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Abstract

A large body of experimental research has demonstrated that, on average, people violate the
axioms of expected utility theory as well as of discounted utility theory. In particular, aggre-
gate behavior is best characterized by probability distortions and hyperbolic discounting. But
is it the same people who are prone to these behaviors? Based on an experiment with salient
monetary incentives we demonstrate that there is a strong and significant relationship between
greater departures from linear probability weighting and the degree of decreasing discount rates
at the level of individual behavior. We argue that this relationship can be rationalized by the
uncertainty inherent in any future event, linking discounting behavior directly to risk preferences.
Consequently, decreasing discount rates may be generated by people’s proneness to probability
distortions.
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“Future income is always subject to some uncertainty, and this uncertainty must naturally have an

influence on the rate of time preference, or degree of impatience, of its possessor.”

Fisher (1930)

1 Introduction

It has long been recognized by practitioners and theorists alike that the domains of choice under risk

and over time are intimately related. Unlike gambling in the casino, where uncertainty is resolved

almost immediately, many real world decisions, and probably the most important ones for our hap-

piness, involve risky consequences materializing over the course of time. In the realm of economic

theory, the dimensions of risk and time are treated as largely independent attributes, modeled in

an equivalent way (Prelec and Loewenstein, 1991): The classical models of choice, expected utility

theory (EUT) and discounted utility theory (DUT), view decision makers as maximizing a weighted

sum of utilities with the weights representing either probabilities or discount factors, respectively.

A large body of empirical evidence has challenged the validity of EUT and DUT as descriptive

models of choice, however. In the domain of risk, one of the best documented phenomena concerns the

Common Ratio Effect : Often, people’s preference for a smaller more probable outcome over a larger

less probable one changes in favor of the larger outcome when both outcome probabilities are scaled

down by a common factor. This pattern of behavior constitutes a violation of the independence axiom

of EUT (Kahneman and Tversky, 1979; Starmer and Sugden, 1989).1 The stationarity axiom of DUT,

according to which preferences should depend on the absolute time interval between delivery of the

objects, has met a similar fate. The Common Difference Effect describes the empirical regularity

that preference for a smaller earlier payoff over a larger later payoff reverses when both payoffs are

shifted into the more remote future, keeping the timing difference constant (Thaler, 1981; Benzion,

Rapoport, and Yagil, 1989).

Researchers have reacted to these anomalies by relaxing the assumptions on the corresponding

1Prominent special cases are the Allais paradox (Allais, 1953) and the Bergen paradox (Hagen, 1972).
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decision weights while leaving the overall structure of the models intact. Violations of independence

can be captured by a suitable nonlinear transformation of the probabilities, as discussed by Quig-

gin (1982) and Tversky and Kahneman (1992). Violations of stationarity, on the other hand, are

accounted for by allowing the discount factors to decline hyperbolically in time, i.e. at a decreasing

rate (Ainslie, 1991; Laibson, 1997; Prelec, 2004). These generalizations seem to perform much better

at explaining aggregate choices than do EUT and DUT (Rachlin, Raineri, and Cross, 1991; Harless

and Camerer, 1994; Hey and Orme, 1994; Myerson and Green, 1995; Kirby, 1997). At the individual

level, however, there is vast heterogeneity in observed behavior in both decision domains (Hey and

Orme, 1994; Chesson and Viscusi, 2000; Abdellaoui, Attema, and Bleichrodt, 2010; Bruhin, Fehr-

Duda, and Epper, 2010) and it is an open question whether the superior fit of the generalized models

is a manifestation of common regularities of individual behavior. Clearly, endeavors of integrating

risk taking and intertemporal choice in one single model, such as for example in Prelec and Loewen-

stein (1991), only make sense if the latter is the case. The question then arises whether violations of

independence and stationarity are actually committed by the same people.

In the empirical literature, the relationship between individuals’ attitudes towards risk and delay

has been examined from various different angles. One strand of the literature focuses on people’s

risk tolerance measured independently from their degree of impatience. These studies find that more

risk averse people tend to discount the future more heavily (Leigh, 1986; Anderhub, Güth, Gneezy,

and Sonsino, 2001; Eckel, Johnson, and Montmarquette, 2004). Discount rates are inferred directly

from choices over dated monetary amounts and, therefore, their measurement is confounded by the

curvature of the utility function. Andersen, Harrison, Lau, and Rutström (2008) correct for utility

curvature and still find a positive, but much reduced, correlation in their predicted degrees of risk

aversion and impatience. None of the studies so far have accounted for probability weighting and,

therefore, they cannot address the question of whether departures from linear probability weighting

are systematically related to departures from constant discounting. Similarly, the psychological

literature has dealt with comparisons of highly reduced forms of discounting functions for delay and

probability, ignoring utility curvature as well as probability weighting (Myerson, Green, Hanson,

Holt, and Estle, 2003). These findings also indicate moderate positive correlations between both
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types of discounting.

Another strand of the literature investigates people’s choices when both risk and delay are present

(Keren and Roelofsma, 1995; Ahlbrecht and Weber, 1997; Weber and Chapman, 2005; Noussair and

Wu, 2006; Anderson and Stafford, 2009; Baucells and Heukamp, 2010; Coble and Lusk, 2010). These

studies generally conclude that there are interaction effects between time and risk, such as risk

tolerance increasing with delay, which are not easily justifiable within the frameworks of EUT and

DUT. Again, probability weighting does not feature in any of these papers. A notable exception is

the contribution by Abdellaoui, Diecidue, and Öncüler (2010) who estimate individual probability

weights over varying delays, but do not elicit discount functions for guaranteed payoffs.

Finally, some recent papers examine the effects of risk in the payment date, rather than in outcome

magnitude. Parallel to the findings on delayed guaranteed outcomes, Chesson and Viscusi (2000)

report discount rates to decline with time horizon. Moreover, Chesson and Viscusi (2003) show that

aversion to timing risk is positively related to ambiguity aversion, suggesting that uncertainty may be

processed similarly in both the dimensions of time and risk. In a follow-up study Onay and Öncüler

(2007) argue that the prevalence of timing risk aversion, which runs against the predictions of EUT,

can be accomodated within a rank-dependent model involving probability weighting. They did not

test their conjecture empirically, however.

This brief review of the literature shows that, to the best of our knowledge, there is no previous

study that investigates the same individuals’ probability weights and discount functions. While

evidence of hyperbolic discounting is occasionally reported, simultaneous estimates of individual

probability weights are usually not provided. This lack may be due to the fact that a comparatively

rich data set, and for that matter also a fairly sophisticated estimation strategy, is needed to be able

to disentangle utility curvature and probability weighting.

In order to close this gap, we conducted an experiment with salient monetary incentives, which

exhibits a number of distinguishing features: First, the experiment generated data rich enough to

be able to estimate individual probability weighting functions and relate them to the same subjects’

revealed discount rates. Second, in contrast to many previous discounting experiments, every single

subject got paid for her intertemporal choices, involving substantial payoffs, in an incentive com-
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patible manner. Third, we kept transaction costs equal across different payment dates in order to

preclude confounding effects. Finally, we controlled for utility curvature.

We present the following experimental results. First, we show that subjects’ departures from

linear probability weighting are highly significantly associated with the strength of decreasing dis-

count rates. The curvature of the utility function, however, seems not to be directly related to the

their decline. Second, estimation results are robust to controlling for socioeconomic characteristics,

such as gender, age, experience with investment decisions and cognitive abilities. In fact, the only

variable associated with decreasing discount rates turns out to be the degree of nonlinearity of prob-

ability weights, which explains a, by any standard, large percentage of the variation in the extent of

the decline. In particular, cognitive abilities, as measured by the Cognitive Reflection Test (Freder-

ick, 2005), cannot account for the link between proneness to probability distortions and hyperbolic

discounting. Moreover, all our results are insensitive to model specification.

Our findings demonstrate that it is the same people who tend to violate the axioms of indepen-

dence and stationarity. We suggest that this relationship is driven by a natural link between the

domains of time and risk (Halevy, 2008; Walther, 2010): Arguably, only immediate consequences

can be totally certain whereas delayed ones are uncertain by their very nature. For instance, a

promised reward may, due to unforeseen circumstances, materialize later or turn out to be smaller

than expected, or sudden illness or death may keep the decision maker from collecting her reward.

For these reasons, future consequences are inextricably associated with uncertainty, implying that

the decision maker’s valuation of delayed outcomes not only depends on her pure time preference,

i.e. her preference for immediate utility over delayed utility, but also on her perception of uncer-

tainty and, consequently, on her risk preferences. We show theoretically that stronger departures

from linear probability weighting entail more strongly declining discount rates, providing us with a

theoretical underpinning of our experimental results. Figuratively speaking, hyperbolic discounting

is driven by viewing the uncertain future through a warped lens, produced by systematic distortions

of probabilities. This theoretical framework not only organizes our experimental findings but also

accounts for previous evidence of interactions of time and risk. A number of studies detected pref-

erence reversals when either risk is added to temporal prospects (Baucells and Heukamp, 2010) or
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delay is added to simple risky prospects (Keren and Roelofsma, 1995; Weber and Chapman, 2005).

Our analysis suggests that institutionally generated uncertainties, such as lack of contract en-

forcement and weak property rights, may induce extreme short-run impatience even if people’s pure

rate of time preference is constant and relatively low. This insight is important because it implies

that revealed behavior may be predominantly driven by environmental factors rather than by the

underlying preferences themselves and, consequently, may be amenable to economic policy. While

uncertainty may be an important channel through which hyperbolicity of discount rates is gener-

ated there may be other sources of hyperbolic discounting behavior as well. For instance, pure time

preferences may be hyperbolic per se, as could be argued for addictive behavior. And when visceral

motives, such as hunger or lust, come into play, uncertainty may not be the dominant dimension

decision makers are concerned about. An excessive preference for the present may then be driven by

factors other than potential disappearance of the object of desire.

The remainder of the paper is structured as follows: In Section 2 we describe the experimental

design and procedures. Section 3 outlines our approach to estimation. Section 4 presents our results.

Section 5 discusses our hypothesis on the role of risk preferences in time discounting. Section 6

concludes.

2 Experimental Design

The experiment took place at the Institute for Empirical Research in Economics (IERE), University

of Zurich, in May 2006. Participants were recruited from the IERE subject pool, which consists

of students from all fields offered at the University of Zurich and the Swiss Federal Institute of

Technology Zurich. In total, we analyzed 112 subject’s responses.2 The experiment consisted of

two main parts, one dedicated to eliciting certainty equivalents for non-delayed risky prospects,3 the

other one to eliciting future equivalents and their corresponding imputed discount rates for temporal

2We omitted six subjects’ responses from our analysis. Four subjects reported that they would not be able to cash in
their delayed payments at the respective payment dates. Three of them would have been on vacation then, the fourth
person had planned a long visit abroad. Hence, their choices were not informative of their time preferences. Concerning
the remaining two subjects we could not disentangle utility effects from probability weighting effects. Nonetheless, our
results do not change when we include these two individuals in the data set.

3The risk data was also used in Bruhin, Fehr-Duda, and Epper (2010).
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prospects involving guaranteed payments.4

We used similar procedures to elicit certainty equivalents and discount rates, in order to economize

on subjects’ cognitive effort. For both types of tasks we implemented choice menus containing a list

of 20 varying alternatives which had to be judged against a fixed option. To familiarize subjects

with the nature of the procedure, the instructions contained examples and trial problems. Besides

a show up fee of CHF 10 (CHF 1 ≈ USD 0.8 at the time of the experiment), each subject was paid

according to one of her risky choices and one of her temporal choices selected randomly at the very

end of the experiment. Subjects received their compensation for the risky choices and the show-up

fee in cash immediately after completion of all the tasks. The compensation for their intertemporal

choices was paid out to them at the respective dates when they cashed in vouchers issued to them at

the end of the experiment. Payment modalities are described in detail below. Subjects could work

at their own speed. On average, it took them 1.25 hours to complete the experiment, including a

socioeconomic questionnaire presented after the choice tasks.

2.1 Elicitation of Certainty Equivalents

Since the objective of the risk task was to obtain data on the basis of which individual probability

weights could be estimated, a fairly large number of observations per person was needed. To elicit

individual lottery evaluations, subjects were presented with 20 choice menus, each one involving a

specific binary lottery L = (x1, p;x2), with x1 > x2 ≥ 0, labeled Option A in Figure I. Option B in

the choice menu represented the guaranteed alternatives, ranging from the higher lottery outcome

x1 to the lower outcome x2. Every subject had to choose her preferred option in each row of the

choice menu. In Figure I, a hypothetical subject prefers all guaranteed payments larger than CHF

36 to the stated lottery, and prefers the lottery in the remaining rows. This subject’s valuation of

the lottery, her certainty equivalent ce, is calculated as the arithmetic mean of the two amounts next

to her indifference point, amounting to CHF 37 in the example here. The set of lotteries, listed in

Table I, included a wide range of outcomes and probabilities. Every subject was confronted with

this set of lotteries once. The choice menus appeared in an individualized random order.

4Instructions are available upon request. The experiment was programmed and conducted with the software z-Tree
(Fischbacher, 2007).
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At the end of the experiment, after the subject had completed all the tasks, one row of one choice

menu was randomly selected for payment. If the subject had opted for the lottery there, her decision

was played out for real. If the subject had opted for the guaranteed payoff, the respective amount

was paid out to her. On average, subjects earned CHF 37.22 in cash for the risk task, including

the show-up fee of CHF 10, to be paid out immediately. Cash payments for the risk task were

considerably higher than the local student assistant’s hourly wage.

2.2 Elicitation of Discount Rates

Using a similar format as in the risk task we elicited individual discount rates for temporal prospects

T = (x, t), with x > 0, over payments x delayed by t months. The choice menus, designed as in

Figure II, contained 20 binary choices each.5 Subjects had to choose between a guaranteed payment

pe of CHF 60 the next day (Option A) and a guaranteed later payment x (Option B), delayed by two

months or four months, respectively. The varying alternatives x were sorted in descending order from

the highest amount to the lowest amount, incorporating an interest payment at a simple annualized

rate of δt ∈ [0%, 95%] over the corresponding time interval [0, t]. These rates were exhibited in the

right-most column of the choice menu.6 The present amount of CHF 60 and the range of interest

rates were chosen to provide salient incentives, so that deferring the reward was actually worthwhile.

The arithmetic mean of the two monetary amounts next to the indifference point on the choice

menu provided the imputed discount rate δt. The hypothetical subject in Figure II, for instance, is

indifferent between CHF 60 and CHF 70.50, implying a discount rate of 52.5% per annum.

We applied a similar random payment method in the time task as in the risk task: One of each

subject’s choices was paid out for real at the corresponding payment date. Average payoffs for the

time task amounted to CHF 64.34. Therefore, total average payments for both risk and time tasks

summed to more than four times students’ opportunity costs, measured by the student assistants’

hourly wages.

Since our objective was to elicit discount rates over guaranteed payments, we took special care

with the payment procedure: First, every single subject got paid for one of her intertemporal choices

5A similar design was proposed by Coller and Williams (1999).
6The discounting experiment consisted of one additional task not reported here.

7



all of which entailed a payment of the same order of magnitude. Not paying off everyone may

render the stochastic nature of the experimental earnings salient and interfere with the objective of

eliciting discount rates over guaranteed amounts of money. The second issue concerns the credibility

of payment. In order to control for uncertainty arising from subjects’ doubts about experimenter

reliability, an official voucher of the Swiss Federal Institute of Technology was issued to them. This

payment method was explained in detail in the instructions, and a specimen of the voucher was

included in the instruction set.

A third possibly confounding factor are transaction costs. Transaction costs should be the same

regardless of the payment date in order to avoid inducing present bias resulting from immediately

available cash payments. Therefore, every subject had to make a trip to the cash desk to collect her

earnings for the discounting task.7

3 Econometric Specification

The data elicited in the experiment provide two types of main variables: certainty equivalents ce

for risky prospects, and imputed discount rates δt for temporal prospects. We first discuss our

econometric approach to risky choice and, subsequently, describe the method employed to test for a

link between risk preferences and time discounting.

3.1 Behavior under Risk

Modeling decisions under risk encompasses two components, a model of behavior on the one hand,

and assumptions regarding decision errors on the other hand. Risk taking behavior is modeled by

rank dependent utility theory (RDU).

According to RDU, an individual values a two-outcome lottery L = (x1, p;x2), where x1 > x2 ≥ 0,

by w(p)u(x1) + (1 − w(p))u(x2). The function u(x), with u(0) = 0 and u′(x) > 0, describes how

monetary outcomes x are subjectively valued. The function w(p) assigns a subjective weight to every

7People entitled to payoffs the next day were issued vouchers immediately after the experiment. All the others
received official certificates of indebtedness after the experiment, the vouchers themselves were sent to them by registered
mail several days before they could cash them in, so they did not have to worry about forgetting encashment or
misplacing their vouchers.
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outcome probability p, with w(0) = 0, w(1) = 1, and w′(p) > 0. The decision maker’s predicted

certainty equivalent ĉe for this lottery can then be written as

ĉe = u−1 [w(p)u(x1) + (1− w(p))u(x2)] . (1)

In order to make RDU operational, we have to assume specific functional forms for the utility

function u(x) and the probability weighting function w(p). Given our objective of describing indi-

vidual behavior, we choose flexible functional forms for u as well as for w. A natural candidate for

utility u is a power function. In its extensive form, as discussed by Wakker (2008), u is modeled as8

u(x) =


xη if η > 0,

lnx if η = 0,

−xη if η < 0.

A variety of parameterizations of probability weighting functions w(p) have been proposed in

the literature (Karmarkar, 1979; Lattimore, Baker, and Witte, 1992; Tversky and Kahneman, 1992;

Prelec, 1998). Since our primary interest lies in common ratio violations we focus on a specific

characteristic of the weighting function, subproportionality. Subproportionality means that for a

fixed ratio of probabilities the ratio of the corresponding probability weights is closer to unity when

the probabilities are low than when they are high (Kahneman and Tversky, 1979). Intuitively

speaking, scaling down the original probabilities makes them less distinguishable from each other,

thus favoring preference reversals. Therefore, subproportionality maps common ratio violations.

Expressed formally (Prelec, 1998), subproportionality holds if 1 ≥ p > q > 0 and 0 < λ < 1 implies

the inequality

w(p)

w(q)
>
w(λp)

w(λq)
. (2)

As we rely on subproportionality as the crucial characteristic of the probability weighting function,

to be estimated for each single individual, we adopt the flexible and empirically well-founded two-

8Note that lnx is not defined for x = 0. Therefore, estimation is carried out after shifting all outcomes by one unit
of money (cmp. Wakker (2008), p.1335).
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parameter specification suggested by Prelec (1998),

w(p) = e−β(− ln p)α . (3)

For α < 1, the function is subproportional everywhere, with the parameter α measuring the degree

of subproportionality.9 A smaller value of α reflects a more subproportional curve. Therefore,

this specification enables us to rank individuals according to their their proneness to common ratio

violations. The second parameter, β > 0, is a net index of convexity in that increasing β increases

the convexity of the function without affecting subproportionality (Prelec (1998), p.505). Linear

weighting is characterized by α = β = 1.

With regard to error specification we have to reconsider our measurement procedure. In the course

of the experiment, an individual’s risk taking behavior was captured by her certainty equivalents cel

for a set of 20 different lotteries Ll = (x1l, pl;x2l), l ∈ {1, . . . , 20}. Since RDU explains deterministic

choice, actual certainty equivalents cel are likely to deviate from the predicted certainty equivalents

ĉel by a stochastic error εl, which has to be taken account of. Therefore, we assume that the observed

certainty equivalents cel can be expressed as cel = ĉel + εl, with εl being normally distributed with

zero mean.10

Concerning the error variance, we need to account for heteroskedasticity: For each lottery subjects

had to consider 20 guaranteed outcomes, equally spaced throughout the lottery’s outcome range

x1l − x2l. Since the observed certainty equivalent cel is calculated as the arithmetic mean of the

smallest guaranteed amount preferred to the lottery and the subsequent guaranteed amount, the

error is proportional to the outcome range. Therefore, the standard deviation νl of the error term

distribution has to be normalized by the outcome range, yielding νl = ν(x1l−x2l), where ν denotes an

additional parameter to be estimated. In total, therefore, four parameters per subject were estimated

by maximum likelihood: the curvature of the utility function η, subproportionality and convexity

of the probability weighting function α and β, as well as the normalized standard deviation of the

9Prelec (2000) uses the term “Allais paradox index” (p.78).
10Since ce is calculated as the arithmetic mean of two neighboring amounts in the choice menu it possibly contains

some measurement error. As ce is the dependent variable in the model a measurement error does not pose a problem
other than potentially increasing noise.
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decision error parameter ν.

3.2 Behavior over Time

Subjects’ responses to the intertemporal choice tasks in the experiment provided us with measure-

ments of discount rates δ2 and δ4, imputed from the intertemporal tradeoffs between present payments

pe and payments x delayed by two and four months, respectively. However, the true underlying dis-

count factors D(t) are defined in terms of utilities, not payoffs.11 For a temporal prospect T = (x, t),

true discount rates are inferred from the indifference relation u(pe) = D(t)u(x). Measured discount

rates, therefore, deviate from the underlying true rates unless u is linear. While in our specification

utility curvature affects the level of discount rates but cannot, by itself, induce induce their decline,

it may have a confounding effect on the magnitude of the change in the measured discount rates

∆δ = δ2− δ4: In the presence of nonlinear probability weighting, ∆δ gets amplified by the concavity

of the power utility function (see Appendix A.4). Specifically, the more concave u, the larger the

measured difference in the discount rates ∆δ if w(p) is not linear. Therefore, we have to control for

the degree of concavity η in the regression model.

3.3 Regression Model

We investigate the hypothesized relationship between probability weighting and decreasing discount

rates by regressing the difference between the imputed discount rates δ2 and δ4, ∆δ, on a vector of

regressors c. In the base model, Model 1, the vector c consists of a constant and the individuals’

estimated risk preference parameters: η captures concavity of the utility function, α captures subpro-

portionality of the probability weighting function, and β its convexity. Additionally, we estimate an

extended version of the base model, Model 2, by controlling for a set of individual characteristics. In

particular, these controls comprise gender (labeled Female), age (Age), the logarithm of disposable

income per month (Log-Income), a binary variable indicating whether the subject is familiar with

investment decisions (Experience) as well as the test score for the Cognitive Reflection Test (CRT)

11We assume that the utility of money is a general cardinal function which applies to risky as well as to delayed
payoffs. See Wakker (1994) for a justification of this assumption.
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(Frederick, 2005).12 This three-question test measures specific aspects of cognitive ability which were

found to be strongly correlated with risk taking and discounting behavior.

Unlike the exemplary choice pattern displayed in Figure II, a decision maker may have opted for

the same option in all rows of the choice menu, which results in a censored observation. In particular,

she may have always preferred the smaller sooner option, indicating that her discount rate may lie

beyond the maximum value of 95%.13 As a consequence, the difference between the observed discount

rates δ2 and δ4 is affected by censoring as well. As ordinary least square (OLS) yields biased estimates

in this case, we account for this issue by a censored regression model, described in detail in Appendix

B. The model has the following form:

∆δ∗i = ci (γ2 − γ4)︸ ︷︷ ︸
∆γ

+ e2,i − e4,i︸ ︷︷ ︸
∆ei

, (4)

where ∆δ∗i specifies the true, but potentially unobserved, difference between δ2 and δ4 for individual

i, i ∈ {1, . . . , 112}. The error term ∆ei is normally distributed with mean zero and variance σ2.

The interpretation of the regression coefficients ∆γ is equivalent to those of OLS regression, also

displayed in the regression output (Table III below).

4 Results

In the following section we analyze the raw data on risk taking behavior and time discounting, and

present the estimates for subjects’ probability weights. Finally, we examine the relationship between

subjects’ sensitivities with respect to changes in probability and delay.

4.1 Descriptive Analysis

For the domain of risk taking, Figure III summarizes observed behavior by the median relative risk

premia RRP = (ev−ce)/|ev|, where ev denotes the expected value of a lottery’s payoff and ce stands

for the observed certainty equivalent. RRP > 0 indicates risk aversion, RRP < 0 risk seeking, and

12Summary statistics of the controls are included in Appendix E, Table E.1.
13A decision maker may also always prefer the later larger option. In this case, we assume a discount rate of 0%.

The number of observations at the boundary of the choice menu are listed in Table E.2 of Appendix E.
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RRP = 0 risk neutrality. The median relative risk premia, sorted by the probability p of the higher

gain, show a systematic relationship between aggregated risk attitudes and lottery probabilities:

Subjects’ choices display the familiar pattern, i.e. they are risk averse for high-probability gains, but

risk seeking for low-probability gains, supporting the existence of nonlinear probability weighting.

As far as intertemporal choices are concerned, people’s average behavior exhibits decreasing

discount rates, i.e. subjects discount less remote outcomes more strongly than more remote ones:

The first column in Table II reveals that the discount rates imputed from subject’s choices decline

on average by 7 percentage points per annum when the time horizon is extended from two months to

four months. The average data veil heterogeneity as well as the extent of decreasing discount rates,

however. Whereas the majority of approximately 54% of all subjects exhibit decreasing discount

rates over time, ∆δ > 0 (second column), about 29% exhibit constant discount rates (third column),

and the residual group reveals increasing discount rates (fourth column). Average discount rates of

subjects with decreasing discount rates amount to δ2 = 47% p.a. and δ4 = 31% p.a., respectively,

reflecting a much greater change than do the overall averages.14

4.2 Risk Preference Parameters

Whereas one of our central variables, change in discount rates ∆δ, is directly observable, the other

one, departure from linear probability weighting, has to be estimated from our data on certainty

equivalents.

Individual risk preference parameters η, α and β were estimated on the basis of the econometric

model discussed in Section 3.1. As Table II reveals, the values of the curvature parameter η of the

utility function reflect slight concavity or linearity. The average subproportionality index α amounts

to 0.505, indicating a pronounced departure from linear probability weighting in line with previous

findings (Tversky and Kahneman, 1992; Gonzalez and Wu, 1999; Abdellaoui, 2000). The average

estimates for β lie in the vicinity of one, implying that the respective curves intersect the diagonal

at about p = 1/e.15

The overall picture revealed by our data is consistent with the typical empirical findings: On

14The distributions of the observed discount rates are shown in Appendix C.
15Histograms of the parameter distributions are included in Appendix D.
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average, subjects systematically violate linear probability weighting and constant discounting. But

the central question, namely whether the degree of subproportionality of probability weighting is

associated with hyperbolicity of discounting behavior at the level of the individual has yet to be

answered.

4.3 Relationship between Probability Weights and Hyperbolic Discounting

A first indication of a systematic relationship between probability weighting and discounting can

be found in Table II. The average estimated subproportionality index α varies substantially across

discounting types and exhibits a systematic pattern: α is lowest for the group with decreasing

discount rates and highest for the group with increasing discount rates.

This finding is confirmed by the estimates of the regression models. Table III displays the results

derived by OLS as well as by the censored regression method. Inspection of the coefficients indicates

that censoring seems not to be an important problem: After omitting the 23 censored observations,

OLS yields coefficients very close to the estimates of the censored regression model. Furthermore,

both specifications (Models 1 and 2) lead to the same conclusion: Subproportionality of probability

weighting is significantly associated with decreasing discount rates ∆δ. Table III shows the estimated

coefficient of α to be approximately −0.2. All the respective estimates are significant at the 1%-level

and remain robust to inclusion of additional controls. The effect is not only highly significant, it

is also quite substantial: A decrease in the subproportionality index α by 0.1 is associated with an

increase in ∆δ by 2 percentage points per annum. In particular, the decline in discount rates is related

to the degree of subproportionality, but not to the index of convexity β. We obtained the same order

of magnitude for the coefficient of α when we restricted β to be equal to one. Regression coefficients

and their standard errors also remain stable when either η or β are deleted from the list of regressors.

Moreover, it can be shown that estimates are totally robust to alternative parameterizations of the

probability weighting curve as well.16

The coefficients of the utility parameter η are not statistically different from zero, either.17 This

result is consistent with our hypothesis that utility curvature per se does not impact the extent of

16Results are available upon request.
17Nor does an interaction term α× η contribute to explaining variation in ∆δ.
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decreasing discount rates. Furthermore, none of the other individual characteristics show a significant

effect.18

An F -test comparing the OLS Model 1 with Model 2 renders a p-value of 0.670, favoring the more

parsimonious Model 1, as the controls do not substantially contribute to explaining the variance in

∆δ.19 Furthermore, the regression models explain a rather large fraction of total variance: Model

2, for instance, yields an R-squared value of 17%.20 These findings present conclusive evidence that

comparatively more subproportional probability weighting is associated with a stronger decline in

discount rates.

5 Discussion

The strong and significant correlation between subproportionality of probability weighting and extent

of hyperbolic discounting begs the question of whether this relationship can be explained in causal

terms. In principle, there are three pathways through which correlation could be generated. First,

the tendency towards hyperbolic discounting could cause distortions in probability weights. Since,

in experiments, estimates of probability weights are generally based on atemporal choices, i.e. when

there is practically no time delay between choice and payment, this possibility can be effectively ruled

out. Second, the direction of causality could work the other way round, with proneness to probability

distortions inducing hyperbolic discounting. Finally, there could be a third factor driving both types

of departures from the standard model predictions. We will discuss the latter possibility first and

then turn to the second alternative.

Since the Common Ratio Effect and the Common Difference Effect pertain to diminishing sensi-

tivity towards probability and delay, respectively, similar cognitive processes may govern the evalua-

tion of risky and delayed outcomes. A natural candidate for a common factor driving both processes

is cognitive abilities. Several papers have looked into the relationship between cognitive abilities

18While not significantly different from zero, coefficients exhibit the expected signs: Females have a slightly more
subproportional weighting curve, consistent with previous findings (Fehr-Duda, de Gennaro, and Schubert, 2006). Both
experience with investment decisions and high CRT scores are associated with smaller departures from linearity.

19The same is the case when the two censored models are compared. A likelihood ratio test of Model 2 against Model
1 renders a p-value of 0.9.

20When regressing ∆δ exclusively on the socioeconomic variables, R-squared amounts to 3.9%!

15



and risk tolerance on the one hand, and between cognitive abilities and patience on the other hand

(Frederick, 2005; Benjamin, Sebastian, and Shapiro, 2006; Dohmen, Falk, Huffman, and Sunde,

2107). Generally, they conclude that better cognitive abilities tend to be associated with higher risk

tolerance as well as higher patience. For instance, Frederick (2005) finds that students with high

Cognitive Reflection Test scores gambled significantly more often that did the low CRT group, and

exhibited lower imputed discount rates, albeit not for choices involving longer time horizons. These

previous findings seem to conflict with the insignificant coefficient of CRT in Table III. Since CRT

is not correlated with α,21 the lack of correlation between CRT and ∆δ indeed suggests that CRT

scores cannot explain the variance in the hyperbolicity of discount rates. However, we are concerned

with sensitivities towards changes in probability and delay and not with measures of average risk

aversion and impatience, the focus of previous research. Of course, there could be other factors

than cognitive abilities, or aspects of cognitive ability not captured by CRT scores, that drive the

correlation between subproportionality and hyperbolic discounting. Clearly, this possibility cannot

be ruled out and needs further exploration.

Finally, we discuss the last one of our options, direct impact of subproportionality on hyper-

bolicity of discounting. Many authors have noted before that “[a]nything that is delayed is almost

by definition uncertain” (Prelec and Loewenstein (1991), p.784). For instance, a promised reward

may, due to unforeseen circumstances, materialize later or turn out to be smaller than expected,

or death may keep the decision maker from collecting her reward at all. For these reasons, future

consequences are inextricably associated with uncertainty, implying that the decision maker’s val-

uation of temporal prospects not only depends on her pure time preference, i.e. her preference for

immediate utility over delayed utility, but also on her perception of uncertainty and, consequently,

on her risk preferences. In other words, uncertainty drives a wedge between pure time preferences

and time discounting.

If this account is an accurate description of intertemporal choice it has far reaching implications for

observed discounting behavior, the most obvious one being that behaviorally revealed discount rates

will be higher than the rate of pure time preference as they include a risk premium. Not surprisingly

21The Pearson correlation coefficient amounts to -0.0049 (p-value 0.964).
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then, uncertainty has been identified to be an important confound in the measurement of time

preferences, which may, at least partly, explain the notoriously high discount rates found in empirical

studies (Frederick, Loewenstein, and O’Donoghue, 2002). The story does not stop here, however.

If risk preferences influence time discounting, then people’s proneness to probability weighting has

to be taken into account as well. Recent contributions have examined the impact of nonlinear

probability weighting on discounting behavior theoretically (Halevy, 2008; Walther, 2010). Halevy,

for instance, motivated by interaction effects between time and risk found by Keren and Roelofsma

(1995) and Weber and Chapman (2005), is concerned with convex probability transformations that

can accommodate the certainty effect inherent in the classical Allais paradox. We investigate the

more general case of common ratio violations which can be modeled by subproportional probability

weights. Subproportionality is not confined to convex functions but may also be present in inverse

S-shaped probability transformations, which organize a large part of the empirical evidence. In the

following, we show that the degree of subproportionality of probability weights indeed predicts the

extent of decreasing discount rates. Furthermore, we derive comparative static results with respect

to degree of uncertainty and exemplify the model predictions by graphical illustrations.

5.1 A Model of Discounting: The Warped Lens

If the future is perceived as uncertain an allegedly guaranteed delayed outcome T = (x, t) is effectively

evaluated as a risky prospect. Suppose that any future payment is perceived to materialize with a

constant per-period probability of contract survival s, 0 < s ≤ 1. Consequently, T is evaluated as

L = (x, st), rendering x with probability st and zero otherwise.

As far as the rate of pure time preference is concerned, we adopt the conventional assumption:

the rate of pure time preference is characterized by a constant per-period rate r ≥ 0, resulting in a

pure time discount factor ρ equal to e−r.

These assumptions imply that the present equivalent pe of the future payment x, such that the

decision maker is indifferent between pe and x, is defined by

u(pe) = w(st)ρtu(x). (5)
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The effective discount factor D(t) at delay t equals the weight attached to u(x), i.e.

D(t) = w(st)ρt, (6)

which depends not only on the pure rate of time preference r, but also on the probability of contract

survival s as well as on the shape of the probability weighting function w. Clearly, if w is linear, D(t)

declines exponentially irrespective of the magnitude of s. If 0 < s < 1, the resulting discount factor

is lower than for s = 1, implying that uncertainty per se increases the absolute level of discount rate,

but cannot account for discount rates declining over time. In fact, due to uncertainty, discounting

would be observed even for a zero rate of pure time preference. If, however, w is nonlinear and

0 < s < 1, the component w(st) distorts the discount factor: As shown formally in Appendix A.1,

subproportionality of w generates hyperbolicity of w(st) in t and, consequently, decreasing discount

rates if the future is perceived as uncertain. Metaphorically speaking, the decision maker, when

looking into the future, perceives delayed events through the warped lens of probability distortions.

A natural extension of this insight is that higher degrees of subproportionality induce more strongly

declining discount rates (see Appendix A.2). The effective discount factor D(t) also depends on the

level of uncertainty s. Higher uncertainty implies more strongly declining discount rates as well. A

formal proof appears in Appendix A.3.

In order to illustrate the predictions of our model, which hold for any subproportional probabil-

ity weighting function, we demonstrate the comparative static effects of subproportionality α and

uncertainty s graphically, using Prelec’s specification. The panels on the left-hand side of Figure IV

show the comparative static effects of varying α, the right-hand side ones are dedicated to varying

levels of s.

Panel A1 of Figure IV depicts the probability weighting curves for three distinct parameter values

of α, with β = 1: a medium-sized departure from linearity (α = 0.5), as exhibited on average by

our experimental subjects, a strong departure from linearity (α = 0.2), as well as the limiting case

of linear probability weighting (α = 1). Panel B1 of Figure IV shows, for each of the three cases

of probability weighting, the effective discount factors resulting from Equation 6 as they evolve over
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time.22 For a decision maker with linear probability weighting the discount function, represented by

the solid gray curve, is exponential. In contrast, the dotted discount function of a typical decision

maker with α = 0.5 departs from exponentiality, exhibiting an apparently hyperbolic pattern. By

comparison, the decision maker characterized by the most strongly S-shaped probability weighting

curve underweights (overweights) large (small) probabilities more strongly than does the decision

maker with α = 0.5, which leads to an even more pronounced departure from exponential discounting

(dashed curve).

Finally, Panel C1 of Figure IV displays the imputed discount rates dt inferred from D(t) = e−dtt.

The solid gray line corresponds to linear probability weighting. Since this decision maker is not

prone to probability distortions, her discount rate is independent of time delay and, consequently,

constant over time. In contrast to this decision maker, the discount rates of the decision makers

with nonlinear probability weights start out at very high levels and then decline sharply. As is

evident from comparing the dashed curve with the dotted one, the more subproportional probability

weighting function generates a larger decline in discount rates between period 2 and period 1, i.e.

the difference d2 − d1 is greater for higher degrees of subproportionality α. For this prediction

to hold the probability of contract survival s needs to be smaller than one. Since people vary in

their perceptions of uncertainty our framework predicts a correlation between subproportionality and

decreasing discount rates. This is exactly what we find in our data.

Another important insight from our approach concerns the direct impact of uncertainty on dis-

counting behavior. Hyperbolicity of discount rates is crucially influenced by people’s perceptions of

uncertainty: Increasing uncertainty not only raises the level of discount rates but also exacerbates

revealed short-term impatience. Panels A2 to C2 in Figure IV illustrate this effect for α = 0.5,

the average index of subproportionality in our data, and r = 0.1. When the survival probability s

declines from 0.8 to 0.5, the resulting discount function departs more strongly from exponentiality

as Panel B2 shows. Hence, the decrease in discount rates associated with higher uncertainty is more

pronounced as well (Panel C2 ).

22For illustrative purposes, in Figure IV r is fixed at 0.1 and s is assumed to be 0.8, which means that 80% of all
contracts are anticipated to survive at least one period.
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5.2 Perceived Uncertainty and the Pure Rate of Time Preference

The model presented in the previous section provides a theoretical underpinning of our empirical

finding that the degree of subproportionality α predicts the extent of hyperbolic discounting ∆δ.

Our theoretical framework implies such a relationship ceteris paribus, holding constant the other

model parameters, specifically the subjective probability of contract survival s and the pure rate of

time preference r, both of which are not observable. In our experimental setting with decisions over

a short time horizon, the subjective probability of contract survival s should lie very close to unity

since mortality risk is very low in our age group of subjects and we took great care to communicate

experimenter reliability. One way of checking the plausibility of the theoretical model is to investigate

whether, on average, actual choices are indeed consistent with this conjecture, i.e. whether values of

s implied by our data lie in the vicinity of one for a wide range of plausible values of the pure rate

of time preference r.

For this purpose, we examine the combinations of s and r that are consistent with the observed

average intertemporal tradeoffs between more immediate and more remote payments pe and x. We

solve for all feasible combinations of ŝ and r̂ that are compatible with the observed choices by

inserting the estimates for subjects’ average behavioral parameters η, α and β into Equation 5. As is

clear from Equation 5, a higher probability of contract survival needs to be compensated by a higher

pure rate of time preference, ceteris paribus, to keep individuals indifferent between more immediate

and more remote rewards.

As Figure V shows, the feasible (ŝ, r̂)-combinations indeed exhibit a rising profile, with ŝ starting

out at below 97% p.a. and converging to 100% p.a., when the pure rate of time preference increases

from 0% to 15% p.a. and beyond. For instance, s = 99% is compatible with r ' 8.5% p.a. What this

exercise shows is that the data, interpreted within our framework, are consistent with a very high

subjective probability that contracts survive at least one year, in accordance with our conjecture.

Furthermore, accounting for inherent uncertainty implies rates of pure time preference in a plausible

range lying considerably below the observed average discount rates of more than 30% p.a.

This suggests that even allegedly guaranteed future outcomes are viewed as slightly uncertain, in

line with direct questionnaire evidence provided in Patak and Reynolds (2007). The authors asked
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respondents to rate their certainties for the same rewards, delayed by 1, 2, 30, 180, and 365 days,

respectively, which they had encountered during the preceding choice experiment. The respondents

reported ratings that clearly declined with the length of delay. Moreover, using a similar method,

Takahashi, Ikeda, Hasegawa, and Greene (2007) found that such subjective probabilities of obtaining

delayed rewards decay in a hyperbolic-like manner, consistent with probability weights w(st) declining

hyperbolically with delay t.

6 Conclusion

For several decades, decision research has been dominated by the quest for better descriptive theories

of behavior under risk and over time, triggered by a large body of experimental evidence challenging

the classical models of choice, expected utility theory and discounted utility theory. Alternative

models, accounting for nonlinear probability weighting and hyperbolic discounting, describe behavior

much more accurately than do the classical models, at least at the aggregate level. In this paper

we address the question whether the better fit of the generalized models is actually a consequence

of the same subjects’ anomalous behaviors. We present the first evidence that more pronounced

systematic departures from linear probability weighting are indeed associated with more strongly

declining discount rates at the level of the individual decision makers. This result is robust to

inclusion of additional controls as well as model specification. In fact, the only variable explaining a

substantial fraction of heterogeneity in individual discounting patterns turns out to be the degree of

subproportionality of probability weights.

Several authors have proposed that the existence of matching violations of the classical axioms

is not coincidental, but rather reflects the close relationship between risk and delay (e.g. Prelec and

Loewenstein (1991)). Some researchers have even argued that the two attributes are virtually the

same, but there is no consensus as to which one is the more fundamental of the two. We favor the

view that, if there is a hierarchical relationship between them at all, risk is the more likely candidate.

To bolster this view, we provide a theoretical model predicting the observed link between probability

distortions and decreasing discount rates. For hyperbolic discounting to emerge two factors need to

interact: probability distortions and future uncertainty.
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Arguably, the future is uncertain by definition. Uncertainty may stem from different sources,

either tied to the individual herself, such as lifetime expectancy, or to environmental factors. Lack of

contract enforcement and weak property rights, for instance, may make people skeptical that promises

will be actually kept. Therefore, institutionally generated uncertainties may induce extreme short-

run impatience even if people’s pure rate of time preference is low and constant. This insight is

important because it implies that revealed behavior may be predominantly driven by environmental

factors rather than by the underlying preferences themselves and, consequently, may be amenable to

economic policy.

The channel through which uncertainty generates hyperbolic discounting is nonlinear probability

weighting, a robust phenomenon in the empirical literature. If probability weighting plays such

an important role in risk taking and discounting behavior, the obvious question concerning the

source of these probability distortions arises. Unfortunately, little is known about the forces driving

probability distortions. A number of theoretical contributions have invoked emotions to explain

probability weighting (Wu, 1999; Caplin and Leahy, 2001). Walther (2003, 2010), for instance,

rationalizes nonlinear probability weighting by generalizing expected utility theory: He assumes

that, in addition to monetary outcomes, the decision maker cares about emotions triggered by the

resolution of uncertainty. His approach predicts that, if the decision maker anticipates experiencing

elation or disappointment when the actual outcome lies above or below some normal level, she will

distort outcome probabilities according to an S-shaped pattern. The more emotional a person expects

to be, the stronger will be her departure from linear probability weighting and, consequently, the

more pronounced hyperbolic discounting will be. Of course, sensitivity to anticipated emotions is

not easily observable, and we have to leave it to future research to investigate whether anticipated

emotions or some other factors are the primary drivers of probability weighting.
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Tables

Table I: Risky Prospects

p x1 x2 p x1 x2

0.1 20 10 0.25 50 20
0.5 20 10 0.5 50 20
0.9 20 10 0.75 50 20
0.05 40 10 0.95 50 20
0.25 40 10 0.05 150 50
0.5 40 10 0.5 10 0
0.75 40 10 0.5 20 0
0.95 40 10 0.05 40 0
0.05 50 20 0.95 50 0
0.1 150 0 0.25 40 0

Outcomes x1 and x2 are stated in CHF, p

denotes the probability of x1 materializing.
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Table II: Average Discount Rates and Risk Parameters

Subjects with

all ∆δ > 0 ∆δ = 0 ∆δ < 0
100% 53.9% 29.2% 16.9%

δ2 0.368 0.465 0.328
(0.023) (0.029) 0.213 (0.058)

δ4 0.299 0.307 (0.045) 0.418
(0.020) (0.025) (0.068)

∆δ 0.070 0.157 0 -0.090
(0.012) (0.015) (0.019)

η 0.873 0.808 0.948 0.953
(0.032) (0.046) (0.074) (0.072)

α 0.505 0.426 0.574 0.634
(0.021) (0.027) (0.040) (0.063)

β 0.974 0.936 1.064 0.940
(0.026) (0.036) (0.068) (0.045)

Observations 89 48 26 15

Standard errors in parentheses. Excluding 23 subjects with
censored observations.
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Table III: Regression Results

Dependent Variable: ∆δ (∆δ∗)

OLSa Censored

Model 1 Model 2 Model 1 Model 2

Intercept 0.226∗∗∗ 0.279 0.247∗∗∗ 0.321
(0.063) (0.228) (0.057) (0.225)

η 0.018 0.002 -0.006 -0.022
(0.042) (0.043) (0.039) (0.041)

α -0.205∗∗∗ -0.220∗∗∗ -0.185∗∗∗ -0.203∗∗∗

(0.066) (0.074) (0.062) (0.075)

β -0.070 -0.040 -0.074 -0.045
(0.067) (0.068) (0.060) (0.063)

Female -0.012 -0.011
(0.031) (0.032)

Age -0.001 -0.002
(0.007) (0.007)

Log-Income -0.013 -0.012
(0.024) (0.023)

Experience 0.015 0.020
(0.032) (0.033)

CRT 0.021 0.021
(0.017) (0.017)

σ̂ 0.123 0.124 0.084 0.082
R2 or (LogLik) 0.137 0.170 (48.693) (51.123)
Observations 89 89 112 112
Parameters 4 9 9 19

a) without censored observations.
∗∗∗ significant at the 1% level.
Bootstrapped standard errors in parentheses (10,000 replications). Boot-
strapping accounts for the fact that the regressors α, β and η are
estimated quantities.
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Figures

Figure I: Choice Menu — Risk

Option A Your Choice
Option B

(guaranteed reward)

1

Gain

of CHF 50 with a 

probability of

75%

and

Gain

of CHF 10 with a 

probability of

25%

A B CHF 50

2 A B CHF 48

3 A B CHF 46

4 A B CHF 44

5 A B CHF 42

6 A B CHF 40

7 A B CHF 38

8 A B CHF 36

9 A B CHF 34

10 A B CHF 32

11 A B CHF 30

12 A B CHF 28

13 A B CHF 26

14 A B CHF 24

15 A B CHF 22

16 A B CHF 20

17 A B CHF 18

18 A B CHF 16

19 A B CHF 14

20 A B CHF 12
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Figure II: Choice Menu — Time

Option A

payment tomorrow
Your Choice

Option B

payment in 4 months + 1 day

1

Amount

of CHF 60

A B CHF 79 95%

2 A B CHF 78 90%

3 A B CHF 77 85%

4 A B CHF 76 80%

5 A B CHF 75 75%

6 A B CHF 74 70%

7 A B CHF 73 65%

8 A B CHF 72 60%

9 A B CHF 71 55%

10 A B CHF 70 50%

11 A B CHF 69 45%

12 A B CHF 68 40%

13 A B CHF 67 35%

14 A B CHF 66 30%

15 A B CHF 65 25%

16 A B CHF 64 20%

17 A B CHF 63 15%

18 A B CHF 62 10%

19 A B CHF 61 5%

20 A B CHF 60 0%
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Figure III: Median Relative Risk Premia (RRP)

0.05 0.1 0.25 0.5 0.75 0.9 0.95

p

R
R

P

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

28



Figure IV: Probability Distortions and Discounting
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Figure V: Feasible (ŝ, r̂)-Combinations
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A Formal Proofs

A.1 Hyperbolicity

In the framework proposed here, the discount factor D(t) equals

D(t) = w(st)ρt, (A.1)

with ρ defined as e−r. In order to establish that subproportional probability weights are sufficient23

for discount rates to decrease, we define decreasing impatience at t in the following way (Prelec,

2004): Let (x, t) be a temporal prospect paying off x at t with certainty. A preference relation �

exhibits decreasing impatience if for any t > 0, 0 < x < y, (x, v) ∼ (y, z) implies (y, z+t) � (x, v+t).

According to our framework the temporal prospects (x, 0) ∼ (y, 1) are evaluated as

u(x)w(s0)ρ0 = u(y)w(s1)ρ1. As subproportionality of w implies that w(s) < w(st+1)/w(st), deferring

the prospects by t periods renders

1 =
u(y)w(s)ρ

v(x)
<
u(y)w(st+1)ρt+1

u(x)w(st)ρt
(A.2)

and, therefore, (y, t+ 1) � (x, t), meeting the requirement for decreasing impatience. �

In the intertemporal tradeoff between the present and the subsequent period the discount factor

equals w(s)ρ. At time t, u(x) is discounted by w(st)ρt. Compounding by the initial one-period

discount factor w(s)ρ would render w(s)w(st)ρt+1 at t+1, but the discount factor effectively amounts

to w(st+1)ρt+1 then. Therefore, w(st+1)/(w(s)w(st)), the wedge between the relative discount factors

D(0)/D(1) and D(t)/D(t+ 1), provides a measure for the extent of departure from stationarity at t.

A.2 Comparative Hyperbolicity

The previous proof shows that, provided that s < 1, subproportionality of w engenders hyperbolic

discounting. As will become clear shortly, a decision maker with a comparatively more subpro-

portional probability weighting function will also tend to exhibit more strongly decreasing discount

23Note that subproportionality is not necessary.
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rates:

A preference relation �2 exhibits more strongly decreasing impatience than �1 if for any intervals

0 ≤ v < z, t,∆t and outcomes 0 < x < y, 0 < x′ < y′, (x, v) ∼1 (y, z), (x, v + t) ∼1 (y, z + t + ∆t),

and (x′, v) ∼2 (y′, z) imply (x′, v + t) �2 (y′, z + t+ ∆t) (Prelec, 2004).

In order to examine the effect of the degree of subproportionality on hyperbolicity suppose that

the probability weighting function w2 is comparatively more subproportional than w1, as defined in

Prelec (1998), and that the following indifference relations hold for two decision makers 1 and 2 at

periods v = 0 and z = 1:

u1(x) = u1(y)w1(s)ρ for 0 < x < y,

u2(x′) = u2(y′)w2(s)ρ for 0 < x′ < y′.

Due to subproportionality, the following relation holds for decision maker 1 in period t:

1 =
u1(y)w1(s)ρ

u1(x)
<
u1(y)w1(st+1)ρt+1

u1(x)w1(st)ρt
. (A.3)

Therefore, the subjective probability of contract survival has to be reduced by compounding s over

an additional time period ∆t to re-establish indifference:

u1(x)w1(st)ρt = u1(y)w1(st+1+∆t)ρt+1. (A.4)

It follows from the definition of comparative subproportionality that this adjustment of the survival

probability by ∆t is not sufficient to re-establish indifference with respect to w2, i.e.

u2(x′)w2(st)ρt < u2(y′)w2(st+1+∆t)ρt+1. (A.5)

Therefore, (x′, t) ≺ (y′, t+ 1 + ∆t). �
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A.3 Uncertainty and Hyperbolicity

In order to derive the effect of increasing uncertainty on hyperbolicity we examine the sensitivity of

the departure from stationarity at t, measured by w(st+1)/(w(s)w(st)), with respect to changing s:

∂
∂s

[
w(st+1)
w(s)w(st)

]
= 1

[w(s)w(st)]2

[
(1 + t)stw(s)w(st)w′(st+1)− tst−1w(s)w(st+1)w′(st)− w(st)w(st+1)w′(s)

]
= 1

s[w(s)w(st)]2

[
(1 + t)st+1w(s)w(st)w′(st+1)− tstw(s)w(st+1)w′(st)− sw(st)w(st+1)w′(s)

]
= w(st+1)

sw(s)w(st)

[
(1+t)st+1w′(st+1)

w(st+1)
− tstw′(st)

w(st) −
sw′(s)
w(s)

]
= w(st+1)

sw(s)w(st)

[
(1 + t)ε(st+1)− tε(st)− ε(s)

]
< 0

with ε(p) = pw′(p)/w(p) defined as the elasticity of the probability weighting function w. According

to Segal (1987), p. 148, subproportionality holds iff ε(p) is increasing. As st+1 < st < s, ε(st+1) <

ε(st) < ε(s) and, hence, the sum of the elasticities in the final line of the derivation is negative.

Therefore, increasing uncertainty, i.e. decreasing s, entails a greater departure from stationarity and,

consequently, a higher degree of hyperbolicity. �

A.4 Effect of Concavity

In the course of the experiment we cannot observe discount factors at delay t, D(t), directly, however,

but infer D̃(t) from the intertemporal tradeoffs between payments at different dates, i.e. pe = D̃(t)xt.

According to our assumptions, utility is modeled by a power function u(x) = xη, η > 0, which renders

D̃(t) = D(t)
1
η . It follows that

D̃(0)/D̃(1)

D̃(t)/D̃(t+ 1)
=

(
D(0)/D(1)

D(t)/D(t+ 1)

) 1
η

(A.6)

and therefore the observed decrease in discount rates resulting from nonlinear probability weighting

gets amplified by η < 1 and, hence, concavity has to be controlled for in the regression model.
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B Censored Regression Model

This appendix discusses the way we model the difference in the censored observed discount rates,

∆δ = δ2 − δ4, and link it to individual risk preferences.

To relate time discounting to risk preferences, the model assumes the following linear relationship

between the discount rate δ∗t,i of individual i ∈ {1, . . . , N} over delay t ∈ {two months, four months}

and a vector of regressors ci, containing a constant, the parameters of risk preferences, ηi, αi and βi,

as well as some socioeconomic characteristics:

δ∗t,i = ciγt + et,i, (B.1)

where γt denotes a vector of slope parameters and et,i stands for a normally distributed error term

with mean zero and variance 1
2σ

2. Under the assumption of nonnegative discounting, the choice

menu, depicted in Figure II, allows us to directly elicit individual discount rates that lie between 0%

and 92.5%. However, if individual i always opts for being paid out at the earlier point in time (Option

A), we do not necessarily observe her true discount rate δ∗t,i as we only know that it amounts to at

least 95%. Thus, the elicited discount rates, δ2,i and/or δ4,i, are censored from above at b = 0.95. In

the data we observe

δt,i =

 δ∗t,i if δ∗t,i < b,

b otherwise.
(B.2)

This immediately yields the difference in the discount rates over two and four months,

∆δ∗i = ci (γ2 − γ4)︸ ︷︷ ︸
∆γ

+ e2,i − e4,i︸ ︷︷ ︸
∆ei

, (B.3)

where ∆ei is normally distributed with mean zero and variance σ2. Consequently, this difference

∆δ∗i is affected by censoring, too, and only observed if both δ2,i < b and δ4,i < b.

In order to avoid biased estimators for γ2, γ4, and σ, the model needs to take the censored nature
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of the data into account. Therefore, its log likelihood takes on the following form:

lnL (γ2, γ4, σ; c, δ2, δ4) =
∑

i: δ2,i=b, δ4,i=b

P (δ2,i = b, δ4,i = b | c, δ2, δ4) (B.4)

+
∑

i: δ2,i<b, δ4,i=b

P (δ2,i < b, δ4,i = b | c, δ2, δ4)

+
∑

i: δ2,i=b, δ4,i<b

P (δ2,i = b, δ4,i < b | c, δ2, δ4)

+
∑

i: δ2,i<b, δ4,i<b

1

σ
φ

(
∆δi − ci (γ2 − γ4)

σ

)
,

where φ represents the standard normal distribution’s density and the probabilities P , accounting

for the different ways by which an observation may be censored, are given by

P (δ2,i = b, δ4,i = b | c, δ2, δ4) =

[
1− Φ

(
b− ciγ2

σ

)] [
1− Φ

(
b− ciγ4

σ

)]
,

P (δ2,i < b, δ4,i = b | c, δ2, δ4) = Φ

(
b− ciγ2

σ

) [
1− Φ

(
b− ciγ4

σ

)]
,

P (δ2,i = b, δ4,i < b | c, δ2, δ4) =

[
1− Φ

(
b− ciγ2

σ

)]
Φ

(
b− ciγ4

σ

)
,

with Φ denoting the cumulative density function of the standard normal distribution. Numerical

maximization of lnL (γ2, γ4, σ; c, δ2, δ4) yields the maximum likelihood estimates of γ̂2, γ̂4, and σ̂. To

obtain the maximum likelihood estimate of ∆γ̂ we utilize the invariance property.
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C Observed Discount Rates

Figure C.1: Discount Rates δ2 and δ4 and Their Change
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D Estimated Risk Parameters

Figure D.1: Distribution of η, α and β

ηi

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

0
10

20
30

40

n=112

αi
F

re
qu

en
cy

0.0 0.5 1.0 1.5

0
10

20
30

40

n=112

βi

F
re

qu
en

cy

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

20
30

40

n=112

37



E Controls

Table E.1: Summary Statistics (n = 112)

Type Mean Std.Err.

Female binary 0.446 0.047
Age numeric 22.625 0.209

Log-Income numeric 6.380 0.067
Experience binary 0.304 0.044

CRT numeric 2.214 0.082

Table E.2: Number of Observations at the Bounds (n = 112)

δ2 δ4

≥ 95% 23 14
0% 2 0
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Anderhub, V., W. Güth, U. Gneezy, and D. Sonsino (2001): “On the Interaction of Risk and

Time Preferences: An Experimental Study,” German Economic Review, 2(3), 239–253.

Andersen, S., G. Harrison, M. Lau, and E. Rutström (2008): “Eliciting Risk and Time

Preferences,” Econometrica, 76(3), 583–618.

Anderson, L., and S. Stafford (2009): “Individual Decision- Making Experiments with Risk

and Intertemporal Choice,” Journal of Risk and Uncertainty, 38, 51–72.

Baucells, M., and F. Heukamp (2010): “Common Ratio Using Delay,” Theory and Decision, 68,

149–158.

Benjamin, D., A. Sebastian, and J. Shapiro (2006): “Who is ’Behavioral’? Cognitive Ability

and Anomalous Preferences,” mimeo.

39



Benzion, U., A. Rapoport, and J. Yagil (1989): “Discount Rates Inferred from Decisions: An

Experimental Study,” Management Science, 35(3), 270–284.

Bruhin, A., H. Fehr-Duda, and T. Epper (2010): “Risk and Rationality: Uncovering Hetero-

geneity in Probability Distortion,” Econometrica, 78(4), 1375–1412.

Caplin, A., and J. Leahy (2001): “Psychological Expected Utility Theory and Anticipatory Feel-

ings,” Quarterly Journal of Economics, 116(1), 55–79.

Chesson, H., and W. Viscusi (2000): “The Heterogeneity of Time-Risk Tradeoffs,” Journal of

Behavioral Decision Making, 13, 251–258.

Chesson, H., and W. Viscusi (2003): “Commonalities in Time and Ambiguity Aversion for Long-

Term Risks,” Theory and Decision, 54, 57–71.

Coble, K., and J. Lusk (2010): “At the Nexus of Risk and Time Preferences: An Experimental

Investigation,” Journal of Risk and Uncertainty, 41, 67–79.

Coller, M., and M. Williams (1999): “Eliciting Individual Discount Rates,” Experimental Eco-

nomics, 2, 107–127.

Dohmen, T., A. Falk, D. Huffman, and U. Sunde (2107): “Are Risk Aversion and Impatience

Related to Cognitive Ability?,” American Economic Review, 100(3), 1238–1260.

Eckel, C., C. Johnson, and C. Montmarquette (2004): “Saving Decisions of the Working

Poor: Short- and Long-Term Horizons,” in Research in Experimental Economics Vol. 10, pp.

219–260. Emerald Group Publishing Limited.

Fehr-Duda, H., M. de Gennaro, and R. Schubert (2006): “Gender, Financial Risk, and

Probability Weights,” Theory and Decision, 60, 283–313.

Fischbacher, U. (2007): “z-Tree: Zurich Toolbox for Ready-Made Economic Experiments,” Ex-

perimental Economics, 10, 171–178.

Fisher, I. (1930): “The Theory of Interest as Determined by Impatience to Spend Income and

Opportunity to Invest it,” New York: Macmillan.

40



Frederick, S. (2005): “Cognitive Reflection and Decision Making,” Journal of Economic Perspec-

tives, 19(4), 25–42.

Frederick, S., G. Loewenstein, and T. O’Donoghue (2002): “Time Discounting and Time

Preference: A Critical Review,” Journal of Economic Literature, 40, 351–401.

Gonzalez, R., and G. Wu (1999): “On the Shape of the Probability Weighting Function,” Cog-

nitive Psychology, 38, 129–166.

Hagen, O. (1972): “Towards a Positive Theory of Preference under RIsk,” In: Allais, M., Hagen,

O. (Eds.), Expected Utility and The Allais Paraox, Dordrecht, Boston, pp. 271–302.

Halevy, Y. (2008): “Strotz Meets Allais: Diminishing Impatience and the Certainty Effect,” Amer-

ican Economic Review, 98(3), 1145–1162.

Harless, D., and C. Camerer (1994): “The Predictive Utility of Generalized Expected Utility

Theories,” Econometrica, pp. 1251–1289.

Hey, J. D., and C. Orme (1994): “Investigating Generalizations of Expected Utility Theory Using

Experimental Data,” Econometrica, 62(6), 1291–1326.

Kahneman, D., and A. Tversky (1979): “Prospect Theory: An Analysis of Decision under Risk,”

Econometrica, 47(2), 263–291.

Karmarkar, U. S. (1979): “Subjectively Weighted Utility and the Allais Paradox,” Organizational

Behavior and Human Performance, 24, 67–72.

Keren, G., and P. Roelofsma (1995): “Immediacy and Certainty in Intertemporal Choice,”

Organizational Behavior and Human Decision Processes, 63(3), 287–297.

Kirby, K. (1997): “Bidding on the Future: Evidence Against Normative Discounting of Delayed

Rewards,” Journal of Experimental Psychology, 126(1), 54–70.

Laibson, D. (1997): “Golden Eggs and Hyperbolic Discounting,” Quarterly Journal of Economics,

112(2), 443–477.

41



Lattimore, P., J. Baker, and A. D. Witte (1992): “The Influence of Probability on Risky

Choice: A Parametric Examination,” Journal of Economic Behavior and Organization, 17, 377–

400.

Leigh, J. (1986): “Accounting for Tastes: Correlates of Risk and Time Preferences,” Journal of

Post Keynesian Economics, 9(1), 17–31.

Myerson, J., and L. Green (1995): “Discounting of Delayed Rewards: Models of Individual

Choice,” Journal of the Experimental Analysis of Behavior, 64, 263–276.

Myerson, J., L. Green, J. Hanson, D. Holt, and S. Estle (2003): “Discounting Delayed and

Probabilistic Rewards: Processes and Traits,” Journal of Economic Psychology, 24, 619–635.

Noussair, C., and P. Wu (2006): “Risk Tolerance in the Present and the Future: An Experimental

Study,” Managerial and Decision Economics, 27, 401–412.
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