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Abstract

Statistical relational learning (SRL) constructs
probabilistic models from relational databases. A
key capability of SRL is the learning of arcs (in
the Bayes net sense) connecting entries in differ-
ent rows of a relational table, or in different tables.
Nevertheless, SRL approaches currently are con-
strained to use the existing database schema. For
many database applications, users find it profitable
to define alternative “views” of the database, in ef-
fect defining new fields or tables. Such new fields
or tables can also be highly useful in learning. We
provide SRL with the capability of learning new
views.

1 Introduction
Statistical Relational Learning (SRL) focuses on algorithms
for learning statistical models from relational databases. SRL
advances beyond Bayesian network learning and related tech-
niques by handling domains with multiple tables, represent-
ing relationships between different rows of the same table,
and integrating data from several distinct databases. SRL
techniques currently can learn joint probability distributions
over the fields of a relational database with multiple tables.
Nevertheless, they are constrained to use only the tables and
fields already in the database, without modification. Many
human users of relational databases find it beneficial to de-
fine alternative views of a database—further fields or tables
that can be computed from existing ones. This paper shows
that SRL algorithms also can benefit from the ability to define
new views, which can be used for more accurate prediction of
important fields in the original database.

We will augment SRL algorithms by adding the ability to
learn new fields, intensionally defined in terms of existing
fields and intensional background knowledge. In database
terminology, these new fields constitute a learned view of
the database. We use Inductive Logic Programming (ILP)
to learn rules which intensionally define the new fields.

We test the approach in the specific application of creating
an expert system in mammography. We chose this applica-
tion for a number of reasons. First, it is an important prac-
tical application with sizable data. Second, we have access
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Figure 1: Expert Bayes Net

to an expert developed system. This provides a base refer-
ence against which we can evaluate our work. Third, a large
proportion of examples are negative. This distribution skew
is often found in multi-relational applications. Last, our data
consists of a single table. This allows us to compare our tech-
niques against standard propositional learning. In this case, it
is sufficient for view learning to extend an existing table with
new fields. It should be clear that for other applications the
approach can yield additional tables.

2 View Learning for Mammography
Offering breast cancer screening to the ever-increasing num-
ber of women over age 40 represents a great challenge. Cost-
effective delivery of mammography screening depends on a
consistent balance of high sensitivity and high specificity. Re-
cent articles demonstrate that subspecialist, expert mammog-
raphers achieve this balance and perform significantly better
than general radiologists [24; 1]. General radiologists have
higher false positive rates and hence biopsy rates, dimin-
ishing the positive predictive value for mammography [24;
1]. Despite the fact that specially trained mammographers
detect breast cancer more accurately, there is a longstanding
shortage of these individuals [6].

An expert system in mammography has the potential to
help the general radiologist approach the effectiveness of a



subspecialty expert, thereby minimizing both false negative
and false positive results.

Bayesian networks are probabilistic graphical models that
have been applied to the task of breast cancer diagnosis from
mammography data [12; 2; 3]. Bayesian networks produce
diagnoses with probabilities attached. Because of their graph-
ical nature, they are comprehensible to humans and useful for
training. As an example, Figure 1 shows the structure of a
Bayesian network developed by a subspecialist, expert mam-
mographer. For each variable (node) in the graph, the Bayes
net has a conditional probability table giving the probability
distribution over the values that variable can take for each
possible setting of its parents. The Bayesian network in Fig-
ure 1 achieves accuracies higher than that of other systems
and of general radiologists who perform mammograms, and
commensurate with the performance of radiologists who spe-
cialize in mammography [2].

Figure 2 shows the main table (with some fields omitted for
brevity) in a large relational database of mammography ab-
normalities. Data was collected using the National Mammog-
raphy Database (NMD) standard established by the American
College of Radiology. The NMD was designed to standard-
ize data collection for mammography practices in the United
States and is widely used for quality assurance. Figure 2 also
presents a hierarchy of the types of learning that might be
used for this task. Level 1 and Level 2 are standard types of
Bayesian network learning. Level 1 is simply learning the
parameters for an expert-supplied network structure. Level 2
involves learning the actual structure of the network in addi-
tion to its parameters.

Notice that to predict the probability of malignancy of an
abnormality, the Bayes net uses only the record for that ab-
normality. Nevertheless, data in other rows of the table may
also be relevant: radiologists may also consider other abnor-
malities on the same mammogram or previous mammograms.
For example, it may be useful to know that the same mam-
mogram also contains another abnormality, with a particular
size and shape; or that the same person had a previous mam-
mogram with certain characteristics. Incorporating data from
other rows in the table is not possible with existing Bayesian
network learning algorithms and requires statistical relational
learning (SRL) techniques, such as probabilistic relational
models [8]. Level 3 in Figure 2 shows the state-of-the-art
in SRL techniques, illustrating how relevant fields from other
rows (or other tables) can be incorporated in the network, us-
ing aggregation if necessary. Rather than using only the size
of the abnormality under consideration, the new aggregate
field allows the Bayes net to also consider the average size
of all abnormalities found in the mammogram.

Presently, SRL is limited to using the original view of the
database, that is, the original tables and fields, possibly with
aggregation. Despite the utility of aggregation, simply con-
sidering only the existing fields may be insufficient for accu-
rate prediction of malignancies. Level 4 in Figure 2 shows the
key capability that will be introduced and evaluated in this pa-
per: using techniques from rule learning to learn a new view.
The new view includes two new features utilized by the Bayes
net that cannot be defined simply by aggregation of existing
features. The new features are defined by two learned rules

that capture “hidden” concepts central to accurately predict-
ing malignancy, but that are not explicit in the given database
tables. One learned rule states that a change in the shape of
the abnormality at a location since an earlier mammogram
may be indicative of a malignancy. The other says that an in-
crease in the average of the sizes of the abnormalities may be
indicative of malignancy. Note that both rules require refer-
ence to other rows in the table for the given patient, as well as
intensional background knowledge to define concepts such as
“increases over time.” Neither rule can be captured by stan-
dard aggregation of existing fields.

3 View Learning Framework
One can imagine a variety of approaches to perform view
learning. Our closing section discusses a number of alterna-
tives, including performing view learning and structure learn-
ing at the same time, in the same search. For the present work,
we apply existing technology in a new fashion to obtain a
view learning capability.

Any relational database can be naturally and simply rep-
resented in a subset of first-order logic [21]. Inductive logic
programming (ILP) provides algorithms to learn rules, also
expressed in logic, from such relational data [15], possibly to-
gether with background knowledge expressed as a logic pro-
gram. ILP systems operate by searching a space of possible
logical rules, looking for rules that score well according to
some measure of fit to the data. We use ILP to learn rules to
predict whether an abnormality is malignant. We treat each
rule as an additional binary feature; true if the body, or condi-
tion, of the rule is satisfied, and otherwise false. We then run
the Bayesian network structure learning algorithm, allowing
it to use these new features in addition to the original fea-
tures. Below is a simple rule, covering 48 positive examples
and 123 negative examples:

Abnormality A in mammogram M
may be malignant if:

A’s tissue is not asymmetric,
M contains another abnormality A2,
A2’s margins are spiculated, and
A2 has no architectural distortion.

This rule can now be used as a field in a new view of the
database, and consequently as a new feature in the Bayesian
network. The last two lines of the rule refer to other rows of
the relational table for abnormalities in the database. Hence
this rule encodes information not available to the current ver-
sion of the Bayesian network.

4 Experiments
The purposes of the experiments we conducted are two-fold.
First, we want to determine if using SRL yields an im-
provement compared to propositional learning. Secondly, we
want to evaluate whether using Inductive Logic Programming
(ILP) to create features, which embody a new “view” of the
database, adds a benefit over current SRL algorithms. We
looked at adding two types of relational attributes, aggregate
features and horn-clause (ILP) rules. Aggregate features rep-
resent summaries of abnormalities found either in a partic-
ular mammogram or for a particular patient. We performed
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Figure 2: Hierarchy of learning types. Levels 1 and 2 are available through ordinary Bayesian network learning algorithms,
Level 3 is available only through state-of-the-art SRL techniques, and Level 4 is described in this paper.

a series of experiments, aimed at discovering if moving up
in the hierarchy outlined in Figure 2 would improve perfor-
mance. First, we tried to learn a structure with just the orig-
inal attributes which performed better than the expert struc-
ture. This corresponds to Level 2 learning. Next, we added
aggregate features to our network. Finally, we created new
features using ILP. We investigated adding the features pro-
posed by the ILP system as well as the aggregate to the net-
work.

We experimented with a number of structure learning al-
gorithms for the Bayesian Networks, including Naı̈ve Bayes,
Tree Augmented Naı̈ve Bayes [7], and the sparse candidate
algorithm [9]. However, we obtained best results with the
TAN algorithm in all experiments, so we will focus our
discussion on TAN. In a TAN network, each attribute can
have at most one other parent in addition to the class vari-

able. The TAN model can be constructed in polynomial
time with a guarantee that the model maximizes the Log
Likelihood of the network structure given the dataset [10;
7].

4.1 Methodology
The dataset contains 435 malignant abnormalities and 65365
benign abnormalities. To evaluate and compare these ap-
proaches, we used stratified 10-fold cross-validation. We ran-
domly divided the abnormalities into 10 roughly equal-sized
sets, each with approximately one-tenth of the malignant ab-
normalities and one-tenth of the benign abnormalities. When
evaluating just the structure learning and aggregation, 9 folds
were used for the training set. When performing aggregation,
we used binning to discretize the created features. We took
care to only use the examples in the train set to determine the
cut bin widths. When performing “view learning”, we had



two steps in the learning process. In the first part, 4 folds
of data were used to learn the ILP rules. Afterwards, the re-
maining 5 folds were used to learn the Bayes net structure
and parameters.

When using cross-validation on a relational database, there
exists one major methodological pitfall. Some of the cases
may be related. For example, we may have multiple abnor-
malities for a single patient. Because these abnormalities are
related (same patient), having some of these in the training set
and others in the test set may cause us to perform better on
those test cases than we would expect to perform on cases for
other patients. To avoid such “leakage” of information into a
training set, we ensured that all abnormalities associated with
a particular patient are placed into the same fold for cross-
validation. Another potential pitfall is that we may learn a
rule that predicts an abnormality to be malignant based on
properties of abnormalities in later mammograms. We never
predict the status of an abnormality at a given date based on
findings recorded with later dates.

We present the results of our first experiment using both
ROC and precision recall curves. Because of our skewed
class distribution, or large number of benign cases, we prefer
precision-recall curves over ROC curves because they better
show the number of “false alarms,” or unnecessary biopsies.
Therefore, we use precision-recall curves for the remainder
of the results. Here, precision is the percentage of abnormal-
ities that we classified as malignant that are truly cancerous.
Recall is the percentage of malignant abnormalities that were
correctly classified. To generate the curves, we pooled the re-
sults over all ten folds by treating each prediction as if it had
been generated from the same model. We sorted the estimates
and used all possible split points to create the graphs.

4.2 Results
The relational database containing the mammography data
contains one row for each abnormality in a mammogram.
Fields in this relational table include all those shown in the
Bayesian network of Figure 1. Therefore it is straightforward
to use existing Bayesian network structure learning algo-
rithms to learn a possibly improved structure for the Bayesian
network. We compared the performance of the best learned
networks against the expert defined structure shown in Fig-
ure 1. We estimated the parameters of the expert structure
from the dataset using maximum likelihood estimates with
Laplace correction. Figure 3 shows the ROC curve for these
experiments, and Figure 4 shows the Precision-Recall curves.
Figure 7 shows the area under the precision-recall curve for
the expert network (L1) and with learned structure (L2). We
only consider recalls above 50%, as for this application ra-
diologists would be required to perform at least at this level.
We further use the paired t-test to compare the areas under
the curve for every fold. We found the difference to be statis-
tically significant with a 99% level of confidence.

With the help of a radiologist, we selected the numeric and
ordered features in the database and computed aggregates for
each of these features. We determined that 27 of the 36 at-
tributes were suitable for aggregation. We computed aggre-
gates on both the patient and the mammogram level. On the
patient level, we looked at all of the abnormalities for a spe-
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Figure 3: ROC Curves for Structure Learning. (Level 2)
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Figure 4: Precision Recall Curves for Structure Learning.
(Level 2)

cific patient. On the mammogram level, we only considered
the abnormalities present on that specific mammogram. To
discretize the averages, we divided each range into three bins.
For binary features we had predefined bin sizes, while for
the other features we attempted to get equal numbers of ab-
normalities in each bin. For aggregation functions we used
maximum and average. The aggregation introduced 108 new
features. For the interested reader, the following paragraph
presents further details of our aggregation process.

We used a three step process to construct aggregate fea-
tures. First, we chose a field to aggregate. Second, we se-
lected an aggregation function. Third, we needed to decide
over which rows to aggregate the feature, that is, which keys
or links to follow. This is known as a slot chain in PRM termi-
nology. In our database, two such links exist. The patient id
field allows access to all the abnormalities for a given patient,
providing aggregation on the patient level. The second key is
the combination of patient id and mammogram date, which
returns all abnormalities for a patient on a specific mammo-
gram, providing aggregation on the mammogram level. To
demonstrate this process we will work though an example of



                                                                                                                                                           Patient             Mammogram

P1                    1                    5/02              Spic                 ...            0.03                RU4                 0.0367               0.03                        B

... ... ... ... ... ... ... ... ... ...

P1                    3                    5/04              S

P1                    2                    5/04              V  ar                   ...            0.04                RU4                 0.0367               0.04                       M

pic                 ...            0.04                LL4                  0.0367               0.04                        B

                                                                                                                                                           Mass Size        Mass Size

Patient        Abnormality       Date           Mass Shape          ...           Mass Size       Location         Average           Average              Be/Mal

Figure 5: Database after Aggregation on Mass Size Field

computing an aggregate feature for patient 1 in the database
given in Figure 2. We will aggregate on the Mass Size field
and use average as the aggregation function. Patient 1 has
three abnormalities, one from a mammogram in May 2002
and two from a mammogram in May 2004. To calculate the
aggregate on the patient level, we would average the size for
all three abnormalities, which is .0367. To find the aggregate
on the mammogram level for patient 1, he have to perform
two separate computations. First, we follow the link P1 and
5/02, which yields abnormality 1. The average for this key
mammogram is simply .03. Second, we follow the link P1
and 5/04, which yields abnormalities 2 and 3. The average
for these abnormalities is .04. Figure 5 shows the database
following construction of these aggregate features.

Next, we tested whether useful new fields could be com-
puted by rule learning. Specifically, we used the ILP sys-
tem Aleph [26] to learn rules predictive of malignancy. Sev-
eral thousand distinct rules were learned for each fold, with
each rule covering many more malignant cases than (incor-
rectly covering) benign cases. In order to obtain a varied set
of rules, we ran Aleph using every positive example in each
fold as a seed for the search. We avoid the rule overfitting
found by other authors [18] by doing breadth-first search for
rules and by having a minimal limit on coverage. Each seed
generated anywhere from zero to tens of thousands of rules.
We post processed the rules using a greedy algorithm, where
we selected the best scoring rule that covers new examples
first. For each fold, the 50 best clauses were selected based
on 3 criteria: (1) they needed to be multi-relational; (2) they
needed to be distinct; (3) they needed to cover a significant
number of malignant cases. The resulting views were added
as new features to the database. Figure 6 includes a compari-
son of all levels of learning.

We can observe very significant improvements when
adding multi-relational features. Both rules and aggregates
achieved better performance. Aggregates do better for higher
recalls, while rules do better for medium recalls. We believe
this is because ILP rules are more accurate than the other fea-
tures, but have limited coverage.
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Figure 6: Precision Recall Curves for Each Level of Learning

Level 4 performs as well as aggregates for high recalls, and
close to ILP for medium recalls. According to the paired t-test
the improvement of Level 4 over Level 2 is significant, using
the area under the curve metric, at the 99% level. Meanwhile,
Level 3 presents an improvement over Level 2, using the area
under the curve metric, at the 97% confidence level.

Levels 1 and 2 correspond to standard propositional learn-
ing whereas levels 3 and 4 incorporate relational information.
In this task, considering relational information is crucial for
improving preformance. Furthermore, the process of gener-
ating the views in Level 4 has been useful to the radiologist
as it has identified novel correlations between attributes.

5 Related Work
Research in SRL has advanced along two main lines: meth-
ods that allow graphical models to represent relations, and
frameworks that extend logic to handle probabilities. Along
the first line, probabilistic relational models, or PRMs, intro-
duced by Friedman, Getoor, Koller and Pfeffer, represent one
of the first attempts to learn the structure of graphical mod-



Figure 7: Area Under the Curve For Recalls Above 50%

els while incorporating relational information[8]. Recently
Heckerman, Meek and Koller have discussed extensions to
PRMs and compared them to other graphical models[11]. A
statistical learning algorithm for probabilitistic logic repre-
sentations was first given by Sato [23] and later, Cussens [5]
proposed a more general algorithm to handle log linear mod-
els. Additionally, Muggleton [16] has provided learning al-
gorithms for stochastic logic programs. The structure of the
logic program is learned using ILP techniques, while the pa-
rameters are learned using an algorithm scaled up from that
used for stochastic context-free grammars.

Newer representations garnering arguably the most atten-
tion are Bayesian logic programs [13] (BLPs), constraint
logic programming with Bayes net constraints, or CLP(

���
)

[4], and Markov Logic Networks (MLNs) [22]. Markov
Logic Networks are most similar to our approach. Nodes of
MLNs are the ground instances of the literals in the rule, and
the arcs correspond to the rules. One major difference is that,
in our approach, nodes are the rules themselves. Although we
cannot work at the same level of detail, our approach makes it
straightforward to combine logical rules with other features,
and we now can take full advantage of propositional learning
algorithms.

The present work builds upon previous work on using ILP
for feature construction. Such work treats ILP-constructed
rules as Boolean features, re-represents each example as
a feature vector, and then uses a feature-vector learner to
produce a final classifier. To our knowledge, Pompe and
Kononenko [19] were the first to apply Naı̈ve Bayes to com-
bine clauses. Other work in this category was by Srinivasan
and King [25], who use rules as extra features for the task of
predicting biological activities of molecules from their atom-
and-bond structures. Popescul et.al. [20] use �����	��

��� to
derive cluster relations, which are then combined with the
original features through structural regression. In a different
vein, Relational Decision Trees [17] use aggregation to pro-
vide extra features on a multi-relational setting, and are close
to our Level 3 setting. Knobbe et al. [14] proposed numeric
aggregates in combination with logic-based feature construc-
tion for single attributes. Perlich and Provost discuss several

approaches for attribute construction using aggregates over
multi-relational features [18]. The authors also propose a hi-
erarchy of levels of learning: feature vectors, independent at-
tributes on a table, multidimensional aggregation on a table,
and aggregation across tables. Some of these techniques in
their hierarchy could be applied to perform view learning in
SRL.

6 Conclusions and Future Work
We presented a method for statistical relational learning
which integrates learning from attributes, aggregates, and
rules. Our example application shows benefits from the sev-
eral levels of learning we proposed. Level 2, structure learn-
ing, clearly outperforms the expert structure. We further show
that multi-relational techniques can achieve very significant
improvements, even on a single table domain, and that the
most consistent improvement is obtained by using Level 4,
both aggregates and new views.

We believe that further improvements are possible. It
makes sense to include aggregates in the background knowl-
edge for rule generation. Alternatively, one can extend rules
with aggregation operators, as proposed in recent work by
Vens et al. [27]. We have found the rule selection problem
to be non-trivial. Our greedy algorithm often generates too
similar rules, and is not guaranteed to maximize coverage.
We would like to approach this problem as an optimization
problem weighing coverage, diversity, and accuracy.

Our approach of using ILP to learn new features for an
existing table merely scratches the surface of the potential
for view learning. A more ambitious approach would be to
more closely integrate structure learning and view learning.
A search could be performed in which each “move” in the
search space is either to modify the probabilistic model or to
refine the intensional definition of some field in the new view.
Going further still, one might learn an intensional definition
for an entirely new table. As a concrete example, for mam-
mography one could learn rules defining a binary predicate
that identifies “similar” abnormalities. Because such a predi-
cate would represent a many-to-many relationship among ab-
normalities, a new table would be required.
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