
Viewpoints and Keypoints

Shubham Tulsiani and Jitendra Malik

University of California, Berkeley - Berkeley, CA 94720

{shubhtuls,malik}@eecs.berkeley.edu

Abstract

We characterize the problem of pose estimation for rigid

objects in terms of determining viewpoint to explain coarse

pose and keypoint prediction to capture the finer details. We

address both these tasks in two different settings - the con-

strained setting with known bounding boxes and the more

challenging detection setting where the aim is to simulta-

neously detect and correctly estimate pose of objects. We

present Convolutional Neural Network based architectures

for these and demonstrate that leveraging viewpoint esti-

mates can substantially improve local appearance based

keypoint predictions. In addition to achieving significant

improvements over state-of-the-art in the above tasks, we

analyze the error modes and effect of object characteristics

on performance to guide future efforts towards this goal.

1. Introduction

There are two ways in which one can describe the pose

of the car in Figure 1 - either via its viewpoint or via spec-

ifying the locations of a fixed set of keypoints. The former

characterization provides a global perspective about the ob-

ject whereas the latter provides a more local one. In this

work, we aim to reliably predict both these representations

of pose for objects.

Our overall approach is motivated by the theory of global

precedence - that humans perceive the global structure be-

fore the fine level local details [27]. It was also noted

by Koenderink and van Doorn [22] that viewpoint deter-

mines appearance and several works have shown that larger

wholes improve the discrimination performance of parts

[31, 26, 29]. Inspired by this philosophy, we propose an

algorithm which first estimates viewpoint for the target ob-

ject and leverages the predicted viewpoint to improve the

local appearance based keypoint predictions.

Viewpoint is manifested in a 2D image by the spatial re-

lationships among the different features of the object. Con-

volutional Neural Network (CNN) [9, 24] based methods

which can implicitly capture and hierarchically build on

such relations are therefore suitable candidates for view-

Figure 1: Alternate characterizations of pose in terms of

viewpoint and keypoint locations

point prediction.

A robot which merely knows that a cup exists but cannot

find its handle will not be able to grasp it. Towards the goal

of developing a finer understanding of objects, we tackle

the task of predicting keypoints by modeling appearances

at multiple scales - a fine scale appearance model, while

prone to false positives can localize accurately and a coarser

scale appearance model is more robust to mis-localizations.

Note that merely reasoning over local appearance is not suf-

ficient to solve the task of keypoint prediction. For example,

the notion of the ’front wheel’ assumes its meaning in con-

text of the whole bicycle. The local appearance of the patch

might also correspond to the ’back wheel’ - it is because we

know the bicycle is front facing that we are able to disam-

biguate. Motivated by this, we use the viewpoint predicted

by our system to improve the local appearance based key-

point predictions.

Our proposed algorithm, as illustrated in Figure 2 has the

following components -

Viewpoint Prediction : We formulate the problem of

viewpoint prediction as predicting three euler angles ( az-

imuth, elevation and cyclorotation) corresponding to the in-

stance. We train a CNN based architecture which can im-

plicitly capture and aggregate local evidences for predicting

the euler angles to obtain a viewpoint estimate.

Local Appearance based Keypoint Activation : We

propose a fully convolutional CNN based architecture to

model local part appearance. We capture the appearance

at multiple scales and combine the CNN responses across

scales to obtain a resulting heatmap which corresponds to a

spatial log-likelihood distribution for each keypoint.



Figure 2: Overview of our approach. To recover an estimate of the global pose, we use a CNN based architecture to predict

viewpoint. For each keypoint, a spatial likelihood map is obtained via combining multiscale convolutional response maps

and it is then combined with a likelihood conditioned on predicted viewpoint to obtain our final predictions.

Viewpoint Conditioned Keypoint Likelihood : We pro-

pose a viewpoint conditioned keypoint likelihood, imple-

mented as a non-parametric mixture of gaussians, to model

the probability distribution of keypoints given the viewpoint

prediction. We combine it with the appearance based likeli-

hood computed above to obtain our keypoint predictions.

Keypoint prediction methods have traditionally been

evaluated assuming ground-truth boxes as input [1, 21, 25].

This means that the evaluation setting is quite different from

the conditions under which these methods would be used -

in conjunction with imprecisely localized object detections.

Yang and Ramanan [38] argued for the importance of this

task for human pose estimation and introduced an evalua-

tion criterion which we adapt to generic object categories.

To the best of our knowledge, we are the first to empirically

evaluate the applicability of a keypoint prediction algorithm

not restricted to a specific object category in this challeng-

ing setting.

Furthermore, inspired by the analysis of the detection

methods presented by Hoeim et al. [18], we present an anal-

ysis of our algorithm’s failure modes as well as the impact

of object characteristics on the algorithm’s performance.

2. Related Work

Viewpoint Prediction: Recently, CNNs [9, 24] have

been shown to outperform Deformable Part Model (DPM)

[8] based methods for recognition tasks [11, 6, 23].

Whereas DPMs explicitly model part appearances and their

deformations, the CNN architecture allows such relations

to be captured implicitly using a hierarchical convolutional

structure. Girshick et al. [12] argued that DPMs could also

be thought as a specific instantiation of CNNs and there-

fore training an end-to-end CNN for the corresponding task

should outperform a method which instead explicitly mod-

els part appearances and relations.

This result is particularly applicable to viewpoint es-

timation where the prominent approaches, from the ini-

tial instance based methods [19] to current state-of-the-art

[37, 30] explicitly model local appearances and aggregate

evidence to infer viewpoint. Pepik et al. [30] extend DPMs

to 3D to model part appearances and rely on these to infer

pose and Xiang et al. [37] introduce a separate DPM com-

ponent corresponding to each viewpoint. Ghodrati et al.

[10] differ from the explicit part-based methodology, using

a fixed global descriptor to estimate viewpoint. We build

on both these approaches by using a method which, while

using a global descriptor, can implicitly capture part appear-

ances.

Keypoint Prediction: Keypoint Prediction can be clas-

sified into two settings - a) ’Keypoint Localization’ where

the task is to find keypoints for objects with known bound-

ing boxes and b) ’Keypoint Detection’ where bounding box

is unknown. This problem has been particularly well stud-

ied for humans - tracing back from classic model-based ap-

proaches for video [28, 17] to more recent pictorial structure

based approaches [38] on challenging single image based

real world datasets like LSP[21] or MPII Human Pose [1].

Recently Toshev et al. [36] demonstrated that CNN based

models can successfully be used for keypoint prediction



for humans and Tompson et al. [35] significantly improved

upon these results using a purely convolutional approach.

These evaluations, however, are restricted to keypoint local-

izations. A more general task of keypoint detection with-

out assuming ground truth box annotations was also re-

cently introduced for humans by Yang and Ramanan [38]

and Gkioxari et al. [14, 13] evaluated their keypoint predic-

tion algorithm in this setting.

For generic object categories, annotations for keypoints

on the challenging PASCAL VOC dataset [7] were intro-

duced by Bourdev et al. [4]. Though similar annotations

or fitted CAD models have been successfully used to train

better object detection systems [3] as well as for simulta-

neous object detection and viewpoint estimation [30], the

task of keypoint prediction has largely been unaddressed for

generic object categories. Long et al. [25] recently evalu-

ated keypoint localization results across all PASCAL cate-

gories but, to the best of our knowledge, the more general

setting of keypoint detection for generic object categories

has not yet been explored.

Previous works [32, 15, 16] have also jointly tackled the

problem of keypoint detection and pose estimation. While

these are perhaps the closest to ours in terms of goals, they

differ markedly in methodology - they explicitly aggregate

local evidence for pose estimation and have either been re-

stricted to a specific object category [15, 16] or use instance

model based matching [32]. Long et al. [25], on the other

hand share many commonalities with our methodology for

the task of keypoint prediction - convolutional keypoint de-

tections augmented with global priors to predict keypoints.

However, we show that we can significantly improve their

results by combining multiscale convolutional predictions

from a trained CNN with a more principled, viewpoint es-

timation based global model. Both [16, 25] only evaluate

keypoint localization performance whereas we also evalu-

ate our method in the setting of keypoint detection.

3. Viewpoint Estimation

3.1. Formulation

We formulate the global pose estimation for rigid cat-

egories as predicting the viewpoint wrt to a canonical

pose. This is equivalent to determining the three euler an-

gles corresponding to azimuth (φ), elevation(ϕ) and cyclo-

rotation(ψ). We frame the task of predicting the euler angles

as a classification problem where the classes {1, . . . Nθ}
correspond to Nθ disjoint angular bins. We note that the

euler angles, and therefore every viewpoint, can be equiv-

alently described by a rotation matrix. We will use the no-

tion of viewpoints, euler angles and rotation matrices inter-

changeably.

3.2. Network Architecture and Training

LetNc be the number of object classes,Na be number of

angles to be predicted per instance. The number of output

units per class isNa∗Nθ resulting in a total ofNc∗Na∗Nθ

outputs. We adopt an approach similar to Girshick et al.

[11] and finetune a CNN model whose weights are initial-

ized from a model pretrained on the Imagenet [5] classifi-

cation task. We experimented with the architectures from

Krizhevsky et al. [23] (denoted as TNet) and Simonyan et

al. [33] (denoted as ONet). The architecture of our network

is the same as the corresponding pre-trained network with

an additional fully-connected layer having Nc ∗ Na ∗ Nθ

output units. We provide an alternate detailed visualization

of the network architecture in the supplementary material.

Instead of training a separate CNN for each class, we im-

plement a loss layer that selectively considers the Na ∗ Nθ

outputs corresponding the class of the training instance and

computes a logistic loss for each of the angle predictions.

This allows us to train a CNN which can jointly predict

viewpoint for all classes, thus enabling learning a shared

feature representation across all categories. We use the

Caffe framework [20] to train and extract features from the

CNN described above. We augment the training data with

jittered ground-truth bounding boxes that overlap with the

annotated bounding box with IoU > 0.7. Xiang et al. [37]

provide annotations for (φ, ϕ, ψ) corresponding to all the

instances in the PASCAL VOC 2012 detection train, val-

idation set as well as for ImageNet images. We use the

PASCAL train set and the ImageNet annotations to train the

network described above and use the PASCAL VOC 2012

validation set annotations to evaluate our performance.

4. Viewpoint Informed Keypoint Prediction

As we noted earlier, parts assume their meaning in con-

text of the whole. Thus, in addition to local appearance, we

should take into account the global context. To operational-

ize this observation, we propose a two-component approach

to keypoint prediction.

4.1. Multiscale Convolutional Response Maps

We use CNN based architectures to learn the appearance

of keypoints across an object class. Using a fully convo-

lutional architecture allows us to capture local appearance

in a more hierarchical and robust way than HOG feature

based models while still allowing for efficient inference by

sharing computations across evaluations at different spatial

locations in the same image.

Let C denote the set of classes, Kc denote the set of key-

points for class c and Nc = |Kc|. The total number of

keypoints Nkp is therefore
∑
c∈C

Nc. We train a fully convo-

lutional network with an input size (384 × 384) such that

the channels in its last layer correspond to the keypoints i.e.



we use a loss which forces the channels in the last layer to

only fire at positions which correspond to the locations of

the respective keypoint. The CNN architecture we use has

the convolutional layers from ONet followed by an addi-

tional convolution layer with the output size 12× 12×Nkp

such that each channel of the output corresponds to a spe-

cific keypoint of a particular class.

The architecture enforces that the receptive field of an

output unit in the location (i, j) has a centre correspond-

ing to (32 ∗ i, 32 ∗ j) in the input image. For each

training instance with annotated keypoints with locations

{(xk, yk)|k ∈ Kc}, we construct a target response map T

with T (ki, kj , k) = 1 and zero otherwise (where (ki, kj) is

the index of the unit with its receptive field’s centre clos-

est to the annotated keypoint). For each keypoint, this is

similar to training with multiple classification examples per

image centered at the repective fields of output units, akin to

the formulation used for object detection by Szegedy et al.

[34]. Similar to the details described in section 3.2, we use

a loss layer that only selects the channels corresponding to

the instance class and implements a euclidean loss between

the output and the target map, thus enabling us to jointly

train a single network to predict keypoints for all classes.

We train using the annotations from Bourdev et al. [4] and

use ground truth and jittered boxes as training examples.

The above network captures the appearance of the key-

points at a particular scale. A coarser scale would be more

robust to false positives as it captures more context but

would not be able to localize well. In order to benefit from

the predictions at a coarser level, without compromising lo-

calization, we propose using a multiscale ensemble of net-

works. We therefore train another network with exactly the

same architecture with a smaller input size (192× 192) and

a smaller output size 6×6×Nkp. We upsample the outputs

of the smaller network and linearly combine them with the

outputs of the larger network to get a spatial log-likelihood

response map L(·, ·, k) for each keypoint k.

4.2. Viewpoint Conditioned Keypoint Likelihood

If we know that a particular car is left-facing, we’d ex-

pect its left wheels to be visible but not the right wheels. In

addition to the ability to predict visibility, we’d also have a

strong intuition about the approximate locations of the key-

points. If the problem setting was restricted to a particu-

lar instance, the exact locations of the keypoints could be

inferred geometrically from the exact global pose. How-

ever, the two assumptions that would allow this approach

do not hold true - we have to deal with different instances

of the object category and our inferred global pose would

only be approximate. To counter this, we propose a non-

parametric solution - we would expect the keypoints of a

given instance to lie at positions similar to other training in-

stances whose global pose is close to the predicted global

pose for the given instance.

Let the training instances for class c be denoted by

{Ri, {(xik, y
i
k)|k ∈ Kc}} where Ri is the rotation ma-

trix and {(xik, y
i
k)|k ∈ Kc} the annotated keypoints cor-

responding to the ith instance. Let R be the predicted

rotation matrix corresponding to which we want a prior

for keypoint locations denoted by P st P (i, j, k) indi-

cates the likelihood of keypoint k being present at loca-

tion (i, j). Let ∆(R1, R2) =
‖log(RT

1
R2)‖F√
2

denote the

geodesic distance between rotation matrices R1, R2 and

N(R) = {i|∆(R,Ri) <
π
6 } represent the the training in-

stances whose viewpoint is close to the predicted viewpoint.

Our non-parametric global pose conditional likelihood (P )

is defined as a mixture of gaussians and we combine it with

the local appearance likelihood (L) to get keypoint loca-

tions as follows -

P (·, ·, k) =
1

|N(R)|

∑

i∈N(R)

N ((xik, y
i
k), σI) (1)

(xk, yk) = argmax
y,x

log(P (x, y, k)) + L(x, y, k) (2)

Note that all the coordinates above are normalized by warp-

ing the instance bounding box to a fixed size (12× 12) and

we choose σ = 2.

5. Experiments : Viewpoint Prediction

In this section, we use the the PASCAL3D+ [37] anno-

tations to evaluate the viewpoint estimation performance of

our approach in the two different settings described below -

5.1. Viewpoint Estimation with Ground Truth box

To analyze the performance of our viewpoint estimation

method independent of factors like mis-localization, we first

tackle the task of estimating the viewpoint of an object with

known bounds. Let ∆(R1, R2) =
‖log(RT

1
R2)‖F√
2

denote

the geodesic distance function over the manifold of rotation

matrices. ∆(Rgt, Rpred) captures the difference between

ground truth viewpoint Rgt and predicted viewpoint Rpred.

We use two complementary metrics for evaluation -

• Median Error : The common confusions for the task

of viewpoint estimation often are predictions which are

far apart (eg. left facing vs right facing car) and the

median error (MedErr) is a widely use metric that is

robust to these if a significant fraction of the estimates

are accurate.

• Accuracy at θ : A small median error does not nec-

essarily imply accurate estimates for all instances, a

complementary performance measure is the fraction of

instances whose predicted viewpoint is within a fixed

threshold of the target viewpoint. We denote this met-

ric by Accθ where θ is the threshold. We use θ = π
6 .



Figure 3: Viewpoint predictions for unoccluded groundtruth instances using our algorithm. The columns show 15th, 30th,

45th, 60th, 75th and 90th percentile instances respectively in terms of the error. We visualize the predictions by rendering a

3D model using our predicted viewpoint.

aero bike boat bottle bus car chair table mbike sofa train tv mean

Accπ

6

(Pool5-TNet) 0.27 0.18 0.36 0.81 0.71 0.36 0.52 0.52 0.38 0.67 0.7 0.71 0.52

Accπ

6

(fc7-TNet) 0.5 0.44 0.39 0.88 0.81 0.7 0.39 0.38 0.48 0.44 0.78 0.65 0.57

Accπ

6

(ours-TNet) 0.78 0.74 0.49 0.93 0.94 0.90 0.65 0.67 0.83 0.67 0.79 0.76 0.76

Accπ

6

(ours-ONet) 0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.81

MedErr (Pool5-TNet) 42.6 52.3 46.3 18.5 17.5 45.6 28.6 27.7 37 25.9 20.6 21.5 32

MedErr(fc7-TNet) 29.8 40.3 49.5 13.5 7.6 13.6 45.5 38.7 31.4 38.5 9.9 22.6 28.4

MedErr(ours-TNet) 14.7 18.6 31.2 13.5 6.3 8.8 17.7 17.4 17.6 15.1 8.9 17.8 15.6

MedErr(ours-ONet) 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.6

Table 1: Viewpoint Estimation with Ground Truth box

Recently, Ghodrati et al. [10] achieved results compara-

ble to state-of-the art by using a linear classifier over layer

5 features of TNet. We denote this method as ’Pool5-TNet’

and implement it as a baseline. To study the effect of end-

to-end training of the CNN architecture, we use a linear

classifier on top of the fc7 layer of TNet as another base-

line (denoted as ’fc7-TNet’ ). With the aim of analyzing

viewpoint estimation independently, the evaluations were

restricted only to objects marked as non-occluded and non-

truncated and we defer the study of the effects of occlu-

sion/truncation in this setting to section 7.1. The perfor-

mance of our method and comparisons to the baseline are

shown in Table 2. The results clearly demonstrate that end-

to-end training improves results and that our method with

the TNet architecture performs significantly better than the

’Pool5-TNet’ method used in [10]. We also observe a sig-

nificant improvement by using the ONet architecture and

only use this architecture for further experiments/analysis.

In figure 3, we show our predictions sorted in terms of the

error and it can be seen that the predictions for most cate-

gories are reliable even at the 90th percentile.

5.2. Detection and Viewpoint Estimation

Xiang et al. [37] introduced the AV P metric to measure

advances in the task of viewpoint estimation in the setting

where localizations are not known a priori. The metric is

similar to the AP criterion used for PASCAL VOC detec-

tion except that each detection candidate has an associated

viewpoint and the detection is labeled correct if it has a cor-

rect predicted viewpoint bin as well as a correct localization



(bounding box IoU > 0.5). Xiang et al. [37] also compared

to Pepik et al. [30] on the AVP metric using various view-

point bin sizes and Ghodrati et al. [10] also showed com-

parable results on the metric. To evaluate our method, we

obtain detections from RCNN [11] using MCG [2] object

proposals and augment them with a pose predicted using

the corresponding detection’s bounding box. We note that

there are two issues with the AV P metric - it only evalu-

ates the prediction for the azimuth (φ) angle and discretizes

viewpoint instead of treating it continuously. Therefore, we

also introduce two additional evaluation metrics which fol-

low the IoU > 0.5 criteria for localization but modify the

criteria for assigning a viewpoint prediction to be correct as

follows -

• AV Pθ : δ(φgt, φpred) < θ

• ARPθ : ∆(Rgt, Rpred) < θ

Note that ARPθ requires the prediction of all euler angles

instead of just φ and therefore, is a stricter metric.

The performance of our CNN based approach for view-

point prediction is shown in Table 2 and it can be seen

that we significantly outperform the state-of-the-art meth-

ods across all categories. While it is not possible to compare

our pose estimation performance independent of detection

with DPM based methods like [37, 30], an indirect com-

parison results from the analysis using ground truth boxes

where we demonstrate that our pose estimation approach is

an improvement over [10] which in turn performs similar to

[37, 30] while using similar detectors.

AV P AV Pπ

6

ARPπ

6

Number of bins 4 8 16 24 - -

Xiang et al. [37] 19.5 18.7 15.6 12.1 - -

Pepik et al. [30] 23.8 21.5 17.3 13.6 - -

Ghodrati et al. [10] 24.1 22.3 17.3 13.7 - -

ours 49.1 44.5 36.0 31.1 50.7 46.5

Table 2: Mean performance of our approach for various

metrics. We report the performance for individual classes

with the supplementary material

6. Experiments : Keypoint Prediction

The task of keypoint prediction is commonly studied in

the setting with known location of the object but some meth-

ods, restricted to specific categories like ’people’ recently

evaluated their performance in the more general detection

setting. We extend these metrics to generic categories and

evaluate our predictions in both the settings using the fol-

lowing metrics proposed by Yang and Ramanan [38] -

• PCK (Keypoint Localization) : For each annotated in-

stance, the algorithm predicts a location for each key-

point and a groundtruth keypoint is said to have been

found correctly if the corresponding prediction lies

within α ∗max(h,w) of the annotated keypoint with

the corresponding object’s dimension being (h,w).
For each keypoint, we measure the fraction of objects

where it was found correctly.

• APK (Keypoint Detection) : A keypoint candidate is

deemed correct if it lies within α ∗ max(h,w) of a

groundtruth keypoint. Each keypoint hypothesis has

an associated score and the area under the precision-

recall curve is used as the evaluation criterion.

We use the keypoint annotations from [4] and use the PAS-

CAL VOC train set for training and the validation set im-

ages for evaluation.

6.1. Keypoint Localization

The performance of our system and comparison to

[25] are shown in Table 3. We denote by ’conv6’

(’conv12’) the predictions using only the 6 × 6 (12 ×
12) output size network, by ’conv6+conv12’ the predic-

tions using the multiscale convolutional response and by

’conv6+conv12+pLikelihood’ the predictions using our full

system. Our baseline system ( ’conv6+conv12’) performs

much better than [25], indicating the importance of end-to-

end training and multiscale response maps. We also see that

incorporating the viewpoint conditioned likelihood induces

a significant performance gain.

6.2. Keypoint Detection

Given an image, we use RCNN [11] combined with

MCG [2] object proposals to obtain detection candidates,

each comprising of a class label and location. We then

predict keypoints on each candidate using our system and

score each keypoint hypothesis by linearly combining the

keypoint log-likelihood score and the object detection sys-

tem score. Our results for the task of keypoint detection are

summarized in Table 4. The pose conditioned likelihood

consistently improves the local appearance based predic-

tions. Though the task of keypoint detection on PASCAL

VOC has not yet been analyzed for categories other than

person, we believe our results of 33.2% mean APK with a

reasonably strict threshold indicate a promising start.

The above results support our three main assertions - a

global prior obtained in the form of a viewpoint conditioned

likelihood improves the local appearance based predictions,

that end-to-end trained CNNs can effectively model part ap-

pearances and combining responses from multiple scales

significantly improves performance.



Figure 4: Visualization of keypoints predicted in the detection setting. We visualize every 15th detection, sorted by score, for

’Nosetip’ of aeroplanes, ’Crankcentre’ of bicycles, ’Left Headlight’ of cars and ’Right Base’ of buses.

PCK[α = 0.1] aero bike boat bottle bus car chair table mbike sofa train tv mean

Long et al. [25] 53.7 60.9 33.8 72.9 70.4 55.7 18.5 22.9 52.9 38.3 53.3 49.2 48.5

conv6 (coarse scale) 51.4 62.4 37.8 65.1 60.1 59.9 34.8 31.8 53.6 44 52.3 41.1 49.5

conv12 (fine scale) 54.9 66.8 32.6 60.2 80.5 59.3 35.1 37.8 58 41.6 59.3 53.8 53.3

conv6+conv12 61.9 74.6 43.6 72.8 84.3 70.0 45.0 44.8 66.7 51.2 66.8 56.8 61.5

conv6+conv12+pLikelihood 66.0 77.8 52.1 83.8 88.7 81.3 65.0 47.3 68.3 58.8 72.0 65.1 68.8

Table 3: Keypoint Localization

6.3. Generalization to Articulated Pose

While the focus of our work is pose prediction for rigid

objects, we note that our multiscale convolutional response

based approach is also applicable for articulated pose esti-

mation. To demonstrate this, we trained our convolutional

response map system to detect keypoints for the category

’person’ in PASCAL VOC 2012 and achieved an APK =

0.22 which is a significant improvement compared to the

state-of-the-art method [13] which achieves APK = 0.15.

We refer the reader to [13] for further details on the evalua-

tion metrics for the task of articulated pose estimation.

7. Analysis

An understanding of failure cases and effect of object

characteristics on performance can often suggest insights

for future directions. Hoeim et al. [18] suggested some

excellent diagnostics for object detection systems and we

adapt those for the task of pose estimation. We evaluate

our system’s output for both the task of viewpoint predic-

tion as well as keypoint prediction but restrict our analy-

sis to the setting with known bounding boxes - this enables

Setting Mean Error Mean Accuracy

Default 13.5 0.81

Small Objects 15.1 0.75

Large Objects 12.7 0.87

Occluded Objects 19.9 0.65

Table 5: Object characteristics vs viewpoint prediction error

Setting Accuracy

Error< π

9
83.7

π

9
<Error < 2π

9
5.7

Error> π

9
& Error(π − flip)< π

9
5.8

Error> π

9
& Error(z − ref )< π

9
6.5

Other 2.9

Table 6: Analysis of error modes for viewpoint prediction

us to analyze our pose estimation method independent of

the detection system. We denote as ’large objects’ the top

third of instances and by ’small objects’ the bottom third



APK[α = 0.1] aero bike boat bottle bus car chair table mbike sofa train tv mean

conv6+conv12 41.9 47.1 15.4 29.0 58.2 37.1 11.2 8.1 40.7 25.0 36.9 25.5 31.3

conv6+conv12+pLikelihood 44.9 48.3 17.0 30.0 60.8 40.7 14.6 8.6 42.8 25.7 38.3 26.2 33.2

Table 4: Keypoint Detection

PCK[α = 0.1] aero bike boat bottle bus car chair table mbike sofa train tv mean

Default 66.0 77.8 52.1 83.8 88.7 81.3 65.0 47.3 68.3 58.8 72.0 65.1 68.8

Occluded Objects 55.2 56.6 38.7 68.8 64.4 62.8 48.1 40.5 53.1 59.6 68.6 47.3 55.3

Small Objects 51.6 66.4 48.1 81.2 85 67.4 57.4 48.2 57.9 53.8 57.4 56.8 60.9

Large Objects 74.6 87.4 57.2 86.3 90.9 90.6 65.1 37.7 76.1 68.5 74.1 65.3 72.8

left/right 71.1 80.2 53.4 84.4 90.9 84.1 74.7 49.2 69.8 63.4 75.0 68.2 72.0

PCK[α = 0.2] 79.9 88.7 69.1 95.2 92 88.3 79.6 67.5 87.3 72.2 82.2 78.1 81.7

Table 7: Analysis of Keypoint Prediction

of instances. The label ’occluded’ describes all the objects

marked as truncated or occluded according to the PASCAL

VOC annotations. We summarize our observations below.

7.1. Viewpoint Prediction

Object Characteristics : Table 5 shows the effect of ob-

ject characteristics by reporting the mean across the classes

of the median viewpoint error and accuracy. We can see that

the method performs worse for occluded objects. There is

also a significant difference between the performance for

small and large objects - while such error trends are accept-

able in the robotic setting where ambiguity for the farther

objects is tolerable, one may need to capture more context

to perform well without higher resolution input.

Error Modes: Since it is difficult to characterize error

modes for generic rotations, we restrict the analysis to only

the predicted azimuth. Assuming the image plane to be XY,

we denote by Z − ref the pose for the instance reflected

along the XY plane and by π−flip a rotation of π along the

Z axis. Table 6 reports the percentage of instances whose

predicted pose corresponds to various modes. We observe

that these error modes are equally common and that only

about 3% of the errors are not explained by these.

Note that we exclude ’diningtable’ and ’bottle’ cate-

gories from the above analysis due to small number of un-

occluded instances and insignificant variations respectively.

7.2. Keypoint Prediction

We use the PCK metric (section 6.2) to characterize

our algorithm’s performance for various settings. Our re-

sults using the full method (local appearance combined with

viewpoint conditioned likelihood) are reported in Table 7.

We report the analysis using various components (single

scale prediction, purely local appearance etc.) in the sup-

plementary material.

Object Characteristics : The effect of object charac-

teristics is similar to the viewpoint prediction setting - oc-

cluded objects are not handled well and there is a significant

performance gap between small and large objects.

Error Modes : In the ’left/right’ setting, we label a pre-

diction to be correct if it was in the vicinity of the corre-

sponding or the laterally inverted keypoint. Surprisingly,

the performance is similar to the base performance - indicat-

ing that laterally symmetric keypoints are not a significant

error mode. The difference between the base performance

and PCK[α = 0.2] analyzes the inaccurate localizations

which we find to be the main source of error.

8. Conclusion

We have presented an algorithm which leverages CNN

architectures to predict viewpoint, and combines multiscale

appearance with a viewpoint conditioned likelihood to pre-

dict keypoints. We demonstrated that our approach signifi-

cantly improve state-of-the-art in settings with and without

annotated bounding boxes for both viewpoint and keypoint

prediction tasks. We also present evaluations for the key-

point detection setting alongwith a detailed ablation study

of our performance on various tasks and hope that these

will contribute towards progress on the task of pose estima-

tion for generic objects. We will make our code and trained

models publicly available.
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