intersected
with both p1 and p2. If either p1 or p2 intersect e, the
edge is not valid for a half edge collapse as it would
pose a risk of causing a mesh foldover or a topological
inconsistency.

In order to find all valid half edge collapses for a
vertex V R, first all triangles have to be found. Then
for each triangle the number of removal candidates is
determined and the corresponding set of boundaries is
constructed. At this point, a set of planes P is on hand.
Each edge V R,V S j is then intersected with all pk ∈ P.
If an edge intersects any plane in P, it is considered
invalid.

4.4 Half edge collapse selection
After a list of possible half edge collapses has been
compiled, one of them has to be chosen and exe-
cuted. We devised a slightly modified version of
the quadric error metric presented by Garland and
Heckbert[Gar98a] for this selection.
[Gar98a] presents an approach that uses pair collapse
to replace a vertex pair V1,V2 with a single vertex V ′.
For this purpose it defines a vertex error 4(V ′) in
relation to V1 and V2. The algorithm then tries to find
a position for V ′ that minimizes 4(V ′). The authors
however also suggest that a simple solution would be
to use either V1, V2 or V1+V2

2 and choose the position
with the lowest value of4(V ′).
The parallel half edge collapse makes use of this error
metric. As suggested by the authors of [Gar98a], we
use the replacement position with the lowest vertex
error according to the quadric error metric. Given
a removal candidate V R and a set of neighbours N
where all Ni ∈ S with edges V R,Ni form a valid half
edge collapse, the error value according to the quadric
error metric is calculated. Then the Ni with the lowest
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error value 4(Ni) is chosen and the half edge collapse
performed.
Since half edge collapses are not executed isolatedly
when using the parallel half edge collapse and several
edges may be collapsed into a single vertex in parallel,
the quadric error metric is not updated with each
collapse as suggested by [Gar98a]. Instead the QEM
is recalculated for each removal candidate during
boundary computation, using the current intermediate
result of the mesh.

5 DEADLOCK PREVENTION
While the boundaries described in the previous sec-
tion allow for parallel execution of half edge collapses,
they create the disadvantage of possibly blocking com-
binations of parallel half edge collapses that would not
cause a foldover or a topological inconsistency. This
problem cannot only occur for two neighbouring ver-
tices. Several vertices could enter a state where they
mutually block half edge collapses, effectively caus-
ing an area of the mesh that cannot be simplified even
though for each vertex one or more half edge collapses
could be performed individually.
If a vertex is to be removed, but all possible half edge
collapses are being blocked by the boundaries, an addi-
tional computation has to be performed. For each edge
ei that was tested against the boundaries, the blocking
planes have to be determined.
If all planes that blocked the half edge collapses are
constructed by test 1, the current topology of the mesh
around the removal candidate V R does not allow any
half edge collapse without causing either a foldover or
a topological inconsistency. In this first case the algo-
rithm aborts the search for a valid half edge collapse for
V R. The vertex remains in the mesh and is part of the
simplified result.
The second case needs a more complex handling. Here
one or more planes blocking a collapse are constructed
from a triangle with two or three vertices to be re-
moved. As described above, these boundaries could
prevent valid half edge collapses from being executed.
To avoid that, the algorithm always computes a sepa-
rate set of planes for V R, using only test 1 for all tri-
angles, effectively ignoring possible parallel half edge
collapses. This leads to two results for each half edge
collapse. The first one taking parallel half edge col-
lapses into account and potentially blocking valid col-
lapses, the second one to check if the topology allows
for a removal of V R at all. If the second result fails as
well as the first one, no half edge collapse can be safely
performed for V R and the vertex remains in the mesh
and no further attempts of removal will be taken.
If at least one half edge collapse is allowed by the sec-
ond result, the vertex remains a candidate for removal
for the next iteration in+1.

During iteration in+1 the status of all neighbouring ver-
tices of V R is compared to that of the previous iteration
in. If none of the removal candidates have been sub-
jected to a half edge collapse, a deadlock is assumed. To
resolve this the stored vertex error e(V R) is compared
to the one of the neighbouring removal candidates. Un-
less e(V R) is greater than the vertex error of all neigh-
bouring removal candidates, V R is marked as "to be ig-
nored". Ignored vertices are skipped during the selec-
tion of removal candidates and although neighbouring
vertices do not consider them valid targets for a possi-
ble half edge collapse, they are not considered as "to be
removed" and therefore do not cause the application of
test 2 or 3. This approach allows neighbouring vertices
to be subjected to a half edge collapse and so a possible
deadlock can be resolved.
Once a neighbouring vertex is reclassified or removed
by a half edge collapse, the ignore flag is deleted and
V R can be selected as a candidate for removal again.

6 RECLASSIFICATION
As described in section 3, the initial classification
performs calculations based on neighbouring vertices
but does not consider the possible removal of those.
For this reason an additional step is performed in
between iterations.
After a vertex V Ri is removed by a half edge collapse,
the vertex error of all neighbours N j ∈ R of V Ri is
invalidated due to the changes to the mesh. A new
vertex error that is used to validate the classification is
then calculated for all N j.
After an iteration has been completed, the algorithm
determines a list C = {C0,C1, ...,Cn} containing all
vertices V R ∈ R that have at least one neighbour in
S. Since half edge collapses change the edges, this
list needs to be regenerated after each iteration. Then
the vertex error e(Ci) is updated taking these changed
edges into account. If the new vertex error e(Ci) is
greater than a certain threshold, Ci is reclassified,
removed from R and C and added to S. It is therefore
no longer to be removed from the mesh.
This operation may be executed very often during run-
time. In addition this error metric for reclassification
should not deviate from the metric used in the initial
vertex analysis to prevent a potential reclassification
of a majority of vertices in R. For those reasons a
variation of the metric presented in section 3 is applied
here.

The initial classification uses the average of dis-
tances between the tangent plane of a vertex V that
is determined by the stored vertex normal and not
changed during the simplification and its neighbours
N. At this point it has to be taken into account that
one or more neighbouring vertices may be marked for
removal and therefore do not provide useful data, since
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Figure 14: Reclassifying vertices

they may not be part of the final, simplified mesh.
The metric used here still relies on the distance between
the tangent plane of V and Ni, it does not rely on the
average though and calculates the maximum value
instead.

Figure 14 shows an example for a possible reclas-
sification. Given that all vertices to the left of V are
elements of S, while the ones to the right are contained
in R, only the neighbour N1 is included in the error
metric for the recalculation. d2 calculated using N2 ∈ R
is omitted.
Since this newly calculated error value differs from
the initial classification, an adapted threshold has to be
defined for the reclassification. If the newly calculated
error value is greater than the threshold, the vertex is
reclassified as described above, otherwise it remains
in R and the next iteration tries to find a possible half
edge collapse to remove it from the mesh.

7 RESULTS
For early testing a GPU accelerated implementation
of the parallel half edge collapse using CUDA on a
Nvidia Geforce GTX 670 GPU was used.
For testing purposes, the model of the Stanford Bunny
was simplified. The original version of this mesh is
made up of 35 947 vertices forming 69 451 triangles.
Three different simplifications of the original mesh
were calculated by adapting the threshold for the initial
classification. For these early results the main focus
was the overall processing time for the simplification,
the resulting triangle count of the simplified mesh and
the number of iterations necessary until all vertices
marked for removal had been processed.
Figure 15 shows the comparison between the wire-
frame of the three simplified models derived from the
original.
The three cases resulted in models made from 48 831,

29 014 and 17 565 triangles respectively. The first case
was completed in 1.9 ms, while cases 2 and 3 required
3.3 and 4.4 ms.
As to be expected, the necessary number of iterations
increases as more vertices are marked for removal and
hence removed from the mesh. This can be explained
by the restriction that only edges between vertices in
R and S are considered possible half edge collapses.
Marking more vertices for removal, therefore reducing
the amount of vertices in S, reduces the number of
possible half edge collapses and results in additional

Figure 15: Simplification results

iterations.
While the parallel half edge collapses managed to
remove all marked vertices in 2 iterations for case 1, 5
and 8 are respectively needed in the other two cases,
causing the increase in processing time.
Another potentially limiting factor that could cause
additional iterations are deadlocks. Since these are not
resolved until the following iteration, a small number
of mutually locking vertices can have a large impact
on the runtime. For runtime critical applications of the
parallel half edge collapse a threshold for a minimum
amount of vertices in R should be considered. Since
the half edge collapse and therefore the parallel half
edge collapse preserves manifold connectivity at every
step, the simplification can be safely aborted after each
iteration.

These early tests have also shown that the use of
the artificially introduced vertex error can have a great
impact on runtime. While there was no difference in
runtime measurements for the first test case, there is a
clearly visible difference for test cases with a higher
number of necessary iterations. Executing test case 3
without the modified vertex error increased the number
of iterations by a factor of 4, simultaneously causing a
great increase in overall runtime for the simplification
as well.

7.1 Future work
The parallel half edge collapse can provide fast
simplification with good results. A main bottleneck
of the approach can be posed by the restriction, that
only edges between vertices in R and S are considered
a possible half edge collapse. A majority of the
vertices of a mesh being marked for removal or a
disadvantageous topology can cause a reduction in
parallel half edge collapses and force the execution of
additional iterations. Future work can focus on several
approaches to resolve these issues.
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An improved vertex analysis/classification could
provide a way to improve parallelism and reduce
processing time. A more precise initial classification
could provide additional removal candidates in each
iteration, therefore reducing the number of necessary
iterations and improving performance.
The difficulty caused by this approach lies within the
prediction of chosen half edge collapses. Preselecting
a precise set R without adapting to the outcome of
simplification operations has the potential to result in
lower quality simplifications than adapting after each
iteration.
Another significant improvement could be made by
allowing vertices in R that do not have a neighbour in
S to be collapsed rather than having to wait for one
or more iterations until a neighbouring vertex N ∈ S
is provided. This would also increase the freedom of
the simplification, possibly offering a greater number
of half edge collapses per vertex to choose from and
improve the overall result of the simplification.

8 CONCLUSION
The parallel half edge collapse is designed to provide
fast simplification with good results. The emphasis on
lack of communication between half edge collapses
as well as the focus on fast error metrics potentially
allows for short processing times, enabling the parallel
half edge collapse for real time applications using
view-dependent simplification and thus further im-
prove the result of the simplification.
The parallel design enables an implementation on
modern GPUs, further reducing the time needed to
calculate the simplified meshes.

On the other hand however the usage of the half
edge collapse instead of the more generic edge collapse
can prove to be a limiting factor. The possibly limited
number of selectable half edge collapses and the
focus on error metrics designed for fast computation
and updating can impact the result. This can have a
negative influence on the quality of the overall result
of the simplification, which is a trade-off that has to be
accepted for real time use.
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