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Abstract. Viewpoint invariant pedestrian recognition is an important
yet under-addressed problem in computer vision. This is likely due to
the difficulty in matching two objects with unknown viewpoint and pose.
This paper presents a method of performing viewpoint invariant pedes-
trian recognition using an efficiently and intelligently designed object
representation, the ensemble of localized features (ELF). Instead of de-
signing a specific feature by hand to solve the problem, we define a feature
space using our intuition about the problem and let a machine learning
algorithm find the best representation. We show how both an object
class specific representation and a discriminative recognition model can
be learned using the AdaBoost algorithm. This approach allows many
different kinds of simple features to be combined into a single similarity
function. The method is evaluated using a viewpoint invariant pedestrian
recognition dataset and the results are shown to be superior to all pre-
vious benchmarks for both recognition and reacquisition of pedestrians.

1 Introduction

Pedestrian tracking is a deceptively hard problem. When the camera is fixed
and the number of targets is small, pedestrians can easily be tracked using
simple naive methods based on target location and velocity. However, as the
number of targets grows, occlusion creates ambiguity. This can be overcome by
delaying decisions and considering multiple hypothesis [1] and efficient solutions
exist for solving this correspondence problem [2]. However, as the size of the
scene itself grows, additional cameras are needed to provide adequate coverage.
This creates another problem known as pedestrian re-identification. This is a
much more challenging problem because of the lack of hard temporal (frame
to frame) constraints when matching across non overlapping fields of view in a
camera network. However, the ultimate goal of any surveillance system is not
to track and reacquire targets, but to understand the scene and provide a more
effective interface to the operator. Central to this goal is the ability to search the
camera network for a person of interest. This is effectively the same as pedestrian
re-identification without any temporal constraints. This problem of pedestrian
recognition is the main subject of this paper.

Pedestrian recognition presents a number of challenges beyond the tracking
problem, most importantly a lack of temporal information. Thus the matching

D. Forsyth, P. Torr, and A. Zisserman (Eds.): ECCV 2008, Part I, LNCS 5302, pp. 262–275, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://vision.soe.ucsc.edu/


Viewpoint Invariant Pedestrian Recognition with an ELF 263

decision must be made on the appearance model alone. So what is the best
appearance model for pedestrian recognition?

The default option is a simple template, but this representation is viewpoint
and pose specific. If the viewpoint angle is known one can compensate using
flexible matching and alignment [3] [4] [5], but this will not work well for non-
rigid objects. If the problem is limited to a frontal viewpoint then one could
fit a triangular graph model [6] or part based model [7] to account for pose
change. If multiple overlapping cameras are available it is possible to build a
panoramic appearance map [8]. While template methods model the spatial lay-
out of the object, histogram methods model its statistical properties. Histograms
have proven useful for an assortment of tasks including tracking [9], texture clas-
sification [10], and pedestrian detection [11]. Many attempts have been made to
combine the advantages of templates and histograms. Past approaches include
recording correlations in correlograms [12], spatial position in spatiograms [13],
vertical position in principal axes [14], or scale in multi-resolution histograms
[15]. Both template and histogram methods suffer from problems with illumina-
tion changes, however it has been shown that this can be compensated for by
learning the brightness transfer function between cameras [16].

The appearance model presented in this paper is a hybrid of the template
and histogram, however instead of designing the model by hand, machine learn-
ing is used to construct a model that provides maximum discriminability for
a set of training data. The learned model is an ensemble of localized features,
each consisting of a feature channel, location and binning information, and a
likelihood ratio test for comparing corresponding features. Once the model has
been learned, it provides a similarity function for comparing pairs of pedes-
trian images. This function can be used for both pedestrian re-identification and
recognition. In a practical implementation of the latter case it is expected that

Fig. 1. Some examples from the viewpoint invariant pedestrian recognition (VIPeR)
dataset [17]. Each column is one of 632 same-person example pairs.
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a human operator would be involved, so we provide both the recognition rate
and the expected search time for a human operator.

While there is a great deal of data available for pedestrian detection, training
a similarity function for recognition requires multiple images of the same indi-
vidual. We have chosen to use the VIPeR dataset [17], which contains two views
of 632 pedestrians. Some examples of pedestrian image pairs can be found in
figure 1. Results for the proposed method are presented in section 4 and shown
to far exceed the existing benchmarks.

2 Learning the Similarity Function

Learning domain specific distance or similarity functions is an emerging topic in
computer vision [18] [19] [20] [21]. Some have attempted to learn fast approxi-
mations [20] to other more computationally expensive functions such as EMD
[22]. While others have focused on the features that are found in the process
[19]. These approaches can be summarized as follows: AdaBoost is used to se-
quentially learn computationally inexpensive features to solve a classification
problem. Our approach is quite similar in these respects, however our similarity
function is domain specific (i.e. only applicable to comparing pedestrian images).

The proposed similarity function is a weighted ensemble of likelihood ratio tests,
constructed with the AdaBoost algorithm, a brief review of which can be found in
Algorithm 1. At each iteration of the algorithm, the feature space is searched for

Algorithm 1: AdaBoost

Given:

– N labeled example training examples (xi, yi) where xi is a pair of pedestrian
images and yi ∈ {−1, 1} denotes if the two image are of the same person.

– A distribution over all training examples: D1(i) = 1/N for i = 1 . . . N .

For t = 1, . . . , T :

– Find the best localized feature λt and model mt for the current distribution
Dt.

– Calculate the edge γt

γt =

N�

i=1

Dt(i)h(xi)yi

– If γt < 0 break
– Set αt = 1

2
ln 1+γt

1−γt

– Set Dt+1(i) = 1
Zt

Dt(i) exp (−αth(xi)y(i)), where Zt is a normalizing factor
– Add αt, λt and mt to the ensemble

Output the ensemble of weights as A, features as Λ, and models as M .

Fig. 2. The AdaBoost algorithm for learning the similarity function
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the best classifier w.r.t. the current distribution and added to the ensemble. In
order to keep the problem tractable, we have selected a feature space that can be
searched in a reasonable amount of time and is appropriate for the class of input
data. While the main objective is to learn an effective similarity function, the size
of the classifier is also important. For this reason the input to each classifier is
always selected to be a scalar.

2.1 Formulation

The proposed task is to simultaneously learn a set of discriminative features and
an ensemble of classifiers. We begin with the following set of definitions. The set
of features learned is defined as Λ = {λ1, λ2, . . . , λT }. Each feature consists of
three elements: a feature channel, a region, and a histogram bin. Denoted as:

λ =< channel, (x, y, w, h), (min, max) > (1)

A specific instance of a pedestrian is defined as V = [v1, v2, . . . , vT ]T where each
vi = p(λi|I), is the probability of a pixel from the specified channel and region
being in the specified range. The set of models used to discriminate between two
specific instances is defined as M = {m1, m2, . . . , mT }, where each mi denotes
the parameters of a likelihood ratio test.

2.2 Feature Channels

A feature channel is any single channel transformation of the original image. Two
varieties of feature channel are explored in this paper, color and texture. Eight
color channels corresponding to the three separate channels of the RGB YCbCr
and HSV1 colorspace are considered, as well as nineteen texture channels. Two
families of texture filters are used, Schmid [23] and Gabor [24]. Each texture
channel is the result of convolution with a filter and the luminance channel.

Schmid filters are defined here as:

F (r, σ, τ) =
1
Z

cos
(

2πτr

σ

)
e−

r2

2σ2 (2)

Where r denotes the radius, Z is a normalizing constant, and the parameters τ
and σ are set to (2,1), (4,1), (4,2), (6,1), (6,2), (6,3), (8,1), (8,2), (8,3), (10,1),
(10,2), (10,3), and (10,4) respectively. These filters were originally designed to
model rotation invariant texture, but their use here is motivated by the desire
to be invariant to viewpoint and pose. Additionally, six Gabor filters are used
with parameters set to γ, θ, λ and σ2 set to (0.3,0,4,2), (0.3,0,8,2), (0.4,0,4,1),
(0.4,0,4,1), (0.3,π

2 ,4,2), (0.3,π
2 ,8,2), (0.4,π

2 ,4,1) and (0.4,π
2 ,4,1) respectively. All

19 texture filters used here can be seen in figure 3.
Other filters could be added as well, but proved less effective. It has been

observed that adding additional features has few drawbacks other than increasing
computational and storage requirements. The methodology used to select these
specific channels was somewhat haphazard, so it is likely that better feature
channels may still be found.
1 Only one of the luminance (Y and V) channels is used.
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Fig. 3. The filters used in the model to describe texture. (a) Rotationally symmetric
Schmid filters. (b) Horizontal and vertical Gabor filters.

2.3 Feature Regions

A feature region could be any collection of pixels in the image, but for reasons
of computational sanity they will be restricted to a more tractable subset. Some
popular subsets of regions include the simple rectangle, a collection of rectangles
[19], or a rectangularly shaped region [7]. The motivation for this has been the
computational savings of computing sums over rectangular regions using an inte-
gral image. However we can use our intuition about the problem to significantly
reduce the number of regions to be considered. Since we know the data consists
of pedestrians seen from an arbitrary horizontal viewpoints, we can disregard
the horizontal dimension as it is not likely to be relevant, which leaves us with
a set of “strips”, or rectangles which span the entire horizontal dimension.

2.4 Feature Binning

A feature bin is simply a range over which pixel values are counted. In a tradi-
tional histogram, an orthogonal collection of bins is selected to uniformly cover
the range of possible values. While this is justified in the general case where the
image domain and task are unknown, there is little justification for this approach
here, as both computation time and storage can be saved by selecting only the
regions of bin space that are relevant to discriminating between pedestrians.

2.5 Feature Modeling

The basis for our similarity function is a collection of likelihood ratio tests per-
formed on the features V. Each test is performed on the value δ, which is defined
as the absolute difference between two instances of the same feature:

δ = |v(a) − v(b)| (3)

The training data for the proposed approach consists of a collection of pedestrian
images. Each individual is seen from two different camera angles, denoted (a) and
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(b). δ is computed for every pair of training images between the two cameras. If
there are N individuals, then there are N positive training examples denoted Δp,
and N(N−1) negative training examples denoted Δn. Three possible probability
distributions are considered here, Exponential, Gamma, and Gaussian. For each
model, the parameters are estimated and a likelihood ratio is computed. This
gives three possible weak classifiers for the ensemble.

If δ is distributed as exponential:

h(v(a), v(b)) =
{

1 If aδ + b > 0
−1 Otherwise (4)

Where the coefficients a and b can be expressed in terms of the estimated
parameters of the positive and negative distributions as:

a = λ̂n − λ̂p b = ln (λ̂p) − ln (λ̂n) (5)

The parameters of an exponential distribution can be estimated as λ̂ = 1
�μ .

If δ is distributed as gamma:

h(v(a), v(b)) =
{

1 If aδ + b ln δ + c > 0
−1 Otherwise (6)

Where the coefficients a, b and c can be expressed in terms of the estimated
parameters of the positive and negative distributions as:

a = β̂n − β̂p b = α̂p − α̂n

c = α̂p ln β̂p − α̂n ln β̂n + lnΓ (α̂n) − ln (Γ α̂p)
(7)

The parameters of a gamma distribution can be estimated as α̂ = μ̂2

σ̂2 and β̂ = μ̂
σ̂2 .

If δ is distributed as Gaussian:

h(v(a), v(b)) =
{

1 If aδ2 + bδ + c > 0
−1 Otherwise (8)

Where the coefficients a, b and c can be expressed in terms of the estimated
parameters of the positive and negative distributions as:

a = 1

2σ̂2
n

− 1

2σ̂2
p

b = μ̂p

σ̂2
p

− μ̂n

σ̂2
n

c = μ̂2
n

2σ̂2
n

− μ̂2
p

2σ̂2
p

+ ln (σ̂2
n) − ln (σ̂2

p) − ln (2π)
(9)

2.6 Search Strategy

At each iteration we must find the best feature for the current distribution.
The traditional approach is to define the feature space to be small enough that
an exauhstive search is possible at each iteration. The size of the feature space
proposed here is the product of the number of possible channels, regions, bins,
and models. While the number of possible channels and models is relatively
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small (21 and 3 respectively), the number of possible contiguous regions and
bins grows quadratically with the number of quantization levels. Thus without
any quantization, the total search space would be |F| ≈ 1010.

We have found the following steps greatly improved training time. First, we
precompute an intermediate feature representation for every image before train-
ing. This feature is a quantized two dimensional map of each channel of each
image. The two dimensions of this map are the quantized y coordinate and pixel
value. This map is then transformed into an integral image, allowing for any
histogram bin to be calculated over any set of vertical strips in constant time
using the integral image trick. Second, a coarse to fine search strategy is used
to explore the parts of the feature space that we believe to be smooth (e.g. the
region and binning space). As a result of these search strategies the search time
has been reduced from hours to minutes.

2.7 What Is the Model Being Learned?

The usual approach to solving a problem such as this is for the researcher to
hand craft a feature representation that appears appropriate for the class of data
and then select the distance function or classifier that provides the best results.
For example Park et al. noticed that people often wear different color shirt and
pants, and thus defined their feature representation to be three histograms taken
over the head, shirt and pants regions of a person [25]. Hu et al. noticed that the
principal axis is often different among different pedestrians and choose a model
accordingly [14]. Gheissari et al. have taken the extreme approach of designing
a 2d mesh model of a pedestrian in order to obtain an exact correspondence
between frontal pedestrian images [6].

As researchers we never really know what the correct model to use in any
particular problem is. However we have a great deal of intuition about how we
as humans would solve the problem. What we have done here is use our intuition
to define a broad (i.e. intentionally vague) feature space that we believe contains
a good feature representation, and then allowed the AdaBoost algorithm to
build the best model for the training data available. In this case, the model is
a collection of simple color and texture features and some spatial and intensity
information.

3 Modeling Pedestrian Recognition Performance

3.1 Evaluation Data

The experimental setups used to evaluate pedestrian recognition have varied
widely. Gandhi and Trivedi provide results on 10 individuals seen simultaneously
from 4 opposing viewpoints which are used to create a panoramic image map
[8]. This setup is ideal for tracking, but very costly to implement. Gheissari et
al. collected 3 frontal views of 44 unique individuals [6] and Wang et al. later
added 99 additional individuals to that dataset [7]. While their data contains a
diverse set of people and poses, the lack of viewpoint variation is insufficient to
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model the real world recognition problem. Gray et al. have collected two views
of 632 individuals seen from widely differing viewpoints [17]. In contrast to the
aforementioned data, most of their examples contain a viewpoint change of 90
degrees or more, making recognition very challenging. The method presented
in this paper is evaluated using their public dataset. Some examples from this
dataset can be found in figure 1.

3.2 Evaluation Methodology

Several approaches have been used for evaluating recognition and re-identification
performance. Shan et al. has treated the re-identification problem as a same-
different detection problem and provided results using a receiver operating char-
acteristic (ROC) curve [4]. Wang et al. treat the problem as recognition and
provide results using a cumulative matching characteristic (CMC) curve. Gray
et al. provide results using a CMC curve, but also present a method of converting
their results into a re-identification rate. This paper presents results in the form
of a recognition rate (CMC), re-identification rate, and expected search time by
a human operator.

The evaluation methodology used here is as follows. The training data is
split evenly into a training and test set. Each image pair is split and randomly
assigned to camera a and camera b. The CMC curve for the test set is calculated
by selecting a probe (image from camera a) and matched with a gallery (every
image in camera b). This provides an ranking for every image in the gallery w.r.t
the probe. This procedure is repeated for every image in camera a and averaged.
Camera a and camera b are then swapped and the process is repeated. The CMC
curve is then the expectation of finding the correct match in the top n matches.

The expected search time is defined as the expected amount of time required
for a human operator to find the correct match from a collection of images. If
we assume the human operator makes no mistakes, then we can decomposed the
expected search time into three components:

E[Search Time] =
E[Sort Position]

Dataset Size
× E[Time per Image]× Dataset Size

If the system has no prior knowledge about the probable association between
the probe and gallery images, then the images will be presented in random order
and the first term will be 0.5. For the sake of simplicity, we will assume the
second term is one second, making the expected search time and sort position
the same value.

Thus there are three ways to reduce the expected search time. The human
operator could take less time per image at the expense of missing the correct
match. The size of the dataset could be reduced using other information (eg.
spatial or temporal information about camera position). Or the operator could
be presented with the data sorted by some similarity function. This reduction
in search time may be small when the dataset size is small (ie. in laboratory
testing), however in a real world scenario this number could be quite large and
the time savings could be very significant.
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4 Results

4.1 Benchmarks

We compare our results to 4 different benchmark methods. A simple template
(SSD matching), a histogram, a hand localized histogram with the configuration
proposed by Park et al. [25], and a principal axis histogram, which is similar
in spirit to the work of Hu et al. [14]. Multiple configurations were tried for
each method, but only the best results for each are shown here. We found that
16 quantization levels, YCbCr colorspace and the Bhattacharyya distance per-
formed best for all three histogram methods. The key differences between the
three approaches are the regions over which histograms are computed. In the
hand localized histogram, three regions are chosen to correspond to the head
(top 1

5 ), shirt (middle 2
5 ) and pants (bottom 2

5 )). In the principal axis histogram
32 regions are chosen in 4 pixel increments to cover each horizontal stripe of the
image. The ELF model shown here contains 200 features and will be analyzed
in greater detail in section 4.4.

Comparisons with the methods proposed in [6] and [7] are desirable, but not
practical given the complexity of these methods. Additionally, these two methods
were designed for frontal viewpoints, and would likely give poor results on the
data used here because of the wide viewpoint changes.

4.2 Recognition

As was mentioned in the beginning of this paper, pedestrian recognition is a hard
problem. Figure 4 shows an example of 16 probe images, the top 28 matches using
our similarity function, and the correct match. Given a single image, finding
its counterpart from a gallery of 316 images is quite challenging for a human
operator. We challenge the reader to find the correct matches in this sorted
gallery without looking at the key in the caption or the corresponding image on
the right.

Figure 5 shows recognition performance as a CMC curve. The rank 1 matching
rate of our approach is around 12%, while the correct match can be found in
the top 10% (rank 31) around 70% of the time. The utility of these recognition
rates can be summarized by looking at the expected search times in figure 6.
Without any similarity measure, a user would have to look at half the data on
average before finding the correct match. This could take quite some time for
a large number of images. At this task, the ELF similarity function yields an
81.7% search time reduction over a pure human operator, and a 58.2% reduction
over the next best result.

4.3 Re-identification

The difficulty in pedestrian re-identification varies with the number of possi-
ble targets to match. Figure 7 shows how the re-identification performance of
the different approaches performs as the number of possible targets increases.
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Fig. 4. Example queries to a recognition database. (a) Probe image. (b) Top n results
(sorted left to right). (c) Correct match. Note the visual similarity of the returned
results and ambiguity created by pose, viewpoint and lighting variations. The correct
match for these examples was ranked 2, 2, 1, 3, 39, 2, 2, 196, 1, 33, 16, 55, 3, 45, 6 and
18 respectively from a gallery of 316 people (top to bottom).
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Fig. 5. Cumulative matching characteristic (CMC) curve for ELF model and bench-
marks

Method Expected Search Time (s)

Chance 158.0

Template 109.0

Histogram 82.9

Hand Localized Histogram 69.2

Principal Axis Histogram 59.8

ELF 28.9

Fig. 6. Expected search time for ELF model and benchmarks. This assumes a human
operator can review 1 image per second at 100% accuracy.

When the number of possible targets is small, performance is very high. The
re-identification task is rarely performed with appearance models alone. In most
indoor or otherwise restricted camera networks, spatial information can be used
to restrict the number of matches to be quite small, making these results very
promising considering that spatial and temporal information can be combined
with appearance information to great effect as these cues are independent.

4.4 Model Analysis

One of the strengths of this approach is the ability to combine many different
kinds of features into one similarity function. Figure 8 shows the percentage of
weight accorded to each feature channel or family of features. It is not surprising
given the illumination changes between the two cameras, that the two most in-
formative channels are hue and saturation. Roughly three quarters of the weight
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Fig. 7. Re-identification rate vs. number of targets for ELF model and benchmarks

Feature Channel Percent of classifier weight

R 11.0 %

G 9.4 %

B 12.4 %

Y 6.4 %

Cb 6.1 %

Cr 4.5 %

H 14.2 %

S 12.5 %

Schmid 12.0 %

Gabor 11.7 %

Fig. 8. A table showing the percent of features from each channel, model

of the classifier is devoted to color features, which seems to suggest that past
approaches which relied on color histograms alone were justified.

5 Conclusions

We have presented a novel approach to viewpoint invariant pedestrian recogni-
tion that learns a similarity function from a set of training data. It has been
shown that this ensemble of localized features is effective at discriminating be-
tween pedestrians regardless of the viewpoint change between the two views.
While the automatic pedestrian recognition problem remains unsolved, it has
been shown that the proposed approach can be used to assist a human oper-
ator in this task by significantly reducing the search time required to match
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pedestrians from a large gallery. While the ultimate goal of automated surveil-
lance research is to remove the human entirely, this work represents a significant
improvement over past approaches in reducing the time required to complete
simple surveillance tasks such as recognition and re-identification.
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