ViewDroid: Towards Obfuscation-Resilient Mobile
Application Repackaging Detection

Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu
The Pennsylvania State University
University Park, PA, USA
{fuz104, hhuang, szhu}@cse.psu.edu, {dwu, pliu}@ist.psu.edu

ABSTRACT

In recent years, as mobile smart device sales grow quickly,
the development of mobile applications (apps) keeps acceler-
ating, so does mobile app repackaging. Attackers can easily
repackage an app under their own names or embed adver-
tisements to earn pecuniary profits. They can also modify
a popular app by inserting malicious payloads into the orig-
inal app and leverage its popularity to accelerate malware
propagation. In this paper, we propose ViewDroid, a user
interface based approach to mobile app repackaging detec-
tion. Android apps are user interaction intensive and event
dominated, and the interactions between users and apps are
performed through user interface, or views. This observa-
tion inspires the design of our new birthmark for Android
apps, namely, feature view graph, which captures users’ nav-
igation behavior across app views. Our experimental results
demonstrate that this birthmark can characterize Android
apps from a higher level abstraction, making it resilient to
code obfuscation. ViewDroid can detect repackaged apps at
a large scale, both effectively and efficiently. Our experi-
ments also show that the false positive and false negative
rates of ViewDroid are both very low.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: [Security and Protection]; D.2.8 [Software En-
gineering]: Metrics

Keywords

Mobile application; Repackaging; Obfuscation resilient; User
interface

1. INTRODUCTION

In recent years, as the wide use and rapid development of
mobile devices such as smartphones and tablets, mobile ap-
plication (app) markets are growing rapidly. There were
over 1,100,000 apps available on the Google Play Android

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WiSec’14, July 23-25, 2014, Oxford, UK.

Copyright 2014 ACM 978-1-4503-2972-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2627393.2627395.

app market [5] on March 2014. Since popularity has be-
come the core value among mobile platforms, many pop-
ular Android apps have been “copied,” or repackaged, as
reported by Gibler et al. [17]. One of the major reasons
behind the emerging of Android app repackaging is that it
is easy to reverse-engineer an Android app. When a user
purchases and downloads an Android app, the installation
package (i.e., the .apk file) is downloaded and stored on the
user’s mobile device. Given the openness of the Android
platform, it is very easy to obtain the installation package
from the device. After that, reverse engineering can be per-
formed based on readily available tools such as apktool [1]
and Baksmali/Smali [8], which can dissemble the compiled
Dalvik EXecutable (dex) from the .apk file into a human
readable Dalvik bytecode format (e.g., .smali files). At this
point, the content of the app can be easily manipulated,
modified, repackaged, and signed into a re-publishable APK
file. Signing is not required to be bound with any official
real ID of the developer and there is no certificate authority
to sign apps. Moreover, due to the popularity of the An-
droid platform, many unofficial app markets exist. Most of
them do not enforce sanity checks on the apps listed on their
web pages. As a result, the severity of app repackaging in
the Android platform has been observed higher than in any
other mobile platforms.

Generally speaking, there are two types of Android app
repackaging. The purpose of the first type is to use other
developers’ apps to earn pecuniary profits. An attacker can
easily repackage an app under his own name or embed differ-
ent advertisements to gain ad benefits, and then republish it
to an app market. Zhou et al. [34] found 5% to 13% of apps
in the third-party app markets repackaged the apps from
the official Android market. The second type is related to
malware, where attackers modify a popular app by insert-
ing some malicious payloads, e.g., sending out users’ private
information and purchasing apps without users’ awareness,
and leverage the popularity of the original app to accelerate
the propagation of the malicious one. According to a recent
study [35], 1083 (or 86.0%) of 1260 malware samples were
repackaged from legitimate apps, indicating repackaging is a
favorable vehicle for mobile malware propagation. Clearly,
to maintain the health of an app market as well as for the se-
curity of mobile users, app repackaging detection is a critical
issue to be addressed.

However, the problem of app repackaging detection is very
challenging. On the one hand, due to the huge number of
apps on an app market such as Google Play, efficiency and
scalability of a detection scheme are highly demanded. On

the other hand, the detection scheme must be resilient to
code modification and existing automatic obfuscation tech-
niques, because it is very easy to modify, obfuscate, and
repackage Android apps without the source code of the orig-
inal apps. Recently, several research works have been pro-
posed for repackaging detection, based on Fuzzy Hashing [34],
Program Dependence Graph (PDQ) [15, 14], Feature Hash-
ing [18], Module Decoupling [33], and Normal Compres-
sion Distance (NCD) [16]. These approaches can detect
app repackaging efficiently based on certain “invariants” ex-
tracted from the app code. Such invariants are called soft-
ware birthmarks as in the software engineering research [24,
25, 28, 30, 20]. A software birthmark is defined as a unique
characteristic that a program or mobile app inherently pos-
sesses, and can be used to uniquely identify the program.
All the above approaches use code-level birthmarks to char-
acterize an app.

In this paper, we propose a novel repackaging detection
system called ViewDroid, which leverages user interface based
birthmark for detecting app repackaging on the Android
platform. ViewDroid provides an alternative to the code-
level detection approaches. It is motivated by two obser-
vations. First, smartphone apps are user behavior inten-
sive and Android event-driven, and the interactions between
users and apps are performed through user interfaces (i.e.,
app views). Some characteristics of views (e.g. the nav-
igation between views) are unique for each independently
developed app. Second, in both types of repackaging, be-
cause attackers want to leverage the popularity of a target
app, they usually keep the repackaged apps’ look-and-feel
similar to the original one in the user interface level. Specif-
ically, ViewDroid is built upon a robust birthmark called
view graph. View graph is a graph constructed from all views
through static analysis and catches the navigation relation
among app views. In addition, we design features for both
nodes and edges in view graph based on Android specific
APIs. This can help pre-filter the non-relevant apps and
improve the efficiency of the graph comparison algorithm.

ViewDroid is resilient to code obfuscation techniques for
the following reasons. (1) View graph is a higher level rep-
resentation of an app’s behavior than the traditional code
level birthmarks (e.g., opcode sequence, program depen-
dence graph). In other words, ViewDroid does not need
instruction-level details. Hence, it is resilient to code obfus-
cation such as noise instruction/data injection, instruction
reordering, instruction splitting and aggregation and data
dependence obfuscation, etc. (2) The generation of view
graph relies on statically analyzing Android specific APIs
(e.g., startActivity and startActivityForResult). These
APIs are provided by the Android system and are hard to be
replaced or modified. Therefore, view graph, as the birth-
mark, is more robust to obfuscation techniques such as API
splitting, API renaming and API re-implementation. Our
evaluation results demonstrate that ViewDroid is robust to
many existing code obfuscation techniques.

Our paper makes the following contributions:

1. View Graph: We propose view graph, a user interface-
based birthmark for Android apps. To the best of our
knowledge, it is the first user interface level birthmark
for software plagiarism or app repackaging detection.

2. ViewDroid: We propose ViewDroid, an Android app
repackaging detection system based on view graph.
ViewDroid is robust to many code obfuscation tech-

niques, and both efficient and scalable. ViewDroid
provides a complementary approach to current code-
level repackaging detection methods.

3. Obfuscation Resilience Evaluation: We evaluated
the obfuscation resilience of ViewDroid by 39 obfusca-
tors from SandMarks [11] and KlassMaster [4], based
on the evaluation framework proposed by Huang et
al. [19]. The experimental results show that ViewDroid
outperforms Androguard [16] in terms of obfuscation
resilience.

4. Large Scale Evaluation: We tested ViewDroid on
10,311 real-world apps (573,872 app pairs) from the
Android market. It is detected that about 4.7% apps
are repackaging cases. We also evaluated the false neg-
ative of ViewDroid on a known repackaging app set.
The false negative rate is 1.3%. The evaluation results
demonstrate the efficiency and effectiveness of View-
Droid.

The remainder of the paper is structured as follows. Back-
ground of the Android platform and apps are given in Sec-
tion 2. Section 3 generalizes the attack model and the design
goals for repackaging detection. Section 4 describes the de-
sign of ViewDroid. Evaluation is presented in Section 5,
followed by discussions in Section 6 and related work in Sec-
tion 7. Finally we conclude the work with Section 8.

2. BACKGROUND

Android is a Linux-based platform for mobile devices. Users
can download and install Android apps from various app
markets. Android apps are published to the market in a
compressed file format (i.e., .apk file). It contains a manifest
file (i.e., AndroidManifest.xml), resource files (i.e., files in res
directory), and compiled Dalvik Executable (i.e., classes.dex).
The manifest file lists the package name, version number,
critical components of the app, and the associate permis-
sions to each component. The resource folder includes all
the raw resource files, such as images and audio files, and
the XML files which describe the layouts of user interfaces.
The Dalvik executable contains all the classes that imple-
ment the functionality of all the primary components of an
app. Some apps contain parts that are implemented by na-
tive languages. Since relatively few Android apps contain
such components developed in the native languages C/C++
and they mostly serve as background services, our current
ViewDroid design only takes into consideration the Dalvik
executable, the relevant Android manifest file, and the lay-
out files in the resource folder .

Components serve as the building blocks for Android apps.
There are four types of components, namely, Activity, Ser-
vice, Broadcast Receivers, and Content Provider. An Activ-
ity provides a screen for the user to interact with. An app
requires one main activity to start but can have a number
of other activities (roughly one per screen view). A stack is
designed to organize activities. When a new activity starts,
it goes to the top of the stack. A Service is a component
that runs in the background, usually engaged in the perfor-
mance of long-running tasks. In general, a service is used to
perform any task that is asynchronous with respect to the
main user interface. A Broadcast Receiver listens to spe-
cial messages broadcasted by the system or individual apps
and relays work to other services or activities. Finally, a
Content Provider manages shared data and optionally ex-

poses query and update capabilities for other components to
invoke. A message-like intent is used to help the communi-
cations among components.

The execution sequence of an Android app usually starts
from the main activity, specified in the manifest file. When
the launching icon of an app is pressed by user, the main
activity will be launched. It serves as the main entry point
to the user interface. The app switches between activities
by invoking platform APIs, Context.startActivity() or
Activity.startActivityForResult() with Intent objects
as parameter. An Intent object contains the information of
the target activity. A user interface is loaded when an activ-
ity is initialized by the onCreate() method, which creates
a new user view through APIs like setContentView(). The
view is then put on the top of the view stack and becomes
the running activity. Therefore, by analyzing the Android
specific APIs within each Activity class, the user interface
navigation relation information can be constructed to build
our view graph. Note that, in our work, we only consider
apps that have interactions with users (e.g., by key pressing,
button clicking). Some other apps, which only have back-
ground services and do not interact with users, are out of
our consideration.

3. PROBLEM STATEMENT

The most fundamental challenge of app repackaging detec-
tion is to find unique birthmarks to characterize apps. The
proposed birthmark should be accurate and unique enough
to identify an Android app. Moreover, as reported by Zhou
et al. [34], the plagiarists and malware writers tend to use ob-
fuscation on the repackaged apps to evade detection. Hence,
to significantly raise the bar for stealthy repackaging, the
designed detection scheme must be resilient against most
code obfuscation techniques. Finally, since the Android app
repackage problem is prevalent among most Android mar-
kets, it is very important to build a detection tool that can
perform detection in large-scale scenarios.

Scope of the paper. In this paper, our purpose is to
detect repackaging Android app pairs, but not to identify
which is the original one and which is the repackaged one.
We only focus on non-trivial Android apps that interact with
users through user interface and are implemented as Dalvik
executables. Apps that contains components implemented
by native-code languages are out of the scope of our pa-
per. Those only providing background services without user
interactions are not under our consideration either.

3.1 Attack model

The general attack model in the Android app repackaging
problem is: an attacker has access to the plaintiff Android
app package (.apk file); he repackages the app by copying
the code, making a few modifications (e.g., replacing the
advertisement, attaching malicious payloads), and applying
automatic code obfuscation techniques in order to evade de-
tection; the repackaged app is then signed with a private key
and republished to the app markets.

Based on the level of modification on the original APK
files and the effort an attacker is willing to pay on the repack-
aging process, we further classify the repackaging attacks
into the following three categories:

Lazy attack: A lazy attacker can make some simple
changes over an app without changing its code. For in-

stance, repackaging an app with a different author name or
with different advertisements is such rudimentary lazy at-
tack. Non-developers can be easily trained to perform such
tasks manually. More knowledgeable lazy attackers may ap-
ply current automatic code obfuscation tools to repackage an
app without changing its functionality, following the proce-
dure similar to what is shown in our evaluation section.
Amateur attack: An amateur attacker not only applies
automatic code obfuscation but also changes/adds/deletes a
small part of the functionalities. For example, an attacker
can add some online social functionalities along with the on-
line chat view to the original app. Attackers must pay more
effort to understand and thus modify the code. For exam-
ple, they have to read the Android manifest file to delete
or append the components that they want to register for
the app and to insert some interaction code into the original
components to glue the newly added components.
Malware: A malware writer creates a malicious app that
mimics a popular app by inserting some malicious payloads
into the original program. In this way, the malicious app
can leverage the popularity of the original app to increase
its propagation speed. With this purpose, the attacker tries
to make the functionalities and user interfaces of the repack-
aged app similar to the original one. Under this circum-
stance, an attacker actually has to perform most of tasks
that an Amateur attacker has to do. In addition, the at-
tacker needs to write the malicious payload either in Java
or C/C++ and stealthily insert the payload into the app.
We further analyze how well ViewDroid can detect these
attacks and other potential advanced attacks in Section 6.

3.2 Design Goals

In this paper, we design an app repackaging detection scheme
named ViewDroid, with the following goals.

Accurate Birthmark: In order to measure the simi-
larity between two Android apps, ViewDroid must select
an accurate birthmark to characterize apps. This accurate
birthmark should be able to reflect the primary semantics of
Android apps and tell independently-developed apps apart.
In other words, the designed birthmark should cause very
few false positives.

Obfuscation Resilience: Code obfuscation is a tech-
nique to transform a sequence of code into a different se-
quence that preserves the semantics but is more difficult to
understand or analyze. Obfuscation techniques can also be
applied by attackers to evade repackaging detection. Hence,
ViewDroid must be able to detect repackaging with the
presence of various automated code obfuscation techniques.
In other words, the designed birthmark should be robust
against various obfuscators. Obfuscation resilient birthmarks
will ensure low false negatives.

Scalable Detection: Because there are a huge number of
apps on different Android app markets, ViewDroid must be
efficient and scalable enough to detect repackaging in such
a large-scale scenario.

4. DESIGN

4.1 Overview

It is critical while very challenging to identify an accurate
and obfuscation resilient birthmark in the design of a repack-
aging detection tool. In the past, a good variety of birth-

marks have been proposed and evaluated for different types
of program languages (C, Java) and platforms (Linux, Win-
dows). Some of these traditional birthmarks have been pro-
posed to detect Android app repackaging [14, 18, 16, 34].
They are all code-level birthmarks. In this paper, instead of
applying traditional software birthmarks, we propose a novel
user interface-based one, namely feature view graph. It fully
leverages a unique characteristic of smartphone apps — they
are mostly Ul intensive and event dominated [26]. Feature
view graph represents a higher level abstraction of an An-
droid app’s semantics. Therefore, it has the potential to be
more robust to code obfuscation. In order to meet the scala-
bility requirement of Android repackaging detection, feature
view graph is generated by static analysis of the dissembled
installation file of an Android app (i.e., the APK file).

We define view in Definition 4.1 and view graph in Defini-
tion 4.2. View graph describes the user interface navigation
relations of an Android app.

DEFINITION 4.1. (View) A view is a user interface that
is displayed to wusers for interaction with the mobile app.
Each view has a corresponding activity class that defines the
view’s functionality. A view contains one or more visible
components (e.g. buttons, trackball) on the screen. When
touched, the components might trigger other activities or ser-
vices.

DEFINITION 4.2. (View Graph) A view graph of a mo-
bile app is a directed graph G(V,E), where V is a set of
nodes, each of which represents a user interface view. E
is a set of edges < a,b > such that a € V, b € V and the
smartphone display can switch from view a to view b by user
interaction or other triggers.

By adding features to each view and each edge, a view
graph can represent an app more accurately and also im-
prove the efficiency of app similarity measurement at the
later stage. The features of a view could be the number,
types or layout of the visible components (e.g., buttons,
menus), or a set of Android platform specific APIs invoked
in this view’s activity. However, the former one (e.g., lay-
out) is much easier for an attacker to manipulate because
it does not represent the fundamental semantics of an app.
The latter one (i.e., Android specific APIs) is much more
stable and can reflect app’s semantics; as a result, we only
consider that as view features.

In a feature view graph, the feature of an edge is the
event listener function (e.g., onClick (), onLongClick(), on-
Touch(), etc.) that is directly triggered by user generated
events. Generally, there are two types of events in An-
droid platform, user-generated events and system-generated
events. We only focus on user-generated events in our birth-
mark creation. This is because these events are highly as-
sociated with the functionality of an individual app and the
corresponding user interaction with the app. For instance,
the onClick() method of a registered listener is triggered
when the corresponding button is pressed by a user, so
we consider it as an edge feature. An example of system-
generated events is when the system sends a short-message-
received event, which triggers the onReceive () method reg-
istered for the SMS_RECEIVED intent in the manifest file.
Clearly, this onReceive() method is not triggered by direct
user interaction, so it is not considered as an edge feature.
The feature view graph is defined in Definition 4.3.

DEFINITION 4.3. (Feature View Graph) A feature view
graph of a smartphone app is based on its view graph, G(V, E),
where certain features are selected and attached to'V and E.

After creating the feature view graph of a plaintiff app
and a suspicious app, ViewDroid measures the similarity
between the two graphs by an applying subgraph isomor-
phism algorithm. Since it is an NP-complete problem, we
need to improve the performance of graph matching. To this
end, we apply a pre-filter to eliminate those more obvious
non-matching pairs in advance.

4.2 System Architecture

Figure 1 shows the system architecture of ViewDroid, which
has three primary components. Given two Android apps
in .apk format, the Code Eztractor will extract and parse
the smali code (the dissembled version of Dalvik bytecode),
human-readable Android Manifest file and layout XML files
from each app’s installation package. After that the View
Graph Constructor performs some static analysis to gener-
ate a feature view graph for each app. A pre-filter is applied
to remove app pairs that are not likely to be similar. Then
the Graph Similarity Checker compares two feature view
graphs and calculates a similarity score. Note that if two
apps are signed by the same developer, we do not consider
them as a repackaging case.

Code Extractor. The user interface layouts of an An-
droid app are usually defined in XML files in the res/layout/
directory. The activity of a view is implemented in the
classes.dez, which is compiled as Dalvik bytecode. Instead of
focusing on the view layout that can be easily modified, we
conduct the analysis on the activity class, which defines the
functionality of a view and indicates the navigation between
views. We choose to perform the static analysis directly on
the smali code, which is an intermediate representation of
Dalvik bytecode. This is because smali code is the direct
dissembled version of Dalvik binary with rich annotation in-
formation. Our static analysis also uses some information
from the Android manifest files and the layout component
files. We leverage an existing tool apktool [1] to extract smali
code and human-readable XML files from android app pack-
ages.

View Graph Constructor. As discussed in Section 2, the
layout of an app view is usually defined in XML resource
files and loaded by activity code during the execution to be
presented to users. Most activities load a view by invok-
ing the setContentView() function with an XML file name
as the parameter, in its onCreate() function. A few spe-
cial views are loaded by other functions, e.g., the Settings
view is loaded by the addPreferencesFromResource() func-
tion. View navigation is implemented by activity switching.
When an activity calls another activity, an instance of the
callee activity is created, a new view associated with the
callee will be loaded and put on the top of the system’s
view stack to be presented to users. An activity switches to
another activity by invoking function startActivity() or
startActivityForResult() with an Intent object as the
parameter. As a result, we can construct the view graph by
statically analyzing these function invocations.

The detailed steps of view graph construction are as fol-
lows:

Smali Code . Feature
Code View Graph
—» Extractor P & Res Files > C:n::tructl())r P View Graph >
App 1 \7\/1 - ﬁ - Graph
PP PP PP i o
Mi;"s:lrae::zn ¢ —» Similarity Score
Smali Code . Feature
— 3| Cod View Graph
Ext:acior P»| & Res Files > C:Jelztr:jtl:)r » View Graph >
. Y
App 2 App 2 App2

Figure 1: The ViewDroid system architecture.

1. Generate view nodes: We need to collect all the

activities that are associated with potential Ul views,
each of which is usually a separate smali file loading
a view layout in its onCreate() function. In each ac-
tivity, we parse and grep the view loading function,
such as setContentView() and addPreferencesFrom-
Resource() in the onCreate ()function. The parame-
ters of these view loading functions are the names of
the XML resource files. After parsing all this relevant
information, every view node and its relation to the
corresponding activity class is generated.

. Extract view node features: For the features of the
view nodes, we only focus on the Android framework
specific APIs. Since the Android platform use Java
APIs that are built on a subset of the Apache Harmony
Java implementation, we consider this set of APIs are
more vulnerable to renaming attacks. Attackers can
easily find semantic similar or equivalent APIs from
other sources. However, the set of Android specific
APIs, e.g., methods from the android.security. KeyChain
or android.nfc. NfcManager classes, are very hard to be
replaced. In order to interact with the Android plat-
form, an app has to register certain permissions in the
manifest files and use the relevant APIs to perform
tasks. Based on this observation, we build the feature
for each view node accordingly. We first analyze each
activity class file associated with a view node to ex-
tract a set of invocations of the Android specific APIs.
Then we can build an invocation vector for each view
node. In such invocation vectors, instead of making a
counter for each API, we only set a flag for the APIs
that are invoked in the activities. This can protect
ViewDroid from dummy code insertion attack and can
also improve the efficiency on the invocations vector
pattern matching.

. Generate edges: Edges in the feature view graph
represents the activity switch relationship among the
set of views. The source view is associated with the
caller activity of the startActivity() or startActiv-
ityForResult () functions. The target view is associ-
ated with the activity declared by the Intent object.
There are six kinds of Intent constructors [3]:

(1) Intent()

(2) Intent(Intent o)

(3) Intent(String action)

(4) Intent(String action, Uri uri)

(5) Intent(Context packageContext, Class<?> cls)

(6) Intent (String action, Uri uri, Context packageCon-
text, Class<?> cls)

As described in [32], constructors (5) and (6) specify
the target activity in an explicit way with a partic-
ular class name. We can perform analysis to trace
back to this hard-coded class name. Constructors (3)
and (4) initialize an implicit Intent object by an action
name, with or without a URI. The associated target
activity, which could be within the same app or in
another app, is selected by matching intent filters in
the Android manifest files. The external target is un-
decidable without knowing other apps installed in a
smartphone. In ViewDroid, we create a general desti-
nation node external_activity to represent all exter-
nal targets and add an edge from the source activity to
this node. Constructor (1) initializes an empty intent,
which is surrounded by setClass(), setComponent ()
or setAction(). Hence, the identification of the target
activity is the same as constructors (3)-(6). Construc-
tor (2) copies another Intent object o. In this case, our
analysis needs to trace back to the activity, which is
specified by the constructor of the object o.

In order to figure out all the possible switching rela-
tionships among views, static analysis is performed.
By analyzing all startActivity() and startActivi-
tyForResult () functions, we can stitch the caller ac-
tivity and callee activity and therefore create an edge
from the view of the caller activity to the view of the
callee activity. Our view switching based invocation
graph is more robust to code obfuscation than the tra-
ditional call graph, because it does not rely on the
exact call sequence starting from one view node and
ending at another view node. Whenever there is a
view switching relationship, an edge is built to link
the two views. It captures the user’s real experience
of view switching. Even though there might be several
method invocations between an actual view switching,
we ignore all the intermediary method calls, but just
stitch the source and end view nodes for the corre-
sponding activity classes. As long as attackers want to
keep most functionality of the original app, the view
switching relationship cannot be changed.

Extract edge features: In order to minimize false
matches and improve the efficiency of similarity mea-
surement in a latter stage, we add a feature to each
edge. It is the user-generated event that triggers the
view switch. During the static analysis, we can locate
the startActivity() or startActivityForResult()
functions and analyze which function call actually trig-
gers the view switching. The trigger could be library
provided event listener, such as onClick(), onTouch(),
OnItemSelected() etc, or app developer self-defined
functions. We consider these triggers to be the fea-

__onListltemClick ___onOptionsltemSelected

V5 p———{ V3

F4
v8 /q—‘/vz

* onListltemClick onKeyDown

@Aon/OptionsItemSelected on;islllemClick
[]
&N
{ / v4) v6
onClic onClick onClick ~— \'/

onOptionsItemSelected
vi0 | vi2 /!\

L v7

N

Figure 3: The feature view graph of a repackaging
app.

tures of edges. Note that because the names of self-
defined functions can be easily modified by an attacker,
so we label all the developer self-defined trigger func-
tions with the same name self_defined_trigger and
consider them potentially matched with each other.

Figure 2 illustrates the steps of view graph construction
for a simple Sudoku app. Figure 3 shows the feature view
graph of an app that repackages the original app in Fig-
ure 2. The repackaged app copies the original app, adds an
AdActivity (node v8) and additional social network func-
tions (nodes v9, v10, v1l, v12). Figure 4 shows the feature
view graph of an independent app. Note that to make the
graph clear in these figures, we omit the node features.

Graph Similarity Checker. We apply the VF2 [13] sub-
graph isomorphism algorithm to measure the similarity be-
tween two feature view graphs.

A pre-filter is leveraged to reduce the graph pairs that
need to be compared. If one of the following three criteria
meets, we will consider that they are not repackaging cases:
(1) If the size of two view graphs differs a lot (specifically,
the size of the bigger graph is at least 3 times of the smaller
graph);

(2) If the node features (i.e., those Android specific APIs
considered in feature view graphs) in two view graphs have
limited overlap (i.e., the number of overlapped features is
below 1/3 of the size of the smaller graph).

(3) If the sets of edge features in two view graphs have lim-
ited overlap (i.e., the number of overlapped edge features is
below 1/3 of the edge number in the smaller graph).

When two graphs are compared by the subgraph isomor-
phism algorithm, only nodes and edges with similar features
can be matched. We consider two view nodes are similar
when their API invocation vectors have the Jaccard distance
below 0.5. The Jaccard distance between two sets A and B
is calculated with Formula 1. Edges with the same event
listener are considered as a matched pair. Not only can this
feature pre-comparison reduce false matches of nodes and
edges, thus decreasing the false positives caused by simple
view graphs, but it can also improve the efficiency of sub-
graph isomorphism computation.

ANB
AUB

Ja(A,B) =1— (1)

If apps A and B have m matched nodes, with na4 and
np nodes in their feature view graphs, respectively, their
similarity score is calculated as:

. . . m
similarity score = —— (2)
min(na,ng)

onContextltemSelected

onClmk - onClmk on(licl o

onCllck onClick \(.
%
onCllck
C <v2) v3\ VS\‘
v6 4
onC]mk onClmk Fl

onClick
V13)~ F6 F Fs

® @ E@

Figure 4: The feature view graph of an independent
app.

S. EVALUATION

ViewDroid is implemented in Python and Shell-script. The
whole system consists of 2400 lines of Python code and 400
lines of Shell-scripts. Our experiments were conducted on
a commodity machine with 1.6 GHz Intel Core i5 processor
and 4 GB memory.

We have two sets of experiments. First, we conduct eval-
uation on a large set of real-world apps to measure the ef-
fectiveness and efficiency of ViewDroid. We also test the
percentage of the repackaged malware cases. Second, we
evaluate the obfuscation resilience of ViewDroid by applying
different obfuscation techniques on existing apps and using
ViewDroid to detect their similarities.

5.1 Real-world Large-scale Experiment

5.1.1 False Positive and Efficiency

We crawl 10,311 top Android apps from Google Play.
These apps belong to 20 categories. We randomly choose 100
samples from each category and compare them with apps in
the same category in a pairwise way. Totally 573,872 app
pairs are compared.

We set the similarity score threshold at 0.7. After apply-
ing ViewDroid to detect the repackaged apps, we manually
check the detected pairs to measure false positives. The
manual checking has two criteria: (1) We execute the app
on a smartphone to check the similarity of their function-
ality; (2) We check the code, including smali files, layout
files and the permissions. Only when both criteria are sim-
ilar, we consider them as the real repackaging cases. We
find 129 false matched pairs in total in 11 categories. Most
of the false matches (112 out of 129) are caused by the in-
vocations of ad libraries. When two apps share the same
ad libraries and one app’s graph size is relatively small, the
matched nodes related to the common ad libraries will re-
sult in a high similarity score. These false matches can be
eliminated by whitelisting known ad libraries. That is, we
can simply ignore views that are generated by whitelisted
libraries. The other 17 false matches are due to that one of
the apps in each pair is very simple. For their view features,
no special API is invoked and therefore nodes are not distin-
guishable. Moreover, their view graphs are small and easy
to find matchable (sub)graphs. Our detection results, after
adding a whitelist to rule out the known ad libraries, are
shown in Table 1. The percentage column is the proportion

Step 1: Generate Nodes

Step 2: Extract Node Features

Node Smali Code

XML File

Node Features

vl FileListActivity file list
v2 FolderListActivity(Main Activity) folder list
v3 SudokuEditActivity
v4 SudokuExportActivity
v5 SudokuListActivity
v6 SudokuPlayActivity
v7 GameSettingsActivity

sudoku_list

sudoku _edit
sudoku_export

sudoku play
game settings

vl (ListActivity ->onPrepareDialog, ...)

v2 (Cursor-~getColumnlndex,...)

v3 (Activity-~onWindowFocusChanged....)
v4 (ProgressDialog->setTitle,...)

v5 (Menultem->setshorteut,...)

v6 (Window->setFlags,...)

v7 (Menultem->setlcon,...)

Step 3: Generate edges

<v2 v5 v3>

@,

Step 4: Extract edge features:
onListltemClick __ onOptionsltemSelected

v2 v3

Z
onKeyDown

onContext onOpti

/ onListltemClick
OO, %\
v6)
- — /
onOptions[temSelectedl

@

Figure 2: An example of view graph construction

of apps, which either repackage other apps or are repack-
aged by others, in all apps of each category. On average
4.7% among tested apps are found to be the real repackaging
cases. The book and comic categories have more repackag-
ing cases than other categories, because in both categories,
there are existing products that can convert an ebook into
an Android app. The apps generated by the same convert-
ing product are detected as repackaging pairs by ViewDroid.
They are true positives since they share the same code base
and the same views.

Among all 542 repackaging pairs, 262 of them belong to
lazy attacks. The malware cases are analyzed in Section 5.1.3.
The other pairs belong to the amateur attacks. Note that
ViewDroid only measures the similarity between two apps.
It does not identify which one is the original app and which
one is the repackaged one.

The average execution time of ViewDroid for each testing
is listed in Table 2. It is about 11s per pair. In rare cases,
the graph construction time and graph comparison time may
take minutes. Only 0.6% apps take more than 1 minute
to construct view graph and 0.2% pairs need more than 1
minute to conduct graph comparison. In addition, when
applying ViewDroid to check a large number of apps, code
extraction and view graph construction for each app is only
performed once.

5.1.2 False Negative

In this section, we use a set of repackaged apps provided
by a research group to measure the false negative rate of
ViewDroid. These apps were collected from multiple An-
droid markets. The app dataset includes totally 901 pairs
of apps, whose view graphs have more than 3 view nodes.
By setting the similarity score threshold at 0.7, as in Sec-
tion 5.1.1, ViewDroid detects 868 pairs as repackaging cases.
Among 659 of them, each pair of apps have the similarity
score 1.0.

We then manually check the 33 pairs that are not de-
tected by ViewDroid. They can be divided into three dif-
ferent categories. (1) For 11 pairs, two apps of each pair do
not share or share very little common code. They do not
have common functionalities or views either. As a result,

Table 1: The repackaged apps detected by View-
Droid

. Pair# App# Repackag- Repackag- %
Category ed Pair ed App
Books 34,550 495 81 55 11.1
Business 23,882 455 10 13 2.9
Comics 40,850 558 110 75 13.4
Communication 20,582 487 0 0 0.0
Education 40,950 559 7 11 2.0
Entertainment 25,758 512 10 16 3.1
Finance 37,650 526 9 13 2.5
Game arcade 30,496 543 64 37 6.8
Game cards 27,329 545 11 13 2.4
Game casual 20,662 509 12 18 3.5
Health 36,550 515 13 20 3.9
Lifestyle 20,538 509 10 13 2.6
Media 39,150 541 56 35 6.5
Medical 38,650 536 14 21 3.9
Music 19,655 496 21 20 4.0
News 10,466 495 21 24 4.8
Personality 37,050 520 31 25 4.8
Photography 23,914 518 17 22 4.2
Shopping 28,185 495 23 23 4.6
Social 17,005 497 22 26 5.2
Total 573,872 10,311 542 480 4.7

Table 2: The execution time of ViewDroid (in sec-
onds)

Code Graph Graph
Extraction Construction Comparison
Max 15 146 590
Avg 4 6 1

not reporting them is the correct detection result for these
11 pairs. They were falsely included in the app dataset. (2)
Another 10 pairs are not real repackaging cases either, al-
though they do share some code between each other. The
shared code is not related to the functionalities or the views
of these apps, but is used as malicious payload to create
ad shortcuts or to send out messages without users’ aware-
ness. That is, attackers use different apps to propagate the
same malicious payload. Therefore, ViewDroid is correct
again not reporting them. (3) The other 12 pairs are false
negatives of ViewDroid at detection threshold 0.7. Here,
each pair of apps have repackaged code related to their ma-
jor functionalities, but have different code that implements

Table 3: The malware attacks detected by View-
Droid

Type Number
Trojan.FakeApp/FakeFlash 25
Adware.Airpush 14
Adware.Plankton 17
Adware.LeadBolt 26
Other Adware 10
Virus 1

“add-on” functions. These add-on components are relative
large and complex compared to their carrier code. For exam-
ple, two apps both implement a Ninja game. The matched
view nodes detected by ViewDroid are the game itself, while
the unmatched view nodes represent different social network
functions. It is very likely that these two apps both repack-
aged another benign app by inserting their own customized
social network library, which targets a specific market. The
similarity scores of false negative cases are all between 0.5
and 0.7. It indicates that ViewDroid is able to find their
common views. The false negative rate of ViewDroid at
detection threshold 0.7 is 1.3%.

5.1.3 Malware

We use VirusTotal (https://www.virustotal.com/en/),
an online malware detection service, to scan all the repack-
aged pairs detected in Section 5.1.1. Among the 480 apps
identified as involved in repackaging cases (either the origi-
nal ones or the repackaged ones) in our previous experiment,
we detect 93 malware, which is 19.3% of repackaged apps.
The malware types are listed in Table 3. They mainly be-
long to two different categories: Adware and Trojan horse.
Adwares aggressively show advertisements to smartphone
users. Trojan horses usually pretend to be legitimate apps,
but steal sensitive information covertly. There is one virus
detected. It is labeled as Virus:BAT/Rbtg.gen.

5.1.4 Category-based Evaluation

Next we illustrate a different kind of evaluation on real-
world apps. We first search by some keywords in Google
Play, and then download the returned apps and conduct
pairwise measurement of their similarities. While our pre-
vious large-scale experiment randomly chooses pairs in the
app market to evaluate the effectiveness and scalability of
ViewDroid, this experiment is more interesting to individual
app developers and app users to understand how repackag-
ing may affect them.

We list two examples here. The first keyword is “sudoku”
and we download 20 sudoku game apps. Based on the sim-
ilarity scores, we cluster these apps as shown in Figure 5.
An edge indicates two apps have a similarity score higher
than 0.7. The largest cluster has 9 apps. The app with
dashed circle is similar to all the other 8 apps in the clus-
ter. The other two clusters both have 3 apps. Our manual
checking verifies that the result has no false positives and
false negatives. Further analysis indicates that there are 3
pairs belonging to lazy attack, where plagiarists only repack-
age the original apps without changing their functionality.
The similarity scores of these pairs are 1.0. ViewDroid also
discoveries one malware case, the red big node in Figure 5.
VirusTotal identifies it as the Airpush Adware, which ag-
gressively shows ads in the Android notification bar. This
app inserts Airpush ads module into the original app and

Figure 5: The cluster of sudoku apps based on the
similarity scores.

@.
/,

x’ :w/ \ ..)
\;,/\L// .

Figure 6: The cluster of flashlight apps based on the
similarity scores.

slightly modifies the functionality by removing a strategy
help view. The other repackaging pairs are all amateur at-
tacks, where functionalities are added or removed, such as
social network modules, help view, strategy hint views and
advertisements.

In the second example, we search by the keyword “flash-
light” and download 29 apps. We find 15 pairs with similar-
ity scores higher than 0.7. Our manual checking indicates
that 3 pairs are false positive cases. They are all caused by
one app that has 4 views, only one Of which relates to its
functionality whereas the other three are generated by an ad
library. When compared to apps that share the same library
with it, the three ad views are matched and the similarity
scores are 0.75. Again, such false positives can be elimi-
nated by whitelisting the ad libraries. The similarity cluster
is shown in Figure 6. Four clusters have more than one app.
Among all the 12 repackaged pairs, 2 belong to the lazy at-
tacks, and 9 belong to the amateur attack where views are
added or removed (e.g., the “about” view, “setting” view).
One malware attack, shown as a big red node in Figure 6, is
found. It is reported as a trojan horse by VirusTotal (there
is indeed another malware in the 29 downloaded apps, but
it is not the app repackaging case. It is identified as Plank-
ton [7]).

5.2 Obfuscation Resilience

To test the obfuscation resilience of ViewDroid, we try to
obfuscate the existing apps and malware with different ob-
fuscators, and then check with ViewDroid the similarity
score between each original app and its corresponding ob-
fuscated one. Most existing popular obfuscation tools (e.g.
ProGuard [6] and DexGuard [2]) work on Java source code
level and their obfuscators are limited to method renaming,
string encryption and class name encryption, etc. Therefore,
we choose to use an obfuscation resilience evaluation tool de-
veloped by Huang et al. [19]. This evaluation framework can
obfuscate and repackage apps by using one or multiple ob-

fuscators from different Java bytecode obfuscation platforms
(e.g., Sandmarks [11]). It directly targets the Dalvik byte-
code. This actually mimics the real world scenarios where a
plagiarist or repackager who only has access to the compiled
Dalvik bytecode but not the Java source code and is eager
to use various obfuscation techniques to evade detection. In
our current obfuscation resilience test, we equip the frame-
work to perform 39 obfuscators from both SandMarks [11]
and KlassMaster [4]. To our knowledge, this is the broad-
est obfuscation resilience evaluation on Android repackaging
detection.

First of all, we generate pairs of APK files from the obfus-
cation resilience evaluation tool. Then, we use ViewDroid
to measure the similarity pairwisely between the obfuscated
APK file and the original APK file. The higher similarity
scores our ViewDroid returns for each specific obfuscator,
the better resilience against that particular obfuscation.

We choose 50 apps from the Android app market based
on different categories and 50 malwares from the malware
Gnome project based on different families [35]. With this
100 Android app set, we perform broadness analysis and
depth analysis to evaluate the obfuscation resilience aspect
of ViewDroid provided by the evaluation framework. The
broadness analysis result shows the general weakness and
strength of ViewDroid against a broad range of obfuscation
techniques. In this analysis, each obfuscator is applied indi-
vidually. On the other hand, the depth analysis result eval-
uates the overall obfuscation resilience of ViewDroid against
deep code manipulation by serializing a set of obfuscators.
In this analysis, ViewDroid is evaluated against repackaged
apps that have been obfuscated by multiple obfuscators. For
example, an app may be obfuscated by variable renaming,
followed by noise injection and/or control-flow flattening.
With depth analysis, we can test the robustness of our detec-
tion scheme against more sophisticated obfuscation attacks.

5.2.1 Applying Single Obfuscation Algorithm

In our current evaluation setup, the broadness analysis
is based on 39 obfuscation algorithms from SandMarks and
KlassMaster. Table 4 shows the resilience comparison be-
tween ViewDroid and AndroGuard. The Obfuscation Al-
gorithm columns indicate the names of the obfuscation al-
gorithms applied in our framework. The ViewDroid columns
list an average similar score for each obfuscation case. Specif-
ically, in each obfuscation case, ViewDroid computes a sim-
ilarity score for each original app (among totally 100 apps)
and its obfuscated version and finally reports the average
over 100 apps. The AndroGuard columns are the results re-
ported by Huang et al. in [19], and we also compute three
average similarity scores for AndroGuard based on three ob-
fuscators from KlassMaster, which were not provided in the
previous case study. All these three obfuscators have a K-
tag at the beginning of the obfuscators’ names in Table 4.

Based on the classification by Collberg et al. [12], all the
single obfuscators can be categorized as layout obfuscation,
control based obfuscation and data based obfuscation, which
are tagged L, C and D after each obfuscator. The detailed
explanation of the difference between these categories can be
found in Huang et al. [19]. Overall, ViewDroid has better
obfuscation resilience than AndroGuard. This is because
in ViewDroid, repackaging detection is performed based on
the similarity of the high level semantics of the app using
the created feature view graph, while ignoring the detailed

control/data dependency or data structure. From the result,
we can see that only 4 out of 39 obfuscators have an effect
on ViewDroid, and the average similarity scores of all the
other 35 obfuscators tested against ViewDroid are all 1.00.

The Class Encrypter obfuscator reduces the similarity score
to 0, which is the only obfuscator that ViewDroid returns
a lower score than AndroGuard. However, the score for
AndroGuard is .03, which is very close to zero. This indi-
cates that static analysis based detection schemes are not
well-suited for encryption based obfuscation. By encrypt-
ing class files and decrypting them at runtime, Class En-
crypter can completely hide the static structure of the pro-
gram. However, certain heuristic can be built to preprocess
these extreme encryption cases. For instance, whenever de-
cryption or decoding is used in the program very intensively
or is identified for a very large portion of the code, it can
be flagged as suspicious. Usually, dynamic analysis based
detection is needed in this situation, which is, however, lack
of scalability. Overall, handling the heavy encryption and
encoding based obfuscation is an interesting topic to explore
in the future.

The other obfuscation algorithms that have some influence
on ViewDroid are Node Spliter, Method Madness and Class
Splitter. After further analysis of the feature view graph
pairs computed from the 100 apps’ obfuscated versions, we
find that some graph nodes are split by obfuscators Node
Spliter and Class Splitter, and the names of the methods
that trigger view switching are replaced by some random
names by Method Madness, which can potentially modify
the feature of our view graph. However, from the overall
similarity scores of these four obfuscators, we can see that
these types of obfuscation cannot be performed frequently,
as certain conditions have to be satisfied before these obfus-
cators make the actual manipulations. For instance, some
class inheritance relationship has to be met in order to per-
form Node Splitter or Class Splitter, and also relevant spec-
ification in the Android manifest file should be changed ac-
cordingly. Furthermore, the obfuscation of method random-
ization in Method Madness cannot be performed directly
on the Android framework APIs, tedious method rewrit-
ing work has to be performed before replacing the invoca-
tion of the Android APIs. For instance, simply changing
the invocation Landroid/app/Activity.dispatchTouchEvent (
Landroid/view/MotionEvent;)Z into Landroid/app/Activity.
M108456d(Landroid/view/MotionEvent;)Z does not work. As
a result, we find that most APK files become non-executable
after the Method Madness obfuscation.

5.2.2 Serializing Multiple Obfuscation Algorithms

Practically, especially when detection algorithms become
more powerful, it is very possible that an attacker will try a
combination of various obfuscation algorithms. Hence, be-
sides the broadness analysis performed on ViewDroid, for
depth analysis we also apply multiple obfuscators by serial-
izing the top-three obfuscators reported from our broadness
analysis, excluding the Class Encrypter. Due to the conflicts
among various obfuscators, not all the obfuscated APK files
are complete. We test various permutation cases with these
three obfuscators and find two of all the permutations can be
performed more successfully for the testing apps. One can
output 99 out of 100 obfuscated APK files and the other
outputs 96 out of 100 for all the tested ones. These two
interesting permutations are shown as follows:

Table 4: Average similarity score by ViewDroid compared with AndroGuard for each obfuscator used in

broadness analysis

Obfuscation Algorithm | ViewDroid | AndroGuard |

Obfuscation Algorithm | ViewDroid | AndroGuard

Const Pool Reorder (L) 1.00 0.92 Node Spliter (D) 0.94 0.94
Static Method Bodies (C) 1.00 0.88 Class Encrypter (D) 0.00 0.03
Method Merger (C) 1.00 0.65 Reorder Parameters (D) 1.00 0.92
Interleave Methods (C) 1.00 0.56 Promote Prim Register (D) 1.00 0.92
Opaque Pred Insert (C) 1.00 0.92 Promote Prim Types (D) 1.00 0.93
Branch Inverter (C) 1.00 0.77 Bludgeon Signatures (D) 1.00 0.96
Rand Dead Code (C) 1.00 0.92 Objectify (D) 1.00 0.83
Class Splitter (C) 0.97 0.87 Publicize Fields (D) 1.00 0.91
Method Madness (C) 0.92 0.43 Field Assignment (D) 1.00 0.86
Simple Opaque Pred (C) 1.00 0.92 Variable Reassign (D) 1.00 0.85
Reorder Instructions (C) 1.00 0.89 Parameter Alias (D) 1.00 0.92
Buggy Code (C) 1.00 0.67 Boolean Splitter (D) 1.00 0.85

Inliner (C) 1.00 0.89 String Encoder (D) 1.00 0.87

Branch Insert (C) 1.00 0.87 Overload Names (D) 1.00 0.91
Dynamic Inliner (C) 1.00 0.84 Duplicate Registers (D) 1.00 0.89
Irreducibility (C) 1.00 0.86 Rename Registers (D) 1.00 0.96

Opaque Branch Insert (C) 1.00 0.85 False Refactor (D) 1.00 0.95
Exception Branch (C) 1.00 0.81 Merge Local Int (D) 1.00 0.94
K-Flow Obfuscation (C) 1.00 0.77 K-Name Obfuscation (D) 1.00 0.89
K-String literals Encrypter (D) 1.00 0.91

1. [Node Spliter = Method Madness = Class Splitter]
Average Similarity Score of 99 apps : 0.915;

2. [Class Splitter = Method Madness = Node Spliter]
Average Similarity Score of 96 apps : 0.906;

Both cases have the same three obfuscators but at a dif-
ferent serializing order. Although they can slightly reduce
the average similarity scores by ViewDroid compared to the
solely applying the obfuscator Method Madness case (with
score 0.92), these scores are both above .90, sufficiently large
for the obfuscated apps to be detected. Case 1 reduces the
average score from 0.92 to 0.915, which shows that applying
serialized multiple obfuscators has only slightly higher influ-
ence on ViewDroid than applying a single obfuscator. For
Case 2, the average similarity score is a little bit lower than
Case 1. However, there are four apps that cannot finish the
whole serialized obfuscations. This indicates that although
serialized obfuscation is slightly more powerful, the attacker
has to take the risk of ending up with incomplete obfusca-
tion. We encountered more failures when performing other
orders of serialization. Overall, our evaluation demonstrates
that multiple obfuscations are hard to be serialized, and even
if successfully performed, they have little impact on View-
Droid’s detection capability. Huang et al. [19] also reported
that, in some scenarios, applying multiple obfuscations can
lower the similarity scores reported by tools such as Andro-
Guard. Our experiment shows that ViewDroid’s high-level
abstracted birthmark is not affected much by the low-level
(multiple) code obfuscation.

6. DISCUSSION

6.1 Attack Analysis on ViewDroid

As discussed in Section 3, based on different repackaging
purposes, ViewDroid might face various types of attacks.

e Lazy attack: In this attack, the attacker does not
change the functionality of original apps but applies
automatic code obfuscation tools to repackage an app.
As a result, a lazy attack does not change the view

navigation relations of an app. In addition, code obfus-
cation has little impact on the feature view graph gen-
eration, as demonstrated by evaluation in Section 5.2.
Therefore, ViewDroid can effectively detect such at-
tacks.

e Amateur attack: An attacker not only applies au-
tomatic code obfuscation but also makes small modifi-
cations on the functionalities. The feature view graph
could be changed slightly. However, because we use the
subgraph isomorphism algorithm to compare graphs,
small changes of the view graph may reduce the simi-
larity score a little but will not affect the overall detec-
tion result much. As a result, ViewDroid can tolerate
small changes on app functionalities and views.

e Malware: An attacker inserts some malicious pay-
load into the original program while trying to make the
repackaged app look the same or similar to the original
one in order to leverage the popularity of the original
program for wide propagation. Clearly, their feature
view graphs would also be very similar. Therefore,
ViewDroid can effectively detect such repackaging.

Other Potential Professional attacks: An attacker,
who knows ViewDroid, may attempt to change feature view
graphs to evade detection. Attackers may (1) insert a dummy
view into the path of two directly connected views; (2) split
one view node into two view nodes; (3) self implement or
obfuscate the invocation of startActivity() and startAc-
tivityForResult () functions. Since we use the subgraph
isomorphism algorithm with a certain matching threshold
(e.g., 0.7), in order to affect the detection result, attackers
need to modify many views of the original apps. On one
hand, it will significantly increase the workload of repack-
aging an app. On the other hand, the dummy nodes, edges
and self-implemented functions will increase the code size
and decrease the performance of apps. We have not seen
such attacks in the real world yet.

ViewDroid helps defenders stay ahead of the current arms
race with attackers.

6.2 Limitations and Future Work

ViewDroid can detect the repackaging of non-trivial apps
effectively, but for the detection of apps with few views, more
false positives may be reported. Even so, the API vector
node features can significantly reduce such false positives,
because only nodes with very similar API vectors can be
matched.

ViewDroid can effectively detect the following three types
of mobile app repackaging attacks: lazy attacks, amateur at-
tacks and malware. However, some professional attacks can
potentially change view graphs, regardless of the workload
of attackers and the performance overhead of the repackaged
apps. Dummy view insertion may be defeated by examining
the trigger function of the view switches. If a switch is not
triggered by user behavior, we can merge the target view
with its predecessor/successor in the feature view graph. A
similar strategy has been used by Chen et al. [10] to check
for malicious behavior. In our future work, we are going to
enhance ViewDroid to deal with such attacks.

As shown in our evaluation, ViewDroid has false negatives
when the encrypter obfuscation is used. This is because en-
cryption changes the code completely and hides all the static
characteristics of an app. This is also a common problem of
all static analysis based detection. To defeat against such at-
tacks, dynamic analysis may be applied. However, dynamic
analysis is not efficient enough to be used as a large-scale de-
tection approach. This is the fundamental tradeoff between
accuracy and performance. How to build a hybrid approach
to leverage both dynamic and static analysis for encrypter
obfuscation is also a very interesting and important topic.

7. RELATED WORK

Smartphone App Similarity Measurement. The smart-
phone app repackaging problem has drawn great attention
from the research community. There are several relevant
works on measuring the similarity between Android apps on
code level. DroidMOSS [34] leverages fuzzy hash to detect
app repackaging. A hash value is computed for each local
unit of opcode sequence of the classes.dex, instead of com-
puting a hash over the entire program opcode set. It can
efficiently and effectively identify the opcode segments that
were left untouched by the lazy repackager and works well
when the bytecode is only manipulated at a few interesting
points (e.g., the string names or hard-coded URLs). How-
ever, some obfuscation, such as noise injection, can evade the
detection. DNADroid [14] proposed a program dependence
graph (PDG) based detection approach, which considers the
data dependency as the main characteristic of the apps for
similarity comparison. The efficiency of the comparison is
further improved in AnDarwin [15] by building semantic vec-
tors from PDG for each method. In general, PDG is resilient
against several control flow obfuscation techniques and noisy
code insertion attacks that do not modify the data depen-
dency. However, some specific data dependence obfuscations
can be designed to evade this approach. For example, PDG
can be changed by inserting intermediate variable assign-
ment instructions into the code. Juxtapp [18] proposed a
code-reuse evaluation framework which leverages k-grams of
opcode sequences to build feature for the feature hashing
approach. A sliding window will move within each basic
block to map the features into bit vectors, which are further
combined into a feature metric to help birthmark each app.

This detection scheme is able to effectively detect different
code reuse situations, including piracy and code repackag-
ing, malware existence, vulnerable code. Special designed
code manipulation can potentially destruct the normal op-
code pattern of Dalvik bytecode in a very dense fashion.
Chen et al. [9] proposed a novel app birthmark, which is
the geometry-characteristic-based encoding of control flow
graph. This approach can effectively and efficiently detect
cloned code which is syntactically similar with the original
code. However, it cannot deal with app repackaging using
code obfuscation techniques.

Traditional software plagiarism detection is another
category of literatures that are relevant to smartphone app
repackaging detection. MOSS [27] applies local fingerprint-
ing to detect source code plagiarism. Liu et al. [22] proposed
a program dependence graph (PDG) based approach. Lim
et al. [21] used stack pattern based birthmark. These static
analysis methods require the source code and are vulnerable
to some code obfuscations. Myles et al. [25] statically ana-
lyzed executables and used K-gram techniques to measure
the similarity. This approach is vulnerable to instruction re-
ordering and junk instruction insertion. The dynamic soft-
ware birthmarks include core values based birthmark [20,
31], dynamic opcode n-gram birthmark [23], whole program
path (WPP) birthmark [24], dynamic API birthmark [29]
and system call based birthmark [30]. The dynamic meth-
ods are not efficient enough to be performed on a large scale
plagiarism detection scenario, like Android app markets.

Smartphone App Security. There are several publica-
tions in this category related to ViewDroid. They leverage
the user interface feature of the Android platform, but use
it for different purposes. SmartDroid [32] leverages user in-
terfaces to find user interactions that will trigger sensitive
APIs. It combines the static analysis and dynamic analysis.
Chen et al. [10] developed a Permission Event Graph (PEG)
to detect, or prove the absence of malicious behavior that is
not authorized by users. Zhou et al. [33] proposed a module
decoupling method to partition an app’s code into primary
and non-primary modules and thus to identify the malicious
payloads reside in the benign apps. They also develop an ap-
proach to extracting feature vectors from those piggy backed
apps to help improve the efficiency of the piggyback rela-
tionship detection. Our approach pays more attention to
the repackaging detection from the primary functionalities
of the Android apps and takes into account obfuscation re-
silience. We also identify certain features for the nodes and
edges during the view graph construction to improve the
efficiency of our detection.

8. CONCLUSION

In this paper, we proposed a user interface based Android
app repackaging detection method, ViewDroid. The eval-
uation results show that ViewDroid can effectively detect
Android app repackaging with the presence of various ob-
fuscation techniques. ViewDroid is also efficient enough for
performing large-scale experiments.

9. ACKNOWLEDGMENTS

This research was supported in part by the NSF Grant
CCF-1320605, NSF Grant CNS-1223710, ARO W911NF-
09-1-0525 (MURI), and ARO W911NF-13-1-0421 (MURI).

10.

[1]

[10]

[11]

[12]

[13]

[14

[19]

[20]

REFERENCES

Android-Apktool: A tool for reverse engineering
Android apk files.
http://code.google.com/p/android-apktool/.
Dexguard. http://www.saikoa.com/dexguard.

Intent android developers. developer.android.com/
reference/android/content/Intent.html.
KlassMaster. http:
//www.zelix.com/klassmaster/docs/index.html.
Number of avaliable Android applications. http://
www.appbrain.com/stats/number-of-android-apps.
Proguard. http://developer.android.com/tools/
help/proguard.html/.

Security alert: New stealthy android spyware -
plankton - found in official android market. http:
//www.csc.ncsu.edu/faculty/jiang/Plankton/.
Smali: An assembler/disassembler for Android’s dex
format. http://code.google.com/p/smali/.

K. Chen, P. Liu, and Y. Zhang. Achieving accuracy
and scalability simultaneously in detecting application
clones on android markets. In 36th International
Conference on Software Engineering (ICSE), 2014.

K. Z. Chen, N. Johnson, V. D’Silva, S. Dai,

K. MacNamara, T. Magrino, E. X. Wu, M. Rinard,
and D. Song. Contextual policy enforcement in
Android applications with permission event graphs. In
NDSS’13, 2013.

C. Collberg, G. Myles, and A. Huntwork. Sandmarks -
a tool for software protection research. In IEFE
Security and Privacy, vol. 1, no. 4, 2003.

C. Collberg, C. Thomborson, and D. Low. A taxonomy
of obfuscating transformations. Technical report, 1997.
L. P. Cordella, P. Foggia, C. Sansone, and M. Vento.
A (sub) graph isomorphism algorithm for matching
large graphs. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 26(10), 2004.

J. Crussell, C. Gibler, and H. Chen. Attack of the
clones: Detecting cloned applications on android
markets. In ESORICS, pages 37-54, 2012.

J. Crussell, C. Gibler, and H. Chen. Scalable
semantics-based detection of similar android
applications. In ESORICS, 2013.

A. Desnos and G. Gueguen. Android: From reversing
to decompilation. In Black hat 2011, Abu Dhabi.

C. Gibler, R. Stevens, J. Crussell, H. Chen, H. Zang,
and H. Choi. Adrob: Examining the landscape and
impact of Android application plagiarism. In
Proceedings of 11th International Conference on
Mobile Systems, Applications and Services, 2013.

S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and

D. Song. Juxtapp: A scalable system for detecting
code reuse among android applications. In Proceedings
of the 9th Conference on Detection of Intrusions and
Malware & Vulnerability Assessment, 2012.

H. Huang, S. Zhu, P. Liu, and D. Wu. A framework
for evaluating mobile app repackaging detection
algorithms. In Proceedings of the 6th International
Conference on Trust & Trustworthy Computing, 2013.
Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu, and

D. Wu. Value-based program characterization and its
application to software plagiarism detection. In

(21]

(22]

23]

(24]

25]

(26]

27]

(28]

29]

(30]

(31]

32]

33]

34]

(35]

Proceedings of the 33rd International Conference on
Software Engineering, pages 756-765. ACM, 2011.

H. Lim, H. Park, S. Choi, and T. Han. Detecting theft
of Java applications via a static birthmark based on
weighted stack patterns. IEICE - Trans. Inf. Syst.,
E91-D(9), 2008.

C. Liu, C. Chen, J. Han, and P. S. Yu. GPLAG:
detection of software plagiarism by program
dependence graph analysis. In KDD ’06: Proceedings
of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2006.

B. Lu, F. Liu, X. Ge, B. Liu, and X. Luo. A software
birthmark based on dynamic opcode n-gram.
International Conference on Semantic Computing,
2007.

G. Myles and C. Collberg. Detecting software theft via
whole program path birthmarks. Information Security,
3225/2004, 2004.

G. Myles and C. Collberg. K-gram based software
birthmarks. In SAC ’05: Proceedings of the 2005 ACM
symposium on Applied computing, 2005.

J. Ostrander. Android Ul Fundamentals: Develop and
Design. Peachpit Press, 2012.

S. Schleimer, D. S. Wilkerson, and A. Aiken.
Winnowing: local algorithms for document
fingerprinting. In Proc. of ACM SIGMOD Int. Conf.
on Management of Data, 2003.

D. Schuler, V. Dallmeier, and C. Lindig. A dynamic
birthmark for Java. In Proceedings of the
twenty-second IEEE/ACM international conference on
Automated software engineering, 2007.

H. Tamada, K. Okamoto, M. Nakamura, A. Monden,
and K. ichi Matsumoto. Dynamic software birthmarks
to detect the theft of windows applications. In Int.
Symp. on Future Software Technology, 2004.

X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu. Detecting
software theft via system call based birthmarks. In
Computer Security Applications Conference, 2009.
ACSAC’09. Annual, pages 149-158. IEEE, 2009.

F. Zhang, Y. Jhi, D. Wu, P. Liu, and S. Zhu. A first
step towards algorithm plagiarism detection. In
Proceedings of the 2012 International Symposium on
Software Testing and Analysis. ACM, 2012.

C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han,
and W. Zou. SmartDroid: an automatic system for
revealing Ul-based trigger conditions in Android
applications. In Proceedings of the second ACM
workshop on Security and privacy in smartphones and
mobile devices, pages 93—104. ACM, 2012.

W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou.
Fast, scalable detection of piggybacked mobile
applications. In Proceedings of the third ACM
conference on Data and application security and
privacy, pages 185-196. ACM, 2013.

W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting
repackaged smartphone applications in third-party
Android marketplaces. In Proceedings of the second
ACM conference on Data and Application Security
and Privacy, 2012.

Y. Zhou and X. Jiang. Dissecting Android malware:
Characterization and evolution. Security and Privacy,
IEEE Symposium on, 2012.

