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Abstract

This paper addresses the problem of mobile robot self�localization given a
polygonal map and a set of observed edge segments
 The standard approach to
this problem uses interpretation tree search with pruning heuristics to match
observed edges to map edges
 Our approach introduces a preprocessing step
in which the map is decomposed into view�invariant regions �VIRs�
 The
VIR decomposition captures information about map edge visibility and can
be used for a variety of robot navigation tasks
 Basing self�localization search
on VIRs greatly reduces the branching factor of the search tree and thereby
simpli�es the search task
 In this paper we de�ne the VIR decomposition
and give algorithms for its computation and for self�localization search
 We
present results of simulations comparing standard and VIR�based search and
discuss the application of the VIR decomposition to other problems in robot
navigation
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� Introduction

An autonomous mobile robot that performs tasks in a large workspace typically
represents its environment using some type of two�dimensional map� The map
speci�es the geometric layout of navigable space� the locations of objects of interest�
and the robots own location� It is used for path planning� for monitoring progress
along a path� and for many other tasks involving the robots relationship to its
environment� The way in which the map is organized and represented has a major
impact on the e�ciency with which the robot can carry out these tasks�

In this paper we present a novel map representation and explore its application
to a number of problems in robot navigation �this report serves as a more com�
prehensive explanation of the presentation in ������ Our primary focus is on the
self�localization problem� in which the robot seeks to determine its location with
respect to its map using data acquired by its sensors� We assume that the robots
environment is represented by a �D polygonal map� and that the robot is able to
extract line segments corresponding to portions of the workspace boundary from
sensor data �see Figure ��� The self�localization task then reduces to matching ob�
served segments against map edges to recover the robots position and orientation
parameters �x� y� ���

Our approach to self�localization is an extension of that of Miller ���� and
Drumheller ���� who use interpretation tree search ��� to match range data against
edges in a �D polygonal map� The interpretation tree is a depth��rst search tree in
which each level of the tree associates an observed feature with a map edge� Heuris�
tics �e�g� ordering constraints� can be used to make the search more e�cient� but
the branching factor of the search tree is of the order of the number of map edges�
The search is thus very expensive for large workspaces�

A large part of the cost of interpretation tree search is due to failure to make use
of visibility information that is implicit in the map� For example� having matched a
map edge A to an observation� standard search methods may try to match edge B
against another observation even if there is no position in the map from which both
A and B are simultaneously visible� For large workspaces such as o�ce buildings
and factories� only a small part of the workspace is visible at any one time� Thus
the cost of searching and rejecting inherently implausible matches may dominate
the cost of search�

In order to reduce the cost of interpretation tree search� we introduce a pre�
processing step during which the implicit visibility information is extracted and
represented explicitly� This is done as part of an o��line initialization process� e�g�
during map construction� The preprocessing involves decomposing the map into
view�invariant regions �VIRs�� a set of disjoint polygons characterized by the map
edges that are visible from points within them� Together with each VIR the ini�
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Figure �� The self�localization problem � the robot �R� extracts straight edge seg�
ments �bold lines� from its sensor data and seeks to match them against known map
edges�

tialization process stores the set of edges visible from within that VIR� and a set
of heuristic features that characterize the world as seen from points inside the VIR�
During self�localization� the robot uses local feature measurements to index into a
set of VIRs with similar features� quickly isolating those that are likely to contain
its current position� It then performs an interpretation tree search that is guided
by the visibility information in the VIR set� For most maps this greatly reduces the
cost of search�

The VIR decomposition has a number of applications beyond accelerating self�
localization search� Because it captures information about visibility� it can be used
for a variety of tasks involving perception and perceptual planning� These include
path planning� searching for landmarks or other objects� updating approximately
known positions during navigation� and self�localization in the presence of local
ambiguities�

In the remainder of this section we review related work on visibility� mobile
robots and the use of maps� Section � de�nes the VIR decomposition and develops
algorithms for its construction and its application to self�localization� Section �
presents simulation results illustrating the e�ect of the VIR decomposition on the
cost of self�localization search� and section 	 describes other applications of the
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decomposition�

��� Related Work

����� Visibility

Self�localization using view�invariant regions is conceptually similar to object recog�
nition using aspect graphs ��������������� In both cases� a region of uncertainty �map
location or viewing direction� is partitioned into subregions characterized by topo�
logical invariance� and the topology within subregions is then used to constrain
search� The algorithms used to construct the two representations are based on the
same general principles� though they di�er substantially in their details�

The construction of aspect graphs depends on the camera model adopted for
the object recognition task� When orthographic projection is used� it is common
to tessellate the surface of an imaginary sphere� known as the Gaussian sphere�
surrounding the object �������	�� Each surface patch of the sphere corresponds to a
topologically invariant view� This tessellation may be achieved in one of two ways�
��� The surface is �rst partitioned into a large number of identical facets� Adja�
cent facets corresponding to the same view or aspect are merged� This approach�
however� is limited by the resolution of the initial partitioning of the surface of the
Gaussian sphere� ��� Alternatively� for convex polyhedral objects� each face de�nes
a great circle on the Gaussian sphere� These circles partition the surface into regions
corresponding to invariant aspects of the object� The latter approach has been ex�
tended for nonconvex polyhedra ����� Visual events �that correspond to the edges
of the aspect graph� are noted to be of only two fundamental types� coincidence of
the projections of an edge and a vertex� and intersection of the projections of three
nonadjacent edges� A speci�c event describes a curve on the Gaussian sphere� As
before� the intersection of these curves forms a graph which is the dual of the desired
aspect graph�

Deriving aspect graphs under perspective projection is more similar to our task
of computing view�invariant regions for a planar polygonal map� The geometric
incidence lattice method ���� computes the intersections of planes with each other
which may be followed by a test to determine which planes are visible from a volume
����� Alternatively� a plane sweep technique may be used to compute the aspect
graph ����� This technique could be applied in a two�dimensional space where line
segments may consist of the edges of a polygonal map� The line sweep would provide
information useful to the construction of the View�Invariant regions de�ned above�
However� such an approach is less straightforward than the VIR extraction scheme
adopted in this paper�

A number of other researchers have used visibility and topological constraints
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as aids to robot navigation� Levitt and Lawton ���� describe the use of topological
information to obtain qualitative descriptions of robot location in landmark�based
navigation� Talluri and Aggarwal ���� describe a map representation that is closely
related to the VIR decomposition� In their approach the robot is in an outdoor
environment� The boundary polygon is �xed at the outer limits of the map and
does not generate region boundaries� Objects such as buildings in the environment
are partitioned into convex pieces and can generate boundaries similar to those
in aspect graphs� Occlusion of objects is taken into account and the �D map is
partitioned into �edge visibility regions� that correspond to unique views of the
scene�

����� Mobile Robot Self�localization

The simplest possible approach to sensor�based self�localization is to add readily
detectable and distinguishable beacons to the environment� as in the HILARE
project ���� Given observations of a su�cient number of beacons� the robot can
locate itself by triangulation� These methods depend on relatively open environ�
ments to guarantee that some landmark or beacon is always visible� They have the
advantage of simplicity� and �unlike the methods described below� do not depend
on particular representations of the robot workspace�

Many researchers have chosen to represent �D workspace maps by means of
arrays or occupancy grids ����� in which the contents of each array cell re�ect the
robots certainty that there is an obstacle at the corresponding spatial location�
Occupancy grids are most often used with low�resolution� noisy sensors such as sonar�
particularly in situations where the workspace map is either not known a priori or
changes frequently� This basic idea has been extended to include representation of
positional uncertainty �
����������� Moravec and Elfes ���� describe a method of self�
localization in occupancy grid maps by correlation� Robot location is determined by
correlating new occupancy grids made from unknown positions with the occupancy
grid that forms the map� Since the tessellation size is usually on the order of ��cm�
this method is computationally expensive when applied to large spaces that include
many rooms�

Our work follows Miller� Drumheller and others �e�g� �������������� in assuming
workspace maps consisting of two�dimensional polygons� This type of map can be
constructed from CAD representations of the workspace or from architectural draw�
ings� Self�localization with polygonal maps is usually based on the interpretation
tree search as described above ����

	



����� Other Related Work

Miller ���� discusses several advantages of decomposing polygonal maps into disjoint
regions� and proposes two decompositions� One is based on the Voronoi diagram and
the other on the number of constraints on the robots position that can be inferred
from local information� These decompositions facilitate re�ning the robots estimate
of its own position� provided that it has an approximate position estimation� They
do not� however� address the initial self�localization problem� It was this work that
stimulated our interest in map decompositions and led to the approach taken here�
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� View�Invariant Regions

The primary contribution of our approach to self�localization is the use of view�

invariant regions �VIRs� to limit the branching factor of the self�localization tree
search� In this section we de�ne the VIR decomposition� give algorithms for its
construction� and describe its application to the self�localization problem� In order
to simplify the exposition we assume here that the map is a simple polygon without
holes� The de�nitions and algorithms generalize readily to maps with holes� however�

The de�nition of view�invariant regions is based on the concept of visibility in
computational geometry �see e�g� ��	��� A point y is visible to a point x if the line
segment xy is interior to the polygon that contains the points x and y� An edge
E of the polygon is visible from point x if any point on E is visible from x� Call
the set of edges visible from some point P in the polygon the label set of P� The
VIR decomposition of a polygonal map is a set of polygons v�� � � � � vk having the
property that all points in any one of the polygons have the same label set� that the
relative interiors of the polygons are disjoint� and that the union of the polygons is
the original map��

Intuitively� what this de�nition means is that motion within a VIR cannot change
the apparent topological structure of the world� the same set of edges and vertices
is visible from every point in a given VIR� Only when a VIR boundary is crossed
can the set of visible edges change� Figure � shows the VIR decomposition of the
room shown in �gure �� Notice that crossing a VIR boundary always causes an edge
to appear or disappear� For example� crossing from region k to region m causes a
portion of edge vi to become visible� Although VIRs are de�ned by edge visibility�
VIR boundaries always correspond to places where one map vertex occludes another�
crossing a boundary from one VIR to another always causes one or more vertices to
be exposed or occluded� It is often more convenient to think of VIR boundaries in
terms of vertex visibility�

��� Computing View�Invariant Regions

Our basic strategy for computing view�invariant regions can be summarized as fol�
lows� First� we �nd all view boundaries in the map� A view boundary is a line along
which one vertex is occluded by another� on one side of the boundary the vertex is
visible� while on the other it is not� Second� we split the polygon repeatedly along
its view boundaries� ending with a set of disjoint polygons that are not crossed by

�For maps with holes� this de�nition is insu�cient to insure that all points sharing the same
label set are connected� In this case we add the constraint that points x and y are in the same
VIR i� all points on the line segment xy have the same label set�
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Figure �� A polygonal map of a robot workplace showing its VIR decomposition�
Edges are numbered with roman numerals and VIRs are labeled a through w� The
map contains �� edges and �� VIRs�

any view boundary� Finally� we label each polygon with the set of map edges that
are visible from all points within it�� These polygons are the VIRs�

��� The Algorithm

The �rst step in computing the VIR decomposition is to �nd all of the view bound�
aries� This is done by computing the point visibility polygon ��	� for each vertex in
the map� A point visibility polygon is de�ned relative to some reference point on
the boundary or interior of the map� and consists of that portion of the map that is
visible from the reference point �see �gure ���

The algorithm to compute the point visibility polygon consists of a traversal
around the vertices of the map and will be referred to here as a point visibility scan

�PVS�� The reference point for which the PVS is done will be called the reference

vertex� A point visibility polygon consists of two types of lines� �� those that cross
the interior of the map boundary� and �� those that lie on the map boundary�

Lines of the �rst type correspond to the view boundaries described above� Cross�

�For e�ciency much of the work of �nding the labels is actually carried out in tandem with the
splitting� but this does not change the fundamental nature of the algorithm�

�



Figure �� The point visibility polygon� The point visibility polygon may be thought
of as the area interior to the map that would be lit by a light bulb �point light source�
situated at the reference vertex� The portions of the map not included in the point
visibility polygon are shown shaded� Dotted lines indicate the view boundaries�

ing a view boundary will cause the occlusion or the appearance of the reference vertex
and some map edge� A view boundary divides the part of the map from which the
reference vertex is visible from the part of the map from which the reference vertex
is not visible� By analogy with �gure �� we call the side of a boundary from which
the vertex is visible the light side and its opposite� the dark side�

Each line in a point visibility polygon that coincides with a map edge contributes
its label to the PVS reference vertexs label set� At the end of the PVS computation�
each map vertexs label set contains the labels of all edges visible from that vertex�

The complete computation to �nd the set of VIRs is composed of the following
four steps�

I� Do a PVS for each map vertex to �nd view boundaries and vertex label sets� and
add view boundaries to the map�

II� Calculate new interior vertices from view boundary intersections�

III� Traverse each view boundary to �nd label sets for new vertices�

IV� Extract VIRs from the augmented map �which now includes the view bound�
aries� and compute VIR label sets from the vertex label sets�

The �rst step of map construction is to perform a point visibility scan �PVS�
for each map vertex� using the algorithm given in ��	�� The algorithm consists of a






single scan of the map edges� and runs in linear time with respect to the number of
map vertices� During the PVS for each map vertex three types of information are
collected� �� The coordinates of the view boundary endpoints� �� The label of the
edge obscured by a particular view boundary� �� The labels of map edges that are
part of the point visibility polygon�

The view boundaries found from the PVS are lines that are interior to the map
polygon and form the divisions between the di�erent VIRs� At least one of the view
boundary endpoints will always be a map vertex�

The reference vertex has two connected map edges� Crossing any view boundary
created by this reference vertex will occlude or expose one of those map edges or
an edge behind it� The label of the occluded edge is easily calculated during the
PVS and is stored as the label for the current view boundary� This label is used
during the view boundary traversal in step III �see �gure 	�� The names of the
edges of the point visibility polygon that are not view boundaries are used in step
IV to calculate the label sets for the VIRs�

View boundaries that have been added to the map may intersect and create new
interior vertices� The process of calculating these intersections and adding them to
the map constitutes step II� In the �nal map there are three types of vertices�see
�gure ��� All three vertex types form vertices of the VIRs found in step IV�

A VIRs label set is formed by intersecting the label sets of its vertices� The
label sets for the �rst type of vertices were calculated in step I� Step III calculates
the label sets for vertex types � and �� This is done by a view boundary traversal�

Each view boundary is traversed once� The traversal begins at the map vertex
end of the view boundary� As the traversal proceeds� labels for new vertices are
calculated� If another view boundary is crossed� the label for the other view bound�
ary is added or subtracted from the label set depending on whether crossing the
boundary exposes or occludes the reference vertex that generated that boundary�
Following the light bulb analogy� this would be crossing to the light or dark side�
respectively �see �gure ���

Steps II and III convert the map to a planar directed graph with label sets at
each vertex� The �nal step of the algorithm consists of �nding all minimum�length
counter�clockwise cycles in the graph� Each such cycle forms the boundary of a VIR�
whose label set is the intersection of the label sets of the vertices on its boundary�
Finding minimum�length CCW cycles is done by the obvious method� while there
is an unused edge ViVj in the graph� search forward through the graph until Vi is
found� at each vertex turning as sharply as possible to the left�

This completes the discussion of the o��line VIR extraction process� A more
detailed description of map construction can be found in ����� Section ��� describes
how the VIR decomposition is used at run�time to speed up robot self�localization�
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Figure 	� View boundary labels� In each case the reference vertex is circled and
the view boundaries appear as dotted lines� Crossing a view boundary will always
occlude or expose an edge� whose label becomes associated with that view boundary�
In the �gure the edges that provide labels for the view boundaries are marked with
arrows� How the label is computed for any given boundary depends on whether the
reference vertex is positioned as in cases �a� and �b� or as in case ��� In the �rst two
cases the occluded or exposed edge is the edge connected to the reference vertex on
the occluding vertex side of the view boundary� Case � is more complicated� Here a
second view boundary is formed for which the roles of the occluding and reference
vertices are reversed� The edge that provides the label for the �rst view boundary is
the edge that the second view boundary strikes� Since this information is computed
during the PVS from the nominally occluding vertex� handling case � requires only
minor additional bookkeeping�
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Figure �� The three vertex types in the map� �� Map vertices� �� View boundary
endpoints� �� Interior view boundary crossings�

��� Self�localization with view�invariant regions

Self�localization using VIRs is a two�stage process� First� the line segments extracted
from range data are used to hypothesize a small set of candidate VIRs in which the
robot might be located� Second� observations are matched against map edges in
the label sets of the candidate VIRs to constrain the robots position as much as
possible�

The second step is performed using an interpretation tree as described in �������������
The interpretation tree is a search method used to match features in a stored model
against sensed data� In our work the stored model is a map of the robot environ�
ment consisting of polygonal edges� The sensed data are lines �i�e� portions of map
edges� extracted from range sensor data� At each level in the tree� the search al�
gorithm attempts to �nd the model edge corresponding to one of the sensed edges�
Heuristics are used while expanding each node to prune the search tree� A path
from the root node to a leaf node represents an interpretation� i�e� the path forms
a complete set of matched observed edge to map edge pairs� In the standard inter�
pretation tree search� the branching factor at each node corresponds to the number
of edges in the model database� The branching factor for the interpretation tree in
our approach is the number of edges that should be visible given the current edge
to segment matchings� i�e� given the current position in the search tree� At the top
level� where no edge to segment matchings have been made� the branching factor is
just the cardinality of the union of of candidate VIR label sets� This set is typically
much smaller than that of an entire map� Hence� the veri�cation process involves a
greatly reduced search space�

The degree of speed�up gained from the scheme rests on the �rst step� i�e� being
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Figure �� A view boundary traversal� The diagram on the left represents the
area inside the oval on the right containing a view boundary �solid diagonal line�
and its intersections with other view boundaries� Edges are numbered with ro�
man numerals� The traversal is begun at the vertex labeled ��� with label set
fiii� viii� ix� xi� xii� i� iig� At point ��� the light side of the view boundary created
by the vertex at the junction of edges vii and viii is entered� This adds the edge
vii to the label set of the vertex at ���� Similarly at ��� and �	� vi and v are added
to the current label set� At ��� edge ix is deleted from the label set after the view
boundary is crossed� At ��� the traversed view boundary endpoint happens to co�
incide with another such endpoint resulting in the addition of iv to the label set of
the vertex at ����

able to select a small set of candidate VIRs� We propose to do this by using simple
indexing functions that capture important features of the map as seen from within
the VIRs� Functions for each VIR can be computed as part of VIR construction�
During self�localization� functions computed from sensor readings can be used to
select candidate VIRs� In our work to date we have used two indexing functions� The
�rst is simply the number of visible edges� Thus if Nv edges are extracted from the
range data� only VIRs whose label sets contain Nv edges are selected as candidates
for veri�cation� The second indexing function is based on the total length of the
observed edges� VIRs whose label sets have signi�cantly less total length are rejected
as candidates� More robust and discriminating indexing functions are possible�
e�g� separation between walls� shape features of sensed enclosures� and length of
visible map perimeter� Methods of recognizing shapes from possibly erroneous or
incomplete sensor data may be found in work by previous authors� e�g� ���������

Once a set of VIRs is selected� an interpretation tree search is begun such that
at each level the set of searched edges is the union of the current candidate VIR
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label sets� After a match has been made� VIRs whose labels sets do not contain that
edge are removed and then the union is computed again� In this way the search is
guided by the visibility information contained in the candidate VIRs� The search
continues until a complete interpretation is found� During construction if we record
along with each edge the union of VIR label sets that include that edge� then the
union operations are e�ectively done in constant time during the localization search�

��� Complexity Issues

The cost of using VIRs for the task of self�localization can be divided into two compo�
nents� one incurred during map construction and the other during self�localization�
Both components depend on the number of VIRs that can be produced by a given
polygonal map� This section gives a bound on the maximum number of regions and
then discusses the cost of VIR construction and robot self�localization�

����� Upper and lower bounds on the number of regions

VIR regions are de�ned by their VIR vertices� and the number of vertices bounds the
number of regions� In this section we derive a lower bound on the number of these
vertices and hence a lower bound on any algorithm that performs VIR construction�

The total number of VIR vertices is the number of map vertices� n� plus the
number of intersections that the view boundaries make with other view boundaries
and map edges �cf� ��� Clearly the number of view boundaries is limited by the
number of pairs of vertices� which is O�n�� for an n�vertex polygon� If each view
boundary crosses O�n�� other boundaries and n map edges� then O�n�� vertices
could be produced� This can in fact occur in maps that are not simple polygons�

For simple polygons the maximum number of view boundary intersections is
limited to O�n��� Using the view boundary traversal as a model� it is easy to see
that during a traversal each vertex can be exposed and occluded at most once� That
is� the traversal can cross at most two view boundaries for each vertex in the map�
Since the total number of view boundaries is O�n��� and each can cross at most �n
other view boundaries� the total number of intersections is reduced to O�n��� The
VIR decomposition is unique� thus such a traversal on each view boundary will visit
all possible VIR vertices that can be the result of intersection� the vertices of type
� and ��

Figure � gives two extreme VIR decompositions� one for simple polygons and one
for polygons with holes� From this example it can be seen that the lower bounds
on the number of VIR regions is ��n�� for simple polygons and ��n�� for polygons
with holes� Since this lower bound meets the upper bound just given� the worst case
number of regions are ��n�� for simple polygons and ��n�� for polygons with holes�
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Because the output of VIR decomposition is the VIR regions and VIR vertices� these
results provide lower bounds on the worst case time complexity for any algorithm
that does VIR construction�

����� Complexity of Map Construction

The time complexity of map construction is the maximum complexity of the four
construction steps� The PVS algorithm is O�n� for an n�vertex simple map polygon�
or O�n log n� for maps with holes ��	�� Thus the �rst step runs in O�n�� for a
simple polygon and O�n� log n� for a polygon with holes� The horizontal sweep
intersection algorithm used for the second step runs in time O�n log n � I�� where
I is the number of intersections ��
�� By the argument in the previous section� I
�and hence the complexity of the second and third steps� is in the worst case ��n��
for simple polygons and ��n�� for polygons with holes� The fourth step runs in
time proportional to the number of VIRs in the map� which is bounded by the
number of vertices found in step three� The time complexity for the entire map
construction algorithm is therefore ��n�� for a map that can be represented as a
simple polygon and ��n�� for a map that contains holes� Since the time complexity
of the algorithms achieves the lower bound given in section ��	��� the algorithms are
optimal within a constant factor� In addition the performance will improve with
polygons not displaying worst case behavior� Since steps II� III� and IV run in time
proportional to the number of intersections� the whole construction process will run
in O�n� � I� for simple polygons and O�n� log n � I�� where I is the number of
intersections and thus the size of the output�

����� Complexity of Self�localization

VIR�based self�localization proceeds in two stages� First� heuristic indexing func�
tions based on local observations are used to identify a set of candidate VIRs� Sec�
ond� a modi�ed interpretation tree search that takes visibility into account is per�
formed to identify the robots position precisely� Thus the cost of self�localization
using VIRs is the cost of candidate selection plus the cost of the search�

The cost of interpretation tree matching with n model edges and k observations
is bounded by the size of the search tree� which is O�nk�� For non�pathological
�oor plans� however� pruning based on geometric constraints makes this bound of
little practical signi�cance� A more realistic estimate of the cost is O�n��� since
geometric constraints prune most branches of the search tree at the second level
������ see also section ��� The potential advantage of VIR�based self�localization
comes from reducing the number of model edges considered at each level of the tree�

Let k be the number of observed line segments� v the number of VIRs in the
candidate set� li the label set of the ith VIR� and Cs the cost of identifying the
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candidate set� The branching factor of the search tree is initially j�v
i��lij� so the cost

of the search is bounded above by

�����

v�

i��

li

�����

k

� Cs�

The actual cost is typically lower for two reasons� First� as stated above� the
use of geometric constraints tends to reduce the depth of the tree �and hence the
exponent in the above expression� to around two� Second� at each node of the
search tree our algorithm discards edges that are inconsistent with the hypotheses
implied by that node� For example� if an observed edge is currently hypothesized to
correspond to map edgem� VIRs whose label set does not containm are provisionally
excluded from the candidate set� In most cases this greatly reduces the branching
factor at all levels above the root�

In the worst case the union of the candidate VIR label sets may have cardinality
comparable to n� This occurs when either the individual VIR label sets or the
number of candidates are large� The former problem arises when the workspace is
structured so that there are many positions from which O�n� edges are visible� and
leads to performance that is no better than that of the standard method� The latter
situation occurs when the workspace contains many VIRs that are indistinguishable
based on the heuristics used to identify candidates� For example� a workspace that
is partitioned into many identical cubicles will produce this latter type of problem�
In this case the consistency test described above may still produce a signi�cant
reduction of the branching factor�

The cost of VIR�based self�localization search depends heavily on the number
of VIRs in the initial candidate set� There is an obvious tradeo� between the
cost of candidate selection Cs and the cost incurred by searching the union of a
larger number of candidates visible edges� The optimal division of e�ort varies with
the geometry of the map in question and the reliability and nature of the sensor
information used for candidate selection� An important goal for further research is to
explore this tradeo� and develop more and better heuristics for candidate selection�
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Figure �� Examples that achieve worst case bounds for a simple polygon �A� and
a polygon with holes �B�� In both polygons some view boundaries are left out for
clarity� In polygon A it can be seen that if there are ��n� niches� then each niche
can contain ��n� view boundaries� Half of the view boundaries in each niche can
cross the other half� This will create ��n�� regions in each niche and therefore create
��n�� regions in the polygon� Thus by the argument given in the text the worst
case number of regions will be ��n�� for simple polygons� In polygon B there are
��n� niches on each of the top and right sides and ��n� pillars in the middle of
the room� Each niche vertex generates ��n� view boundaries �two for each of the
��n� pillars�� and each such view boundary intersects ��n� other view boundaries�
All of the boundaries associated with right�wall vertices cross all of the boundaries
associated with top�wall vertices� producing a total of ��n�� intersections� This
gives the ��n�� worst case bound�
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� Experiments

In order to explore the e�ect of VIR indexing on self�localization search� we collected
performance data for interpretation tree matching with and without VIRs� The test
data consisted of seven hand�drawn maps with varying numbers of edges� Each map
was partitioned into VIRs automatically� using a variant of the algorithm described
in the previous section� Two of the simpler maps are shown in �gures � and 
�

Figure 
� Map with �� edges and �� VIRs�

For each map� ten robot positions were chosen at random� For each position�
a portion of each visible wall was extracted and added to the set of observations
for that position� Each set of observations was then used as the basis for two self�
localization searches� The �rst or �standard� search simply performed interpretation
tree matching between the observations and the map� For the second� or �VIR�
search� a set of candidate VIRs was selected using the edge�counting heuristic and
then �ltered using the visible perimeter heuristic� The union of the candidate VIRs
label sets was calculated and these edges were used for the interpretation search� At
each successive level in the tree� implausible VIRs were removed and the union was
calculated again� Figure � shows the results for a typical trial in each of the seven
maps used�

The interpretation tree algorithm used in all cases was an implementation of the
Gaston and Lozano�Perez algorithm described previously� To insure a fair compari�
son� the implementation made use of the heuristics described in �������� to determine
the order in which map edges are considered at each level� The use of heuristics and
geometric constraints makes computing the expected cost of the search extremely
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Figure �� Plot of self�localization search performance for one trial on each of the
seven di�erent test maps� The X axis represents the number of edges in the map
and the Y axis represents the number of nodes expanded during search� Each data
point represents the number of nodes expanded in the actual search for either the
VIR search method or the standard interpretation tree method�

di�cult� Miller ���� reports that for an N �edge map the cost of a complete interpre�
tation tree search is approximately proportional to N�� and our experience tends to
con�rm this� In the experimental trials described above� 
�� of the search paths
were pruned at the second level of the tree� and another ��� were pruned at the
third level� When the method is run until the �rst interpretation is reported� we
found the average number of nodes expanded to be approximately N����

Figure �� summarizes the results of all ten trials in each of the seven maps� The
results lead to two conclusions� First� VIR search can result in substantial savings
compared with standard interpretation tree search� The number of nodes expanded
by the standard method is roughly quadratic in the number of map edges� while for
VIR search it appears to grow much more slowly�

Second� variances for both searches tend to be large relative to the mean� This
is because the running time of the algorithms are very sensitive to the quality of the
heuristic information� For the VIR search a further speed�up could be expected with
a better ranking of the candidate VIRs� The edge�counting and visible perimeter
length heuristics used here provide no ranking information at all� so the algorithm
can be expected to search half of the candidates during an average trial� In the
worst case� this can cause VIR search to examine as many nodes as in the standard
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Figure ��� Plot of self�localization search performance for �� trials on each of seven
test maps with and without VIRs� The X axis represents the number of edges in
the map and the Y axis represents the number of nodes expanded during search�
Each data point represents the mean number of nodes expanded during ten trials�
plus or minus one standard deviation�

search� The worst case occurs when there are several candidate VIRs whose label
sets include a large proportion of the edges in the map� and the heuristics do a
poor job of ranking the candidates� If under some metric the map continues to
provide distinguishable VIRs as the map grows in size� then the VIR search can be
expected to continue its relatively slow rate of growth� Hence the degree of speedup
with VIR�based self�localization is directly linked to improvements in the quality of
sensor data and heuristic selection�

��



� Other Applications of View�Invariant Regions

The visibility information captured by the VIR decomposition is very powerful and
general� and can be used for a number of other tasks in robot navigation and per�
ceptual planning� It can also be applied to self�localization in other ways than that
described in the previous section� In this section we discuss a number of these
alternatives and applications�

��� Path Planning

A number of path planning algorithms make use of polygonal map decompositions
to simplify the planning problem ������	������� The general approach is to compute
the region adjacency graph ��� of the decomposition� and then annotate it with
geometric information �e�g� distances� as required by the particular algorithm in
question� Path planning then reduces to �nding a low�cost path through the graph�
Clearly VIRs could serve as the basis for a path��nding algorithm of this type�

Suri ���� describes a method of �nding the path of minimal link distance �that
with the fewest turns� between two points using the chords of the weak visibility
regions of a map� For any map edge E� the weak visibility region is the set of points
within the map from which E is visible� This is just the union of all VIRs that have
E in their label sets� so VIRs provide all of the information needed to implement
Suris algorithm�

��� Disambiguation

Any self�localization scheme that is based on local observations can produce mul�
tiple solutions when the environment is inherently ambiguous �e�g� contains many
identical rooms�� In this situation the robot must acquire more information before
it can determine where it is� However� since this involves physically moving robot�
it is potentially very time consuming and must be planned carefully�

VIRs and the VIR adjacency graph described above provide a basis for planning
a series of moves that allow the robot to disambiguate its position e�ciently� Assume
that the robot has obtained a list of candidate solutions by interpretation tree search�
Each solution consists of a particular position and orientation within some VIR� For
any pair of candidate solutions� one of three conditions must be responsible for the
ambiguity� and one of three solution methods will apply�

�� problem The solutions are in principle distinguishable from the hypothesized
viewpoints� that is� the sets of edges visible in the two candidate VIRs dif�
fer geometrically� However� the robots observations do not include the data
needed to distinguish between the solutions�
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solution The robot can disambiguate by obtaining better data� Exactly how
this should be done depends on details of its sensor� but will usually involve
moving closer to the feature�s� needed to make the distinction�

�� problem The solutions are indistinguishable based on observations from the
two candidate viewpoints� but the VIRs containing the candidates are geo�
metrically distinct� In this case the sets of edges that are visible from within
the two candidate VIRs are identical in appearance�

solution The VIR boundaries can be thought of as predictions about how the
set of visible edges will change as the robot moves� If the two candidate VIRs
have boundaries in di�erent places relative to the robot� then the robot can
distinguish between them by attempting to cross one of the boundaries and
checking to see whether a vertex is in fact occluded or exposed�

�� problemBoth the visible edges and the VIR boundaries for the two candidates
are identical� In this case there is no way to distinguish between the candidates
based on information gathered within the candidate VIRs�

solution The robot must leave the current VIR� In order to decide where to
go� perform a best��rst search in parallel from both of the candidate positions
along arcs of the VIR adjacency graph� Classify each VIR visited during the
search according to the type of ambiguity to which it is subject� stopping when
a pair of distinguishable VIRs is found� Let the cost function for the best��rst
search be the length of the path travelled� plus some measure of the cost of
distinguishing between the two VIRs that terminate the search�

Note that these strategies are based on computations on the map and the VIR
representation� and do not require the robot to move until after an optimal strategy
has been chosen�

��� Searching for Objects

Many tasks to which mobile robots are well suited involve searching for some lo�
cation� person or object� example tasks include delivering messages� fetching and
transporting parts� and security applications� Because VIRs encode information
about visibility� they are useful in planning move sequences that will accomplish
these tasks�

Consider �rst the problem of locating some recognizable object whose position
in the workspace is currently unknown� How can the robot determine what path it
must follow to insure that it will see the object at some point� The VIRs are convex
and span the workspace� so a path that visits every VIR must eventually bring
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the object into view� This requires more work than is strictly necessary� however�
Simpler methods can be developed by modifying the VIR construction algorithm to
construct view boundaries only for pairs of adjacent vertices� partitioning the map
along these boundaries yields a simpler convex decomposition�

� Conclusion

In this paper we have introduced a novel method of decomposing polygonal maps
based on edge visibility� and used it to develop a fast algorithm for robot self�
localization� Self�localization using our VIR decomposition improves on previous
approaches by restructuring the search space to take visibility information into ac�
count� Thus eliminating search on implausible con�gurations� Experiments with
synthetic data suggest that VIR�based search is substantially faster than previously
published approaches� We have also presented an optimal�time algorithm for VIR
construction� improving on the method described in �����

VIR�based self�localization depends on a number of assumptions about the en�
vironment and the robots sensors� The robot must be able to extract line seg�
ments corresponding to map edges from its range readings with reasonable accuracy�
Drumheller ��� and others have shown that this is di�cult with typical commercial
sonar sensors� although signal analysis based on better models of sonar sensing has
begun to address this problem ������
�� The speed�up of self�localization that our
method provides depends critically on the accuracy of the initial selection of candi�
date VIRs� Better heuristic criteria for candidate selection are an important focus
of our current research�

The self�localization algorithm presented here is faster than standard interpre�
tation tree search� Its running time is very sensitive to features of the map and
environment� leading to the the high variances observed in section three� The inter�
pretation tree search method presented here displays a marked improvement in its
worst case behavior over our previous method described in �����
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