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Abstract

We demonstrate that viewpoint-invariant representations can be ob-
tained from images for a useful class of 3D smooth object. The rep-
resentations are stable over viewpoint, and also discriminate between
different objects in the same class. They are computed using only
image information, from the symmetry set of the object's outline.

Examples are given of the representations obtained from real per-
spective images, and their use in a model-based recognition system
for canal surfaces.

1 Introduction

The aim of this work is to extract viewpoint-invariant descriptions of 3D
smooth objects from single images. These descriptions are used as shape
descriptors in a model-based recognition system. For a completely general
object, and with no other information, it is not possible to recover shape
or invariant descriptions from a single image (see for example [6, 8, 15] for
3D point sets). However, if the 3D structure is constrained, then invariant
descriptions can be obtained. Here we consider surfaces belonging to a
particular class of generalized cylinder (GC) [1]. The class consists of sur-
faces generated as the envelope of a sphere of varying radius swept along
the cylinder axis (which need not be straight). Examples include pipes or
tubes ('canal surfaces') where the sphere radius is constant, and surfaces
of revolution, where the axis is a line. This class generates a large number
of commonly occurring manufactured objects.

The key idea here is that since the 'envelope of the profile1 is the profile
of the envelope' the image projection is an envelope of circles. By inverting
this process—recovering circles from the profile—the projection of the axis
and the scaling function can be extracted from the image.

Previous work on extracting this class of GC from images has had dif-
ferent or more limited goals: first, rather than perspective, the weak per-
spective imaging approximation is generally used (see [19, 27], where earlier

'The image outline of the surface.
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references are given); second, the goal has been reconstruction rather than
representation, and this requires a reference cross-section to be visible in
the image [25]; third, those methods that do produce invariants under per-
spective [10] only utilize a number of points on the image outline—not the
entire curve. In this paper, in common with the above, only the profile is
used; no use is made of surface markings or texture.

The tool employed here is the symmetry set, studied by Giblin & Bras-
sett [11], which is the locus of centres of circles bitangent to a plane curve.
Previous symmetry analysis has largely concentrated on extracting bilateral
(reflection) or rotational symmetries from images of planar objects, or from
a single silhouette of 3D objects, viewed in a fronto-parallel plane [3, 4, 23].
The methods developed for those cases can not be applied if the viewpoint
is not fronto-parallel since, for a planar object, reflectional symmetries are
then skewed by imaging [12, 17, 26]. For a 3D smooth object additional
distortions occur—the contour generator2 moves on the surface as viewing
position changes. In this case it is not a fixed space curve which is pro-
jected, and the image profile can change radically with viewpoint, defeating
any simple application of skewed symmetry.

2 Theory

In the following we consider two types of image projection: perspective and
weak perspective. In both cases the camera aspect ratio must be known,
though no other intrinsic parameters are required. However, much of the
construction uses only affine or projective properties; this is made explicit.

2.1 Weak perspective

Consider sweeping a sphere of varying radius along the axis curve; the
resulting surface is the envelope of the swept sphere. At each point the
profile of the sphere is a circle, and the profile of the surface is the envelope
of the circles. Under affine projection the centre of the sphere projects to
the centre of the circle. Consequently, the circle's centre sweeps out the
projection of the axis. Now consider two such circles: as the scaling arising
from weak perspective is the same in both cases, the ratio of circle radii
equals the ratio of radii of the generating spheres. The usefulness of these
results is that the circle can be recovered from the profile by constructing
the symmetry set, the locus of centres of circles bitangent to the profile.
To summarize:

2
The curve on the surface which projects to the image profile.
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Figure 1: For a canal surface with a pla-

nar axis, inflections in the profile occur in

pairs for each inflection of the axis. The in-

tersection of a pair of inflection tangents de-

termines the vanishing point of the tangent

line at the axis inflection. Two such vanish-

ing points determine the vanishing line, L, of

the plane of the axis.

Figure 2: Three fitted circles for

a surface of revolution. Note that

the centre's position on the axis

of symmetry, s, is not a mono-

tonic function of distance along

the profile, p. This problem does

not occur for canal surfaces.

Figure 3: Upper: images from substantially different viewpoints of the same gen-
eralized cylinder (pipe 1). Lower: the profiles and extracted symmetry sets. Note
the radically different shapes of the profiles and symmetry sets. However, in a
canonical frame the three symmetry sets are virtually identical—see figure ̂ c.

Given a weak perspective image of a surface generated as the envelope of

a sphere of varying radius R(S), with centres on a plane curve ct(S) (the

axis); the symmetry set, computed from the image profile, has the following

properties: (1) the contact of image circles with the profile identifies cor-

responding points on the surface, i. e. points which lie on the same circular

cross-section; (2) the curve covered by circle centres, u(s), is within a plane

affine transformation of the curve a(S); (3) the scaling function for radii

of image circles, r(s), equals the scaling function for radii of the generat-

ing spheres R(S) for corresponding points, a(S) and cr(s), up to an overall

scale ambiguity.

The curves {a(s),r(s)} are a viewpoint-invariant representation. a(S) is

determined up to an affine ambiguity, and consequently affine invariants

of a(S) are equal to afRne invariants of <r(s), and these are viewpoint-

invariant. R(S) is determined up to scale.
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a b c

Figure 4: The transformation of a symmetry set into an affine canonical frame,

(a) Profile curves and symmetry set obtained from a weak perspective image, (b)

Distinguished lines and their intersections, the three distinguished points. The

transformation is found which maps the distinguished points, {Di ,D2,D3}, onto

the basis points, {Bi, 62 ,63} (the vertices of an isosceles triangle), (c) The result

of applying this transformation to the whole symmetry set. The basis points are

shown as crosses. There are six symmetry sets superimposed here. These are

extracted from weak perspective images with varying viewpoint of pipe 1 (three

from figure 3 and three similar). They are virtually identical, demonstrating the

stability of the affine frame.

2.2 Perspective

Under perspective projection the profile of a sphere is an ellipse, and the

centre of the sphere does not project to the ellipse centre. However, in

practice, for finite image planes this effect is extremely small: the aspect

ratio of a sphere's profile is at worst 0.94, and its centre is displaced at

most by 1.2% of its diameter, even at the border of a wide-angle lens with

46° field of view. This is an example of a quasi-invariant [2]. Thus, the

symmetry set will still be an excellent approximation of the projected axis.

However, the transformation between a planar axis curve and symmetry

set curve will be projective, rather than affine. It is shown in section 4.2

that for canal surfaces with at least two inflections, a(S) is determined up

to an affine ambiguity, even under perspective distortion.

2.3 Canal Surfaces

Here there is an additional constraint that the scaling function is a constant.

A canal surface has a number of properties which do not hold for a general

GC of this class: (1) Under weak perspective projection, the two sides of the

profile are parallel curves of the symmetry set (the projection of the axis).

This follows directly from the profile curves being the envelope of constant-

radius circles swept along the symmetry set. (2) Inflections in the axis

produce inflection pairs on the profile. Tangents at corresponding profile

inflections (on each side of the profile) intersect on the vanishing line of the

axis curve's plane. Two such intersections determine the vanishing line,

and hence the extraction of afRne curve measurements; see figure 1. This

relationship is exact—it is not a quasi-invariant. Note: this constraint also
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Figure 5: (a) Affine canonical frame for symmetry sets from six weak perspective

images (as in figure 4c) and seven images with significant perspective effects. Note

the distortion for the latter curves, (b) Protective canonical frame for thirteen

images of the same pipe used in (a). The curves are virtually identical, eliminating

the perspective distortion shown in the affine frame, (c) Superimposed symmetry

sets of pipes 1 and 4 (pipe 4 is shown in figure 6) in a protective canonical frame.

In each case there are twelve curves. This demonstrates discrimination between

objects from their canonical frame curves. The difference between the two curve

sets is measured using a statistical classifier.

applies to line segments on the profile (a line is a 'degenerate' inflection),

so can be applied to a piecewise linear axis.

3 Extracting the Symmetry Set

Edges are extracted to sub-pixel accuracy using a local implementation of
the Canny edge operator [7]. These are linked into edgel-chains by a sequen-
tial linker which extrapolates over small gaps. Accurate curve normals are
computed at each point of the edgel-chain, by locally fitting a quadratic
using least squares with central Gaussian weighting on a thirteen point
neighbourhood. Bitangent circles are obtained by simultaneously moving
along paired curves. Corresponding points are identified if their normal
has an equal angle with the chord linking the points. Circles are fitted to
the thirteen point profile neighbourhood of the corresponding points us-
ing Pratt's circle fitting algorithm [20]. Further details are given in [18].
Figure 2 illustrates the parametrization problem for the symmetry set of
a surface of revolution. Examples of extracted symmetry sets for canal
surfaces are shown in figure 3.

4 Viewpoint-Invariant Representation: The

Canonical Frame Construction

A canonical frame is a method of affine [13] or projective [21] curve nor-

malization. The normalization is achieved in two stages. First, a number

of distinguished points (or lines) are selected on the curve. Distinguished

points are ones which can be located before and after the transformation,
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Figure 6: Example images and projective canonical frames for three generalized

cylinders, pipes 2, 3 and 4- Note the wide variation in viewing position. From

top to bottom, the canonical frames contain symmetry sets generated from six, five

and twelve images respectively. At least half of each set show significant perspective

distortions—note the variation in pipe width in the middle column due to perspec-

tive. The end-diameter of pipe 2 is 15mm—the same diameter as pipe 1; pipes 3

and 4 both have an end-diameter of 22mm.

such as corners (tangent discontinuities), inflections (zeros of curvature),
and bitangent contact points. Second, the canonical frame is defined by
selecting positions for a number of basis points or lines, for instance, the
three vertices of an equilateral triangle in the affine case. The curve is then
transformed such that the distinguished points map to the basis points. All
curves which are equivalent up to an affine transformation map to the same
curve. In the projective case, four points or lines are required.

4.1 AfRne Frame

Figures 4a-c show the distinguished lines and points for the pipes, and the

transformation to a canonical frame. For weak perspective images, stability

over viewpoint is excellent; see figure 4c.

4.2 Projective Frame

In general, an axis curve can only be recovered up to a projective transfor-

mation from a perspective image. However, for canal surfaces, the vanishing

line of the axis curve plane can be determined from profile inflection tan-

gents by the construction of figure 1, and hence the projective ambiguity

reduced to affine. The projective transformation to the canonical frame
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Figure 7: The construction used to ob-

tain the invariant line lengths L in the

canonical frame. Nine rays are cast

from a point mid-way between two of the

distinguished points. The value recorded

is the length of the ray. The rays have

equal angular separation.

Figure 8: Scatter plot of the first two

invariants computed from the pipe im-

ages. Pipes 1~4 are represented by tri-

angles, squares, circles and stars respec-

tively. This demonstrates the sensitiv-

ity of the discriminant—the canonical

frame curves for pipes 1 & 2 are almost

identical.

is computed from the following two requirements: first, the vanishing line

maps to infinity; second, the three distinguished points are mapped to the

affine canonical frame basis points.

Stability is poor if an affine frame (three symmetry set lines) is used

for perspective images, see figure 5a. However, if a projective frame (three

symmetry set lines and the vanishing line) is used, stability is excellent; see

figure 5b. Examples of projective frames for other pipes and discrimination

between them are given in figures 5c and 6.

5 Viewpoint-Invariant Measurements:

Invariants

The previous section described the computation of viewpoint-invariant curves.
Here, we compute invariants from the curves. An invariant is a number
whose value is unaffected by viewpoint. Invariants are obtained from mea-
surements on the canonical frame curve illustrated in figure 7. This con-
struction [22] is similar to the footprints of Lamdan, et al. [13], although
here lengths are measured rather than areas. The vector of invariant line
lengths L is not used directly for discrimination. Instead, an index vec-

tor M is constructed from L using a statistical classifier (a Fisher linear
discriminant [9]) over all extracted canonical frame curves.

Values of these invariants and their variances for the four pipes of fig-
ures 3 and 6 are given in table 1. The scatter plot of figure 8 demonstrates
that the four pipes could almost be distinguished solely on the first two
invariants. In practice three invariants reliably (up to two standard devia-
tions) distinguish all the examples here.
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pipe 1 (13)

pipe 2 (6)

pipe 3 (5)

pipe 4 (12)

Invariant 1

mean s.d.

Invariant 2

mean s.d.

Invariant 3

mean s.d.

-21.988 0.1800

-21.459 0.0998

-23.981 0.1383

-24.442 0.1879

130.513 0.1671

129.530 0.1514

130.336 0.1564

130.042 0.1773

-22.531 0.1417

-22.410 0.1938

-22.089 0.1631

-22.592 0.1781

Table 1: Invariants computed using a Fisher linear discriminant based on the

canonical frame measures shown in figure 7. The bracketted numbers after each

pipe give the number of images contributed for that pipe to the computation of the

Fisher Discriminant matrix.

Figure 9: viewpoint-invariant recognition, (a) The image contains one pipe in the

model-library (centre left), and another that is not in the library, as well as other

objects, (b) The pipe in the library is correctly recognised. The black curve shows

the projected model symmetry set. All processing is automatic.

6 Model Based Recognition

There are two stages in building a recognition system: first, acquisition,

where canonical frame curves, and their invariants, are stored in a model

library; second, recognition, where the system identifies which model (if

any) is in a perspective image.

Recognition proceeds [22] by: (1) computing symmetry sets for all suit-

able curve pairs; (2) computing invariants for each symmetry set curve; (3)

using the invariants as an index to access the model library—if an invariant

value corresponds to one of the library values, a recognition hypothesis is

generated; (4) verifying the recognition hypothesis by comparing the target

symmetry set to a library curve.

A recognition system has been built which can identify a pipe from a

perspective image. The image can contain several objects from the library

as well as other unmodelled objects ('clutter'), and the viewpoint is uncon-

strained. At present the model library contains four pipes. A recognition

example is shown in figure 9. We are currently enlarging the model library,

and investigating invariants which are less occlusion sensitive.
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7 Discussion

We have demonstrated a viewpoint-invariant representation for canal sur-

faces. The representation is stable over viewpoint, discriminates between

objects, and can be reliably extracted from images. Invariants based on the

representation have been successfully used as index functions in a model

based recognition system.

Although theoretically correct only for precise envelopes of spheres, the

methods are not too sensitive to deviations from the ideal. For example,

the pipe cross-section is actually elliptical, with an aspect ratio varying

between 0.89 and 1.0, rather than uniformly circular.

Other methods of extracting invariants from curves known up to a linear

transformation will now be investigated. In particular, semi-differential

curve invariants [26] do not require such a rich curve geometry as that

required for a canonical frame (fewer inflections are needed).
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