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Abstract. We consider the Steklov eigenvalues of the Laplace operator
as limiting Neumann eigenvalues in a problem of boundary mass concen-
tration. We discuss the asymptotic behavior of the Neumann eigenvalues
in a ball and we deduce that the Steklov eigenvalues minimize the Neu-
mann eigenvalues. Moreover, we study the dependence of the eigenvalues
of the Steklov problem upon perturbation of the mass density and show
that the Steklov eigenvalues violates a maximum principle in spectral
optimization problems.
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1. Introduction

Let Ω be a bounded domain (i.e. a bounded connected open set) of class C2

in RN , N ≥ 2. We consider the Steklov eigenvalue problem for the Laplace
operator {

∆u = 0, in Ω,
∂u
∂ν = λρu, on ∂Ω,

(1.1)

in the unknowns λ (the eigenvalue) and u (the eigenfunction). Here ρ denotes
a positive function on ∂Ω bounded away from zero and infinity and ν the unit
outer normal to ∂Ω.

Keeping in mind important problems in linear elasticity (see e.g. Cou-
rant and Hilbert [4]), we shall think of the weight ρ as a mass density. In
fact, for N = 2 problem (1.1) arises for example in the study of the vibration
modes of a free elastic membrane the total mass of which is concentrated
at the boundary. Note that the total mass is given by

∫
∂Ω
ρdσ. This mass

concentration phenomenon can be described as follows.
For any ε > 0 sufficiently small, we consider the ε-neighborhood of the

boundary Ωε = {x ∈ Ω : d(x, ∂Ω) < ε} and for a fixed M > 0 we define a
function ρε in the whole of Ω as follows
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ρε(x) =

{
ε, if x ∈ Ω \ Ωε,
M−ε|Ω\Ωε|
|Ωε| , if x ∈ Ωε.

(1.2)

Note that for any x ∈ Ω we have ρε(x) → 0 as ε → 0, and
∫

Ω
ρεdx = M for

all ε > 0. Then we consider the following eigenvalue problem for the Laplace
operator with Neumann boundary conditions{

−∆u = λρεu, in Ω,
∂u
∂ν = 0, on ∂Ω.

(1.3)

We recall that for N = 2 problem (1.3) provides the vibration modes of
a free elastic membrane with mass density ρε and total mass M . It is not
difficult to prove that the eigenvalues and eigenfunctions of problem (1.3)
converge as ε goes to zero to the eigenvalues and eigenfunctions of problem
(1.1) with ρ = M

|∂Ω| . Thus the Steklov problem can be considered as a limiting

Neumann problem. We refer to [1, Arrieta, Jiménez-Casas, Rodŕıguez-Bernal]
for a general approach to this type of problems.

The aim of this paper is to highlight a few properties of the Steklov
problem which, compared to the Neumann problem, reveals a critical nature.

First, we study the asymptotic behavior of the eigenvalues of problem
(1.3) as ε → 0, when Ω is a ball. We prove that such eigenvalues are dif-
ferentiable with respect to ε ≥ 0 and establish formulas for the first order
derivatives at ε = 0, see Theorem 2.2. It turns our that such derivatives are
positive, hence the Steklov eigenvalues minimize the Neumann eigenvalues of
problem (1.3) for ε sufficiently small, see Remark 2.3.

Second, we consider the problem of optimal mass distributions for prob-
lem (1.1) under the condition that that the total mass is fixed. This problem
has been largely investigated in the case of Dirichlet boundary conditions, see
e.g. Henrot [5] for references. As for Steklov boundary conditions, we quote
the classical paper by Bandle and Hersch [3].

By following the approach developed in [6], we prove that simple eigen-
values and the symmetric functions of the multiple eigenvalues of (1.1) depend
real analytically on ρ and we characterize the corresponding critical mass den-
sities under mass constraint. See Theorem 3.1 and Corollary 3.2. Again, the
Steklov problem exhibits a critical behavior and violates the maximum prin-
ciple discussed in [10] for general elliptic operators of arbitrary order subject
to homogeneous boundary conditions of Dirichlet, Neumann and intermedi-
ate type for which critical mass densities do not exist. Indeed, it turns out
that if Ω is a ball then the constant function is a critical mass density for the
Steklov problem (1.1), see Corollary 3.3, Remark 3.4 and Theorem 3.5.

2. Asymptotic behavior of Neumann eigenvalues

Given a bounded domain Ω in RN of class C2 and M > 0 we denote by λj ,
j ∈ N, the eigenvalues of problem (1.1) corresponding to the constant surface
density ρ = M

|∂Ω| . Similarly, for ε > 0 sufficiently small, we denote by λj(ε),
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j ∈ N, the eigenvalues of problem (1.3). Note that in this paper we always
assume that N ≥ 2. Moreover, by N we denote the set of natural numbers
including zero, hence λ0(ε) = λ0 = 0 for all ε > 0.

As is well-known, by the Min-Max Principle we get the following vari-
ational characterization of the two sequences of eigenvalues:

λj(ε) = inf
E⊂H1(Ω)
dimE=j+1

sup
06=u∈E

∫
Ω
|∇u|2 dx∫

Ω
u2ρε dx

, ∀j ∈ N,

λj = inf
E⊂H1(Ω)
dimE=j+1

sup
u∈E

Tru6=0

∫
Ω
|∇u|2 dx∫

∂Ω
(Tru)2 M

|∂Ω| dσ
, ∀j ∈ N.

Here H1(Ω) denotes the standard Sobolev space of real-valued functions in
L2(Ω) with weak derivatives up to first order in L2(Ω) and Tru denotes the
trace in ∂Ω of a function u ∈ H1(Ω) . We note that, for each fixed u ∈ H1(Ω)
we have

lim
ε→0

∫
Ω
|∇u|2 dx∫

Ω
u2ρε dx

=

∫
Ω
|∇u|2 dx∫

∂Ω
(Tru)2 M

|∂Ω| dσ
. (2.1)

By looking at (2.1) one could expect the spectral convergence of the Neumann
problems under consideration to the Steklov problem. In fact the following
statement holds.

Theorem 2.1. If Ω is bounded domain in RN of class C2 then limε→0 λj(ε) =
λj for all j ∈ N.

This theorem can be proved directly by using the notion of compact conver-
gence for the resolvent operators but can also be obtained as a consequence
of the more general results proved in [1, Arrieta, Jiménez-Casas, Rodŕıguez-
Bernal].

By Theorem 2.1, it follows that the function λj(·) can be extended
with continuity at ε = 0 by setting λj(0) = λj for all j ∈ N. This will be
understood in the sequel. If Ω is a ball then we are able to establish the
asymptotic behavior of λj(ε) as ε → 0. Indeed, we can prove that λj(ε) is
differentiable with respect to ε and compute the derivative λ′j(0) at ε = 0.

Theorem 2.2. If Ω is the unit ball in RN then λj(ε) is differentiable for any
ε ≥ 0 and

λ′j(0) =
2Mλ2

j (0)

3N |Ω|
+

2λ2
j (0)|Ω|

2Mλj(0) +N2|Ω|
.

The proof of this theorem relies on the use of Bessel functions which allow to
recast the Neumann eigenvalue problem in the form of an equation F (λ, ε) = 0
in the unknowns λ, ε. Then, after some preparatory work, it is possible to
apply the Implicit Function Theorem and conclude. We note that, despite
the idea of the proof is rather simple and used also in other contexts (see
e.g. [9]), this method requires standard but lengthy computations, suitable
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Taylor’s expansions and estimates on the corresponding remainders, as well
as recursive formulas for the cross-products of Bessel functions and their
derivatives. We refer to [12] for details.

Remark 2.3. By Theorem 2.2 it follows that for ε > 0 sufficiently small the
functions ε 7→ λj(ε) are strictly increasing. In particular, it follows that for
all ε > 0 sufficiently small, we have that λj(0) < λj(ε).

It is interesting to compare our result with the monotonicity result by
Ni and Wang [11] who have proved that if Ω is the unit disk in the plane
then the first positive eigenvalue of the Neumann Laplacian in Ωε, i.e. the
first positive eigenvalue of the problem{

−∆u = λu, in Ωε,
∂u
∂ν = 0, on ∂Ωε,

(2.2)

is a strictly increasing function of ε > 0.

3. Existence of critical mass densities for the Steklov problem

Given a bounded domain Ω in RN of class C2, we denote by R the subset
of L∞(∂Ω) of those functions ρ ∈ L∞(∂Ω) such that ess inf∂Ω ρ > 0. For
any ρ ∈ R, we denote by λj [ρ], j ∈ N, the eigenvalues of problem (1.1).
By classical results in perturbation theory, one can prove that λj [ρ] depends
real-analytically on ρ as long as ρ is such that λj [ρ] is a simple eigenvalue.
This is no longer true if the multiplicity of λj [ρ] varies. As it was pointed
out in [6, 7], in the case of multiple eigenvalues, analyticity can be proved
for the symmetric functions of the eigenvalues. Namely, given a finite set of
indexes F ⊂ N, one can consider the symmetric functions of the eigenvalues
with indexes in F

ΛF,h[ρ] =
∑

j1,...,jh∈F
j1<···<jh

λj1 [ρ] · · ·λjh [ρ], h = 1, . . . , |F |

and prove that such functions are real-analytic on

R[F ] ≡ {ρ ∈ R : λj [ρ] 6= λl[ρ], ∀ j ∈ F, l ∈ N \ F} . (3.1)

In fact, we can prove the following theorem where in order to establish for-
mulas for the Frechét differentials, we find it convenient to set

Θ[F ] ≡ {ρ ∈ R[F ] : λj1 [ρ] = λj2 [ρ], ∀ j1, j2 ∈ F} .

Theorem 3.1. Let Ω be a bounded domain in RN of class C2 and F a finite
subset of N. Then R[F ] is an open set in L∞(∂Ω) and the functions ΛF,h are
real-analytic in R[F ]. Moreover, if F = ∪nk=1Fk and ρ ∈ ∩nk=1Θ[Fk] is such
that for each k = 1, . . . , n the eigenvalues λj [ρ] assume the common value
λFk [ρ] for all j ∈ Fk, then the differentials of the functions ΛF,h at the point
ρ are given by the formula
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dΛF,h[ρ][ρ̇] = −
n∑
k=1

ck
∑
l∈Fk

∫
∂Ω

(Trul)
2ρ̇dσ , (3.2)

for all ρ̇ ∈ L∞(∂Ω), where

ck =
∑

0≤h1≤|F1|
......

0≤hn≤|Fn|
h1+···+hn=h

(
|Fk| − 1

hk − 1

)
λhkFk [ρ]

n∏
j=1
j 6=k

(
|Fj |
hj

)
λ
hj
Fj

[ρ],

and for each k = 1, . . . , n, {ul}l∈Fk is a basis of the eigenspace of λFk [ρ]
normalized by the condition

∫
∂Ω

TruiTrujρdσ = δij for all i, j ∈ Fk.

The proof of this theorem follows the lines of the corresponding result
proved in [10] for general elliptic operators subject to homogeneous boundary
conditions of Dirichlet, Neumann and intermediate type. In the same spirit of
[10], we can use formula (3.2) in order to investigate the existence of critical
mass densities for the eigenvalues of the Steklov problem subject to mass
constraint. We note that a typical optimization problem in the analysis of
composite materials consists in finding mass densities ρ, with given total
mass, which minimize a cost functional F [ρ] associated with the solutions of
suitable partial differential equations depending on ρ. Namely, in the case of
Steklov boundary conditions one can consider the following problems

min∫
∂Ω

ρdσ=const.
F [ρ] or max∫

∂Ω
ρdσ=const.

F [ρ].

More in general, setting M [ρ] =
∫
∂Ω
ρdσ one can consider the problem of

finding critical mass densities ρ under mass constraint, i.e. mass densities ρ
which satisfy the condition KerdM [ρ] ⊂ KerdF [ρ]. As in [10] we can give
a characterization of critical mass densities which immediately follows by
formula (3.2) combined with the Lagrange Multipliers Theorem.

Corollary 3.2. Let all assumptions of Theorem 3.1 hold. Then, ρ ∈ R is a
critical mass density for ΛF,h for some h = 1, ..., |F |, subject to mass con-
straint if and only if there exists c ≥ 0 such that

n∑
k=1

ck
∑
l∈Fk

(Trul)
2 = c, a.e. on ∂Ω. (3.3)

The analysis carried out in [10] has pointed out that for a large class of
non-negative elliptic operators subject to homogeneous boundary conditions
of intermediate type (including the case of Dirichlet boundary conditions),
there are no critical mass densities for simple eigenvalues and the symmetric
functions of multiple eigenvalues. For example, in the case of Dirichlet or
Neumann boundary conditions, (3.3) has to be replaced by

n∑
k=1

ck
∑
l∈Fk

u2
l = c, a.e. in Ω. (3.4)
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which is clearly not satisfied in the Dirichlet case. As for Neumann boundary
conditions the same non existence result can be easily proved for simple eigen-
values in which case only a summand appears in (3.4). The situation is not
completely clear for multiple eigenvalues. Under suitable regularity assump-
tions on the eigenfunctions u1 and u2 associated with the same Neumann
eigenvalue λ one can prove that the condition u2

1 + u2
2 = c in Ω implies that

λ = 0, but the proof in the case of multiplicities higher than two seems not
straightforward. However, well-known explicit formulas for the eigenfunctions
of the Neumann Laplacian in the ball clearly show that condition (3.4) is not
satisfied, hence no critical mass densities exist for the Neumann Laplacian
in the ball. In the case of Steklov boundary conditions the situation is much
different. Indeed, if Ω is a ball then a critical mass density exists.

Corollary 3.3. Let Ω be the unit ball in RN , M > 0 and F ⊂ N be a finite
set such that the constant mass density ρ = M/|∂Ω| belongs to R[F ]. Then
ρ = M/|∂Ω| is critical for ΛF,h for all h = 1, ..., |F | under the constraint
M [ρ] = M .

The proof can be carried out as in [8]. Namely, assume that λ is an eigenvalue
of problem (1.1) with multiplicity m and consider a basis u1, . . . , um of the
corresponding eigenspace. Assume that this basis is orthonormal in L2(∂Ω)
with respect to the scalar product defined by

∫
∂Ω

TruTr vρdσ. Then for any

isometry R in RN also u1 ◦R, . . . , um ◦R is an orthonormal basis of the same
eigenspace, hence

∑m
i=1 u

2
i =

∑m
i=1 u

2
i ◦R. It follows that

∑m
i=1 u

2
i is constant

on ∂Ω.

Remark 3.4. It is interesting to compare Corollary 3.3 with a classical result
proved by Bandle and Hersch [2] in the case of a class of symmetric planar
domains. For the convenience of the reader we formulate such result assuming
directly that Ω is the unit disk in R2 centered at zero. For any n ∈ N we set

Rn = {ρ ∈ R : ρ(e2πi/nz) = ρ(z), ∀ z ∈ ∂Ω},
where the use of the complex variable z is clearly understood. Then we have
the following result

Theorem 3.5 (Bandle and Hersch). Let Ω be the unit disk in R2 centered at
zero, M > 0, n ∈ N. Then

λj [ρ] ≤ λj
[
M

2π

]
for all all j = 0, . . . , n and ρ ∈ Rn such that M [ρ] = M . Equality holds only
if ρ = M/2π.

Thus in the case of a ball in R2 the constant mass density is in fact a maxi-
mizer among all mass densities satisfying the symmetry condition above. We
refer to Bandle [2] for further discussions.
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Università degli Studi di Padova
Via Trieste, 63
35126 Padova
Italy
e-mail: proz@math.unipd.it


