
Viewpoint-Aware Object Detection and Pose Estimation

Daniel Glasner1, Meirav Galun1, Sharon Alpert1, Ronen Basri1, and Gregory Shakhnarovich2

1Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science
2Toyota Technological Institute at Chicago

Abstract

We describe an approach to category-level detection and

viewpoint estimation for rigid 3D objects from single 2D

images. In contrast to many existing methods, we directly

integrate 3D reasoning with an appearance-based voting

architecture. Our method relies on a nonparametric rep-

resentation of a joint distribution of shape and appear-

ance of the object class. Our voting method employs a

novel parametrization of joint detection and viewpoint hy-

pothesis space, allowing efficient accumulation of evidence.

We combine this with a re-scoring and refinement mech-

anism, using an ensemble of view-specific Support Vector

Machines. We evaluate the performance of our approach in

detection and pose estimation of cars on a number of bench-

mark datasets.

1. Introduction

The problem of category-level object detection has been

at the forefront of computer vision research in recent years.

One of the main difficulties in the detection task stems from

variability in the objects’ appearance due to viewpoint vari-

ation (or equivalently pose variation). While most existing

methods treat the detection task as that of 2D pattern recog-

nition, there is an increasing interest in methods that ex-

plicitly account for view variation and that combine detec-

tion with pose estimation. This paper presents an approach

that integrates detection and pose estimation using 3D class

models of rigid objects and demonstrates this approach on

the problem of car detection.

Building a viewpoint-aware detector presents a number

of challenges. The first question is how to acquire a 3D rep-

resentation of a class. The recent availability of CAD mod-

Research was supported in part by the Vulcan Consortium funded by

the Magnet Program of the Israeli Ministry of Commerce, Trade and La-

bor, Chief Scientist Office. The vision group at the Weizmann Institute

is supported in part by the Moross Laboratory for Vision Research and

Robotics.

els, 3D cameras, and robust structure-from-motion (SfM)

software have simplified this problem. Using SfM meth-

ods or 3D cameras makes it straightforward to relate the

available 3D representations to the appearance of objects

in training images. Secondly, finding the pose of an ob-

ject at test time requires search in the 6D space of possi-

ble Euclidean transformations. This can be accomplished

by searching exhaustively through a discrete binning of this

6D space. An alternative is to use a combinatorial search

(e.g. RANSAC [7]) procedure. Both options, however, can

be computationally expensive. Finally, how should detec-

tion and pose estimation be integrated? Pose estimation can

deteriorate significantly when detection is inaccurate. Can

detection be improved if pose estimation is integrated into

the process?

We suggest an approach that combines a nonparamet-

ric voting procedure with discriminative re-scoring for de-

tection and pose estimation of rigid objects. We con-

struct a class model by merging 3D shapes of objects, ob-

tained by applying state-of-the-art SFM reconstruction soft-

ware [19, 8] to a training set that we have collected. A non-

parametric voting procedure serves as an attention mecha-

nism to propose candidates for detection. Each image fea-

ture can vote for a detection of a class instance along with

its 3D pose. These proposed detections are then fed to SVM

classifiers to assign a score, refine their location and bound-

ing box, and improve their pose estimates. We focus our ex-

periments on cars and apply our algorithm to four datasets:

Pascal 2007, 3D-pose data set [18], EPFL car data set [17],

and the data set we have collected and annotated for this

work.

We present several contributions:

• Our efficient voting procedure uses single feature votes

to index the 6D space of transformations.

• The 6D space of transformation is treated as a con-

tinuous space. This allows us to estimate novel poses

through a mean-shift mode seeking process.

• The combination of our 3D model and the collected

training data allows us to achieve favorable detection

and pose estimation results on a variety of publicly

available datasets compared to existing, view-aware

detection methods.

2. Background

A common approach for coping with viewpoint variabil-

ity is to use multiple, independent 2D models. This multi-

view approach describes the appearance of an object class

at a discrete set of representative viewpoints. These algo-

rithms (e.g., [25, 6, 17, 13]) assume that the 2D appearance

of an object near the representative views varies smoothly

and that local descriptors are robust enough to handle these

appearance variations. [10] extend this approach to allow

for continuous viewpoint estimation by learning a linear

model around each of the discrete representative views.

Another line of studies [18, 24, 21] approaches the prob-

lem of view variation by building 2D multi-part represen-

tations and establishing correspondences among the parts

across different class views. The resulting model accounts

for a dense, multiview representation and is capable of rec-

ognizing unseen views.

Algorithms that utilize 3D CAD models, have been sug-

gested in [15, 20]. To predict the appearance of objects in

2D images from the CAD models, these methods render the

CAD models and extract features (e.g., edges) from the ren-

dering. A related work [14], utilizes both CAD and real

images, but proposes to treat appearance and geometry as

separate learning tasks. In all of these works [15, 14, 20] the

pose estimation is limited to a discrete set of viewpoints.

In other work, Arie-Nachimson and Basri [1] construct

a 3D model by employing an SfM process on the entire

training set of class images. Their method requires finding

correspondences between parts as they appear in different

class instances. Sun et al. [22] suggest the use of depth

information, and train models using depth maps acquired

with a range camera. Detections are generated by depth-

encoded voting. Pose estimation is then achieved by regis-

tering the inferred point cloud and a 3D CAD model. The

Poselets method [3] requires viewpoint invariant annotation

of parts in training data, and creates a model by clustering

parts based on appearance. Finally, a hybrid 2D-3D model

is suggested in [11]. The model consists of stick-like 2D

and 3D primitives. The learning selects 3D primitives to

describe viewpoint varying parts and 2D primitives where

appearance is viewpoint invariant.

3. Nonparametric detection

We approach the problem of object detection and pose

estimation in two stages. First we apply nonparametric vot-

ing to produce a bank of candidate detections along with

their estimated poses. Then we apply a discriminative re-

scoring procedure designed to improve the detection and

pose estimation results. In this section we describe the con-

struction of a 3D model and the voting in the 6D space of

possible pose variables. The re-scoring step is described in

Section 4.

Hough-like voting procedures have proved effective in

object detection both in 2D [12] and in 3D methods [1, 23].

Their success is due to the frequent resemblance of corre-

sponding visual elements across instances of a class. Thus,

for example, an image region similar to a stored patch de-

picting the appearance of a bottom left windshield corner in

a previously seen car may indicate the presence of a wind-

shield corner of a (possibly different) car in the test image.

Moreover, since appearance can change significantly with

viewpoint, such a match may also indicate the viewpoint

from which the car is observed. Naturally, such evidence

would not be very reliable, as we confine ourselves to small

regions. Voting allows us to overcome this by accumulating

information from a large number of regions and identifying

constellations of patches that cooperatively look like parts

of previously seen class instances. These patches are seen

from similar viewpoints, and arranged in positions consis-

tent with each other under that viewpoint.

3.1. Model representation

The object category of interest is represented by a set

of 3D models of object instances. Each single model con-

sists of a cloud of 3D points in a class-centered coordinate

frame, i.e., the 3D models of the different class instances are

aligned to produce consistent poses. Along with these 3D

models we store a collection of regions obtained from the

set of training images at different scales. Each image region

(patch) is associated with a particular 3D position and a par-

ticular viewpoint and scale. These patches are the basic ele-

ments of our nonparametric model. Each patch is described

by a 3D feature represented as a tuple f3 = 〈e, l, t,x〉,
where e is a descriptor of the patch appearance, l is the 3D

location of the associated keypoint, and t and x are related

to the training image from which the patch associated with

f3 was extracted. t indexes the image and scale, and x is

the location of the patch in that image. Note that multiple

features will share the same 3D location l, but will have dif-

ferent t values (indicating that they come from different im-

ages at different scales) and possibly different appearance e

(see Figure 1). We will refer to the entire collection of 3D

features f3

1
, . . . , f3

D pooled from all the models as the 3D

database. Preservation of multiple instances in the model

allows us to mix and match parts from different instances,

without potential loss of discriminative information associ-

ated with quantization, which has been pointed out in [2].

Finally, we include in our model a set of m designated

3D points P = {pdes
1
, . . . ,pdes

m }. For our car model we use

m = 4 and select the origin along with three vertices of

Figure 1. 2D appearances An example of the different 2D appear-

ances {e} of a 3D point l (denoted as a green dot) as seen from

different view-points and scales (corresponding to different train-

ing image indices t)

a cube of side length one half, centered at the origin. We

discuss the role of these designated points at greater length

below.

3.2. Pose­sensitive voting

The objective of the voting step is to identify clusters

of features that vote for the class in positions consistent

with a particular pose setting. This voting step lies at the

core of our method and differs from previously proposed

voting schemes in two ways. First, the votes are cast in-

dependently by individual features. This is different and

more efficient than existing methods that either discretely

sample the 6D pose space (and often just a small subset of

the subspace) or resort to exhaustive enumeration of sub-

sets of feature constellations in the input. Second, we cope

with the non-uniformity of the space of Euclidean transfor-

mations (SO(3)× R
3) by representing the transformations

using their effect on the set of designated points, which pro-

duces an embedding amenable to a Euclidean norm.

As is typical of nonparametric models, most of the com-

putation occurs at test time, when an input image is fed to

the detector. The image is covered by an overlapping grid of

patches; each patch corresponds to a 2D feature represented

by f2 = 〈e,x〉 where e is the descriptor extracted from the

patch, and x is the 2D coordinates of the patch.

An input feature f2

i = 〈ei,xi〉 “solicits” votes from the

instance models, as follows. We find the K nearest neigh-

bors of ei among the descriptors of model patches, and con-

sider the corresponding 3D features to be the matches for

f2

i . Without loss of generality, let these be f3

1
, . . . , f3

K . A

match f2

i = 〈ei,xi〉 → f3

k = 〈ek, lk, tk,xk〉 implies a

hypothesized transformation Ti,k, as explained below.

In this work we consider the weak perspective projection

model: an object undergoes isotropic scaling, 3D rotation

and 2D translation parallel to the image plane, followed by

orthographic projection onto the image plane. The scaling is

equivalent to translation along the axis orthogonal to image

plane prior to projection. Projective transformations in this

family have six degrees of freedom (DOF): two for in-plane

translation, one for scaling, and three for rotation.

We assume that an object point’s appearance is invariant

under translation but varies under rotation and scale. We

can thus hypothesize that since the patch of f2

i is similar to

that of f3

k , the corresponding object point is viewed from the

same viewpoint and at the same scale (equivalently transla-

tion along the optical axis z). Thus, four out of six DOF

of Ti,k can be inferred directly from f3

k (by looking up the

scale and viewpoint of the training image indexed by tk).

The remaining two parameters of translation parallel to the

image plane are recovered from the equation

Ti,k(lk) = xi.

We now need to turn the estimated Ti,k into a vote in the

space of transformations. In the spirit of Hough transform,

we choose a parametrization for this 6D space, keeping in

mind the eventual need to identify peaks and evaluate sim-

ilarity between votes. We solve this with the help of the

designated points, defined in Section 3.1. Specifically, we

represent Ti,k as a point in R
2m:

V (i, k) = [Ti,k(p
des
1
)T , . . . , Ti,k(p

des
m)T]T , (1)

where {pdes
j } denote the designated points in the model and

Ti,k(p
des
j) = xi +

(

x
tk
j − xk

)

. (2)

Here x
tk
j is the projection of the j’th designated point onto

the training image indexed by tk. This is illustrated in

Fig. 2. Note that the weak perspective assumption allows us

to store the locations of the projections of designated points

in each training image and simply apply the translation part

of Ti,k at test time to generate a vote. We denote by V the

set of all the votes cast by features of the input image; if the

number of 2D features extracted from the input image is N0

then |V| = K ·N0.

3.3. Vote consolidation

Once all votes have been cast, we seek peaks as modes

of the estimated density of votes, subject to pose consis-

tency. These can be found by the mean-shift algorithm

which climbs the estimated density surface from each vote.

We found this to be somewhat slow in practice, and there-

fore resorted to a multi-stage approximation, described in

some detail in Section 5.

Finally, we form vote clusters by a greedy procedure.

The top ranked mode V ′

1
is associated with the first cluster.

In general, V ′

1
is a point in the 2m-dimensional voting space

Figure 2. Voting process. Four patches from the test image (top

left) are matched to database patches. The matching patches are

shown with the corresponding color on the right column. Each

match generates a vote in 6D pose space. We parameterize a point

in pose space as a projection of designated points in 3D onto the

image plane. These projections are shown here as dotted triangles.

The red, green and blue votes correspond to a true detection, the

cast pose votes are well clustered in pose space (bottom left) while

the yellow match casts a false vote.

which may not correspond to a valid transformation (i.e. it

is not obtainable as a projection of the designated points

in the weak perspective model). We therefore compute a

valid transformation for each mode which maps the desig-

nated points to a similar constellation. This is equivalent

to the problem of camera calibration from correspondences

between m image points in V ′ and their known 3D counter-

parts in the form of designated points. We solve it as such,

using the method in [27] as implemented in the “camera

calibration toolbox”, and use the resulting transformation

to reproject the designated points onto the test image. We

denote this “corrected” mode, now guaranteed to be valid,

as Ṽ ′.

Now we associate with the cluster represented by Ṽ ′ all

votes that are sufficiently similar to Ṽ ′ in the location of the

detected object and the estimated viewpoint (see Section 5

for details). The points associated with the top-ranked mode

are culled from the vote set V . The second ranking mode

(if it has not been associated with the first cluster) is cor-

rected, and the votes still in V are associated with it based

on similarity. The process continues until we have the de-

sired number of clusters or V is empty.

4. Verification, refinement, and rescoring

The voting procedure described in the previous section

results in a set of hypothesized detections, represented by

Ṽ ′

1
, . . . , Ṽ ′

N . These are passed to the second stage of our

detector, which ranks detection candidates, improves local-

ization and bounding boxes, and resolves opposite view-

point ambiguities. The overall objective is to improve the

precision-recall performance.

We cast this as a scoring problem: given a region b in

the image, we assign a score value S(b) which is higher

the more likely we deem b to be the bounding box of an

object instance. This score can be used to classify the re-

gion, by thresholding S, and to rank detections, ordering by

decreasing value of S.

SVM scoring We use Support Vector Machine (SVM)

to estimate the score S(b). A region b is represented as a

feature vector h(b) which is a concatenation of histograms

of oriented gradients computed over a pyramid of spatial

bins. We train the SVM on a set of feature vectors {bn}
computed from labeled example regions. Details are given

in Section 5. Once trained, the SVM score is computed as

S(b) =
∑

n∈SV

αnK(h(b), h(bn)) (3)

where αn are positive coefficients, SV is a subset of indices

of training examples and K is an RBF kernel function

K(x, x′) = exp

{

−
1

σ2
‖(x− x′)‖2

2

}

.

Viewpoint specific training We can either train a single

SVM, or a set of SVMs, designating a separate machine per

sector in the viewpoint sphere. Our motivation for choosing

the latter is related to the observation, shared by [5], that

pose changes may be better fit by a mixture of appearance-

based models. In this case, we provide a different set of

positive examples to each SVM - namely those in which the

correct viewpoint falls within the associated viewpoint re-

gion. The set of negative examples is shared across SVMs.

At test time we use the viewpoint estimated by the vot-

ing procedure to determine which SVM to apply. Given a

candidate detection with an estimated viewpoint, we com-

pute the score of the SVM “responsible” for that viewpoint,

and its opposite, corresponding to the 180 degree reversal

of viewpoint. This is due to the empirical observation that

the errors “flipping” the object seem to be far more frequent

than other errors in viewpoint estimation. The higher SVM

score is used as the detection score and the pose is flipped

if this score was produced by the SVM responsible to the

flipped direction.

Refinement Inspired by [6] we also use the SVM scor-

ing to refine the detection bounding box via local search.

Given the initial bounding box b generated by the voting,

we consider a set of perturbed versions of b, obtained by

a fixed set of shifts and scale changes relative to b. Each

of these is scored, and the version with the highest score is

used.

5. Experiments

We evaluate our approach on the problem of car detec-

tion. Below we describe the training data and the model

obtained, and report the results on a number of benchmark

data sets.

5.1. Training data and the model

Data collection and initial model building We col-

lected and processed 22 sets of images of different car mod-

els. A set consists of approximately 70 images on aver-

age, of one car taken from different viewpoints which cover

a full rotation around the car. The pictures were taken in

an unconstrained outdoor setting using a hand-held camera.

There are significant illumination changes, many images in-

clude cars in the background, and in some images the car is

cropped or occluded. See Figure 3 (a).

Model construction and alignment We use

Bundler [19] and PMVS2 software [8] to turn a collection

of images of an instance from the class into a model. This

yields a set of models with coordinate frames that are some-

what arbitrary. We transform the coordinates so that the

object centroid is at the origin, and the coordinate frame

is aligned with the three principal components of the 3D

point cloud (enforcing a left-handed system to avoid am-

biguities) for each instance. We then manually identify an

image of each instance that is closest to an (arbitrarily de-

fined) canonical viewpoint, and refine the alignment. Fi-

nally, each point cloud is scaled so that the extent along a

selected dimension is 1 (for cars we use the width). Note

that this process modifies the values of l, but not e or x, of

the 3D features; it also modifies the viewpoint assigned to a

specific image and scale indexed by t. See Figure 3.

Pruning Combined with high image resolution and

the relatively dense sampling of the viewpoints in our data,

the initial output from PMVS2 contains an extremely large

number of 3D keypoints sampled very densely in some re-

gions, and, consequently, of patches. We concluded that

this density increases computational burden on a nonpara-

metric detector without significant benefit. Thus we chose

to prune the database. For each model, we divided the 3D

bounding box of the cloud of 3D keypoints constructed by

PMVS2 into equal sized cells. In each cell, we used the

estimation of the normal direction as produced by PMVS2

to select a small number of representative keypoints. We

binned the points according to the octant in which their nor-

mal resides and selected one representative from each bin

as the one closest to the cell center. The pruned database

consists, for each model, of the 3D features corresponding

to these representatives.

Efficient similarity search Even after the pruning de-

scribed above, the 3D database remained prohibitively large

for a brute force similarity search. Instead, we used the

ANN library by Mount and Arya [16], and built a data struc-

ture allowing sublinear time approximate nearest neighbor

search. The metric used on descriptors was ℓ2.

5.2. Implementation details

Patch descriptors We use a descriptor [9] which is

similar to the HoG descriptors used extensively in the liter-

ature. Given a reference point x, we take the square region

with side B ∗C, with x at its left corner. This region is par-

titioned into a grid of B × B square blocks of size C × C
pixels. Within each block, we compute intensity gradient

at each pixel, bin the gradient orientations into P orienta-

tion bins, and compute the histogram of total gradient mag-

nitudes within each bin. Finally, all B2 such histograms

for the region are divided by the total gradient energy aver-

aged over the B2 blocks, truncated at 1, and concatenated.

Parameters B, P and C are set to 3, 5 and 8 respectively,

producing 45-dimensional descriptors.

Finding modes of vote density At each recorded vote

Vi we compute a kernel density estimate (KDE) p̂(Vi) using

RBF kernels in the R
2m vote representation space. We se-

lect the n votes with the highest value of p̂; to these we

add n′ randomly selected additional votes. Then, using

mean-shift, we find the mode associated with each of the

selected votes. These n + n′ modes are then ordered ac-

cording to their densities (again estimated by KDE, using

all the votes).

Vote clustering We used two criteria, the conjunction

of which implies sufficient similarity between a vote and a

cluster prototype. First, let the bounding box implied by

Ṽ ′ be b′, and the viewpoint be represented by a unit norm

vector r′. The bounding box implied by a transformation is

the bounding box of the projection of the model on to the

test image.

A vote Vi with bounding box bi and viewpoint vector ri
is similar to Ṽ ′ if

o(bi,b
′) ≥ 0.5 and |∠(ri, r

′)| ≤ π/8,

where the bounding box overlap is defined by

o(bi,b
′) =

bi

⋂

b′

|bi

⋃

b′|
, (4)

and ∠(ri, r
′) is the angle between two 3D vectors.

SVM training and application A region b is repre-

sented by a histogram of oriented gradients, computed over

a pyramid of spatial partitions similar to [26]. At the first

level, we simply compute the histogram of gradient ener-

gies over the entire region, binned into P orientations. At

the second level, we partition the region into 2 × 2 subre-

gions, and compute the four histograms, one per subregion,

and similarly for the third level producing 16 histograms.

The histograms for all levels are concatenated to form a sin-

gle descriptor for the region. A region is considered positive

(a) car images (b) 3D scene (c) instance models (d) class model

Figure 3. Model construction. We construct the model from multiple sets of car images, some example frames from two different

sequences can be seen in (a). Using Bundler we reconstruct a 3D scene (b). The car of interest is segmented and aligned (c). Finally a view

of the class model is shown in (d).

if its overlap with the bounding box of a known object de-

tection, as defined in (4), is above 0.5, and negative if the

overlap is below 0.2.

To refine detections, we consider vertical shifts by

{0,±0.2 ·H} pixels, and horizontal shifts by {0,±0.2 ·W}
where H and W are the height and width of b. For each

combination of shifts, we scale the bounding box around its

center by {80%, 90%, 100%, 110%, 120%}. This results in

45 bounding boxes (one of which is the original b), among

which we choose the one with the highest value of SVM

score S.

5.3. Results

We present detection (localization) and pose estimation

results on three publicly available datasets.

The car category of the Pascal VOC 2007 challenge [4],

the car category of the 3D-pose dataset of [18] and the EPFL

multi-view cars dataset [17]. We also report pose estimation

results on the car dataset we generated for this work.

Pascal VOC detection results We evaluate the detec-

tion performance of our detector on the car category of the

Pascal VOC 2007 data-set. The reported average precision

(AP) scores were computed using the Pascal VOC 2007

evaluation protocol.

As a baseline for detection evaluation we use our voting

mechanism in a redundant “2D mode”. In the “2D mode”

each match generates a vote for the location of a 2 dimen-

sional bounding box. 3D voting slightly outperforms the 2D

voting with an AP of 16.29% compared to 15.86%.

We train an SVM classifier as described in Section 4,

for positive examples we use windows from the 3D-pose

dataset, the EPFL dataset, our car dataset and the train-

ing images in the car category of Pascal VOC2007. Neg-

ative examples were taken from the training subset of Pas-

cal VOC2007. The view-independent SVM classifier in-

creases the AP for both 2D and 3D voting. The 3D retains a

slight advantage with 27.97% compared to the 2D score of

24.34%.

In the final experiment we apply viewpoint specific SVM

classifiers to the 3D votes. We train the classifiers as de-

scribed in Section 4, using the same training data used in

the view independent training but omitting the Pascal pos-

itive training examples, which are not labeled with (suffi-

ciently fine) viewpoint information. The pose estimated by

the 3D-voting is used to index the different classifiers. The

combination of 3D voting and 8-viewpoint specific SVM

classifiers produces the best result with an AP of 32.03%.

Note, that this score is achieved without any positive train-

ing examples from Pascal. Our AP score of 32.03% is a sig-

nificant improvement compared to the AP score of 21.8%
reported in [22]. The AP results are summarized in Table 1

and the recall precision curves are shown in Figure 4(a).

Note that the result of [22] was achieved using different

training data. Namely, the authors collected images of 5

cars from 8 viewpoints and used these to transfer approx-

imate depth information to Pascal training images which

were then used to train their detector. To reduce effects of

additional training data we excluded all positive examples

from the 3D-pose dataset, and the EPFL dataset and reran

this last experiment using only positive examples from our

own dataset without using any positive Pascal training im-

ages. The AP decreased from 32.03% to 29.43%.

3D-pose dataset The 3D-pose dataset was introduced

by [18] to evaluate detection and pose estimation. In this

work we report state-of-the-art results for both detection

and pose estimation on the car category of this data-set.

The car category includes 10 sets of car images, each set

includes 48 images taken at 3 scales, 8 viewpoints and 2

2D voting 2D voting + SVM 3D voting 3D voting + SVM 3D voting + 8view-SVM

AP 15.86% 24.34% 16.29% 27.97% 32.03%

Table 1. Pascal VOC 2007 cars. Average precision achieved by our detectors compared to a 2D baseline.

(a) recall-precision. 3D voting fol-

lowed by 8-view SVM (red) out-

performs 3D voting (blue) and 3D

voting followed by SVM (green).

We achieve an average precision

of 32.03% without using positive

training examples from Pascal.

(b) pose estimation. A subset of

the cars was annotated with one of

40 different labels corresponding to

approximately uniform samples of

the azimuth range. We show our la-

bel differences alongside those re-

ported in [1].

Figure 4. Pascal VOC 2007 cars.

voting voting + SVM voting + 8view-SVM

AP 90.17% 94.85% 99.16%

AA 83.88% 85.28%

Table 2. Results on 3D-pose cars. Average Precision (AP) and

Average Accuracy (AA) for pose estimation.

different elevations. We follow [20], and use sets 1-5 for

training and sets 6-10 for testing. We train an SVM using

sets 1-5 along with positive examples from our own dataset,

negative examples are taken from Pascal. AP scores were

computed using the Pascal VOC2010 evaluation protocol

and are summarized in Table 2. The combination of 3D vot-

ing and an 8-view SVM produces an AP result of 99.16%
this is an improvement over the previous state-of-the-art (to

the best of our knowledge) of 89.8% reported in [20]. Note

that [20] use different training data, they rely on 41 car CAD

models while we rely on our dataset of 22 cars.

We also achieve state-of-the-art results for pose classifi-

cation on this dataset. Our average classification accuracy

results are given in Table 2. Our best result of 85.28% is

an improvement over 81% of [20]. Note that [20] report

their average accuracy score of 81% on a smaller set (AP

= 81.3%) while we achieve a better classification accuracy

score on a larger set (AP = 99.16%). A confusion matrix

and label differences are presented in Figure 5.

Pose estimation on Pascal The Pascal data includes

only coarse pose labels (frontal / rear / right / left). Arie-

Nachimson and Basri [1] augmented the pose labels on a

subset of the 2007 test category. They labeled approxi-

mately 200 car instances with one of 40 labels which corre-

spond to an approximately uniform sample of azimuth an-

Figure 5. 3D-pose cars - pose estimation. A confusion matrix and

a histogram of label differences. Average accuracy is 85.28%.

(a) EPFL multiview cars - pose

estimation. A histogram of the an-

gular errors in pose estimates. Our

median angular error is 24.83 de-

grees. Computed on an 89.54% AP

detection set.

(b) Our car dataset - pose estima-

tion. We achieve a median angular

error of 10.4 degrees.

Figure 6. Pose estimation results.

gles. In their paper they report differences between the la-

bels of their estimated pose and the ground truth labels for

188 objects. We detected 180 of these objects, and com-

pared our pose estimation to theirs in Figure 4(b).

EPFL car data set The EPFL multiview car dataset

was introduced in [17]. The dataset was acquired at a car

show, 20 different models were imaged every 3 to 4 degree

while the cars were rotating to produce a total of approxi-

mately 2000 images. We train 8-view SVM classifiers us-

ing the positive examples from the first 10 models along

with images from our dataset and from the 3D-pose dataset.

Negative examples were taken from Pascal training images.

We ran our 3D-voting followed by SVM on the last 10

models achieving an average precision of 89.54% (mea-

sured using Pascal VOC 2010 evaluation protocol). We

then evaluate our pose estimates on the true detections. We

achieve a median angular error of 24.83 degrees. We show

a histogram of the angular errors in our pose estimates in

Figure 6(a). [17] shows a similar histogram, however our

results are not directly comparable since they report pose

estimates on all of the windows which were considered by

their classifier and overlapped the ground truth by more than

one half.

Pose estimation on our car dataset We conclude with

a pose estimation experiment on our car dataset. We par-

tition the 22 cars into three sets of size 7,7 and 8 and run

three experiments in which we use one set for testing and

the other two to generate our 3D model and 3D voting de-

tector. We then take the top-scoring detection from each

image. In some of the images the top scoring detection is

a car in the background of the image. We discard these

detections and evaluate pose on the remaining detections

in which the pose annotated car was detected. We achieve

fairly accurate pose estimation with a median angular error

of 10.4 degrees. A histogram of angular errors is shown in

Figure 6(b).

6. Conclusions

In this paper we have described an approach that handles

detection and viewpoint estimation as a joint task, and inte-

grates reasoning about appearance and shape of the objects

in a “native” way. Along the way we have made a number

of choices that stand in contrast to related work in the lit-

erature. One is the construction of a nonparametric model,

which maintains multiple instances of objects and multiple

features without quantization or clustering. Another is to

reason about detection and viewpoint jointly in a 6D param-

eter space, and to parametrize hypotheses in this space by

means of projecting a set of designated points. Finally, we

use the viewpoint estimate provided by the voting method to

apply viewpoint-aware verification and refinement mecha-

nism. We believe that these choices all serve to improve

performance of the detector, as demonstrated in our experi-

ments.

In the current system each vote counts equally. We be-

lieve that one can improve performance significantly by dis-

criminatively learning weights to be assigned to 3D fea-

tures; such an extension is the subject of our current work.

References

[1] M. Arie-Nachimson and R. Basri. Constructing implicit 3d

shape models for pose estimation. In ICCV, 2009. 2, 7

[2] O. Boiman, E. Shechtman, and M. Irani. In defense of

nearest-neighbor based image classification. In CVPR, 2008.

2

[3] L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting peo-

ple using mutually consistent poselet activations. In ECCV,

2010. 2

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The pascal visual object classes (voc)

challenge. IJCV, 88(2), 2010. 6

[5] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part

based models. PAMI, 2010. 4

[6] P. Felzenszwalb, D. McAllester, and D. Ramanan. A dis-

criminatively trained, multiscale, deformable part model. In

CVPR, 2008. 2, 4

[7] M. Fischler and R. Bolles. Random sample consensus: a

paradigm for model fitting with application to image analysis

and automated cartography. Communications of the ACM,

24(6), 1981. 1

[8] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-

view stereopsis. PAMI, 2010. 1, 5

[9] D. Glasner and G. Shakhnarovich. Nonparametric voting ar-

chitecture for object detection. TTIC Technical Report, (1),

2011. 5

[10] C. Gu and X. Ren. Discriminative Mixture-of-Templates for

Viewpoint Classification. In ECCV, 2010. 2

[11] W. Hu and S. Zhu. Learning a Probabilistic Model Mixing

3D and 2D Primitives for View Invariant Object Recognition.

In CVPR, 2010. 2

[12] B. Leibe, A. Leonardis, and B. Schiele. Robust object detec-

tion with interleaved categorization and segmentation. IJCV,

2008. 2

[13] Y. Li, L. Gu, and T. Kanade. A robust shape model for multi-

view car alignment. In CVPR, June 2009. 2

[14] J. Liebelt and C. Schmid. Multi-view object class detection

with a 3d geometric model. In CVPR, 2010. 2

[15] J. Liebelt, C. Schmid, and K. Schertler. Viewpoint-

independent object class detection using 3D feature maps.

In CVPR, 2008. 2

[16] D. Mount and S. Arya. ANN library.

www.cs.umd.edu/˜mount/ANN. 5

[17] M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for cate-

gory specific multiview object localization. In CVPR, 2009.

1, 2, 6, 7

[18] S. Savarese and L. Fei-Fei. 3D generic object categorization,

localization and pose estimation. In ICCV, 2007. 1, 2, 6

[19] N. Snavely, S. M. Seitz, and R. Szeliski. Photo Tourism:

Exploring Image Collections in 3D. In ACM Transactions

on Graphics (Proceedings of SIGGRAPH 2006), 2006. 1, 5

[20] M. Stark, M. Goesele, and B. Schiele. Back to the future:

Learning shape models from 3d cad data. In BMVC, 2010.

2, 7

[21] H. Su, M. Sun, L. Fei-Fei, and S. Savarese. Learning a dense

multi-view representation for detection, viewpoint classifica-

tion and synthesis of object categories. In ICCV, 2009. 2

[22] M. Sun, G. Bradski, B. Xu, and S. Savarese. Depth-Encoded

Hough Voting for Joint Object Detection and Shape Recov-

ery. ECCV, 2010. 2, 6

[23] M. Sun, G. Bradsky, B. Xu, and S. Savarese. Depth-encoded

hough voting for joint object detection and shape recovery.

In ECCV, 2010. 2

[24] M. Sun, H. Su, S. Savarese, and L. Fei-Fei. A Multi-View

Probabilistic Model for 3D Object Classes. In CVPR, 2009.

2

[25] A. Thomas, V. Ferrar, B. Leibe, T. Tuytelaars, B. Schiel, and

L. Van Gool. Towards multi-view object class detection. In

CVPR, volume 2, 2006. 2

[26] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Mul-

tiple kernels for object detection. In ICCV, 2009. 5

[27] Z. Zhang. A flexible new technique for camera calibration.

PAMI, 2002. 4

