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Abstract-Because views on relational database systems mathemat-
ically define arbitrary sets of stored and derived data, they have been
proposed as a way of handling context- and content-dependent classi-
fication, dynamic classification, inference, aggregation, and sanitiza-
tion in multilevel database systems. This paper describes basic view
concepts for a multilevel-secure relational database model that ad-
dresses the above issues. All data entering the database are labeled
according to views called classification constraints, which specify ac-
cess classes for related data. In addition, views called aggregation con-
straints restrict access to aggregates of information. All data accesses
are confined to a third set of views called access views.

Index Terms-Classification, multilevel security, protection, rela-
tional databases, security, views

I. INTRODUCTION

HE objective of this paper is to describe basic view
l concepts for a multilevel-secure relational database
model. The model is being developed as part of a three-
year project to design a system that will meet the Depart-
ment of Defense Trusted Computer System Evaluation
Criteria [1] for class Al. The project goals include pro-
ducing a security policy, formal model, formal top-level
specifications, and implementation specifications.
Although the concept of using views for security goes

back at least as far as the CODASYL work [2], our ap-
proach builds more on the view concept introduced in
IBM's System R database system (now called SQL/DS),
which was inspired by Codd's fundamental work on re-
lational databases [3]. In System R, a view is a derived
relation expressed in the Structured Query Language SQL.
The access control mechanisms of System R are tied to
views in that views (as well as base relations) are the ob-
jects of authorization [4] (see also Date [5] and Denning
[6]). The rationale for this decision was that views are at
a higher level of abstraction than the physical data and
allow the specification and enforcement of context- and
content-dependent constraints. For the same reason,
Stonebraker 17] adopted a high-level approach in the
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INGRES 'relational system, although the strategy there
uses query modification rather than views.

Concurrent with the development work at IBM, Neu-
mann observed that views provided an attractive method
for implementing a secure relational data management
system on top of SRI's Provably Secure Operating System
(PSOS) [8]. In the PSOS approach, a view is restricted to
a subset of a single relation and serves as a capability for
selective access to the relation.

Neither the IBM nor SRI projects addressed the issues
that would be raised if'views were used to classify data
and enforce mandatory security. Proposals to use secure
views as a basis for multilevel-secure database systems
were independently made by Claybrook [9] and by Den-
ning [10], who at that time was helping to organize the
1982 Woods Hole Summer Study on Multilevel Database
Management Security sponsored by the National Acad-
emy of Sciences, Air Force Studies Board. Denning ob-
served that because views can define arbitrary sets of
stored and derived data, they could provide a means of
addressing the problems of context- and content-depen-
dent classification, inference, aggregation, and sanitiza-
tion on a dynamic database. A study group led by Den-
ning and Neumann discussed the benefits and issues
associated with classifying views, concluding that the
benefits justified further research, but that there were many
open problems and issues [11]. The approach outlined in
this paper addresses these issues and provides a basis for
a system design based on secure views.
Our preliminary model has several key aspects. First,

we explicitly allow the specification of derived data in a
database schema so that the relationships between stored
and derived data (which can cause inferences) can be for-
mally expressed. Next, we distinguish between views that
retrieve or update data, called access views, and views
that classify the data, called classification constraints.
Access views allow retrieval of data up through the user's
clearance from a relation that also may have higher-level
data, without the need to retrieve from a higher-level con-
tainer-our model has no containers. Data retrieved
through access views can be joined and manipulated for
display to the user. In addition, the data retrieved can be
multilevel, with support for classification down to the ele-
ment level. Data enter the database through the access
views and are labeled on entry according to classification
constraints. Classification constraints specify access
classes and relationships among stored and derived data,
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thereby providing a means of handling context- and con-
tent-dependencies, inferences, and sanitization. A third
set of views called aggregation constraints serve to define
and control access to aggregates of information.
Because our objective is a class Al system, it is imper-

ative that our formal model of the reference monitor be
tractable. We plane to achieve this objective by layering
our design and placing only the essential (namely, man-
datory) security features in the layer that comprises the
reference monitor. Most of the database system, includ-
ing the query processor, will reside above the reference
monitor layer. A consequence of this approach is that cer-
tain features in our policy model-e.g., for content-
dependent classification and sanitization-will rely on
trusted processes that reside in layers above the reference
monitor. Our preliminary design, outlined in Section
VI, builds on existing technology for security kernels.
Because we are in the first year of a three-year effort,

our policy model and design are somewhat tentative and
incomplete; there remain several open problems and many
details to be resolved. The concepts described in this pa-
per represent an initial step in our research.

II. BASIC CONCEPTS
A. Access Classes

Fundamental to any multilevel security policy is a set
of access classes that represent the classifications associ-
ated with information and the clearance associated with
users. Each access class is an element of a lattice struc-
ture having a partial ordering relation " 2 " (e.g., see
Denning [6]). For access classes Li and L2, Li 2 L2
means that access class Li dominates access class L2. (If
LI > L2, we say Li strictly dominates L2). Note that
what we call "access class" is identical to what some
other authors have called "security level." We prefer
"access class" to 1) avoid the (incorrect) implication that
"level" applies only to total orderings and 2) avoid con-
fusion with the term "multilevel" in DoD Directive
5200.28, which refers specifically to just the totally or-
dered classifications CONFIDENTIAL, SECRET, etc.

All data in the database are assigned an access class, or
classification. In addition, each user has an associated ac-
cess class, or clearance. To access data in the database,
the user's clearance must dominate the classification of
the data. An access class associated with data or a user is
specified by a security label.
Our model leaves unspecified the exact representation

and interpretation of access class. For a given system, the
access class may consist of a secrecy component, an in-
tegrity component, or both (as in the I.P. -Sharp model
[12]). The secrecy component could be a secrecy level,
secrecy category, or pair <secrecy level, secrecy cate-
gory >, where secrecy level is TOP-SECRET, SECRET,
CONFIDENTIAL, UNCLASSIFIED, etc., and secrecy
category is a set consisting of formal compartments (e.g.,
CRYPTO). Similarly, the integrity component could be
an integrity level, integrity category, or pair <integrity

level, integrity category> such as introduced by Biba
[13]. The lattice on the access classes is defined as the
Cartesian product of lattices on the individual compo-
nents. Note that when integrity is integrated with secrecy,
integrity levels are ordered in reverse so that LI > L2
means that access class Li has a higher secrecy compo-
nent but lower integrity component that access class L2.
This is because a user is permitted to read down in secrecy
but up in integrity, and write up in secrecy but down in
integrity.

B. Relational Data Model
We shall develop our concept of secure data views in

terms of the relational data model. The relational data
model consists of relations (also called tables) together
with a relational algebra for defining new relations in
terms of other relations (the relational model also includes
entity and referential integrity rules that govern the exis-
tence of certain records; these are not relevant to the con-
cepts discussed here). Each relation R is defined by a
schema R (Al, A2, * . , Ak) that specifies a set of attri-
butes Al, A2, * * *, Ak. The relation consists of a set of
records (also called tuples or rows), where the elements
in a record have data values in the domains of the attri-
butes. The relational algebra consists of operators for se-
lecting whole or partial records having certain values from
relations and for joining data in different relations.
To illustrate our database concepts, we introduce as an

example a Flight database. The database is defined by the
following schemas, which specify a relation ITEM giving
item numbers, names, and weights; a relation FLIGHTS
giving flight numbers, departure dates, destinations, and
total cargo weight; and a relation PAYLOAD giving the
quantity of items on board the flights:

ITEM(ITEM#, ITEMNAME, WEIGHT)
FLIGHTS(FLIGHT#, DATE, DEST, WEIGHT)
PAYLOAD(FLIGHT#, ITEM#, QTY, WEIGHT)

The set of schemas defining the relations in the data-
base is itself represented as a relation: RELATIONS
(RELNAME, ATTRNAME), which contains an entry
for each attribute of each relation (sometimes two rela-
tions are used, one for the relation names and the other
for the attributes). For example, the entry (viz. tuple)
<FLIGHTS, WEIGHTS> specifies that the FLIGHTS
relation contains the attribute WEIGHT. The RELA-
TIONS relation may include other attributes- e.g., for
specifying domain type.

C. Multilevel Relations
To deal with multilevel security, we provide the ab-

straction of multilevel relations, with the assignment of
access classes down to the element level. Our preliminary
design actually supports multilevel relations at the view
layer only; hence the multilevel relations would more ap-
propriately be called multilevel virtual relations. The
multilevel virtual relations will be mapped onto single-
level base relations, which in turn are mapped onto sin-
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gle-level segments or files. Because this mapping will be
transparent to the user, we will continue to regard rela-
tions as being multilevel. Our preliminary design is dis-
cussed in greater detail in Section VI.
When an access class is defined for an entire attribute

(or record) of a relation, that access class applies to each
data element associated with the attribute (or record)
rather than to the attribute (or record) as an aggregate.
Moreover, requiring that all data elements associated with
a particular attribute have the same access class does not
necessarily imply that the name of that attribute need be
at the same access class; the access class associated with
the attribute name is determined by the access class of the
attribute's entry in the RELATIONS relation. Thus, the
name of an attribute can have an access class dominated
by the access classes of the values associated with the
attribute, in order to allow a user to see the relation schema
but not its data (e.g., to insert tuples into the relation).

In later sections, we shall illustrate how access classes
can be associated with our Flight database. We shall as-
sume that all access classes may be 4-tuples <secrecy
level, secrecy category, integrity level, integrity cate-
gory>, but make the simplifying assumption in the illus-
trations that all but the secrecy level are fixed; thus each
access class will be specified simply as TOP-SECRET,
SECRET, etc. By holding the integrity component fixed,
our examples will be free of possible integrity violations.
(In addition to the mandatory integrity policy embodied
in the access classes, we include a policy for database
integrity, including integrity constraints, concurrency
controls, and trusted recovery [14].)

D. Database
In the relational model a database is a finite set of

named relations. The data in a relation can be represented
either physically as stored data or logically as a derivation
rule that defines how the data is computed (derivation
rules, which are arbitrary formulas in the query language,
are described later).
The reason for modeling derived data is that it allows

interdependencies and inference rules among stored and
derived data to be expressed within a single framework.
For example, consider the attribute WEIGHT from the
ITEM relation and the attributes QTY and WEIGHT
from the PAYLOAD relation. Suppose that PAY-
LOAD.WEIGHT is derived data, defined in terms of the
join of the two relations as follows (using a SQL-like no-
tation where ": means assignment and "=" means
comparison):

PAYLOAD.WEIGHT:

ITEM.WEIGHT * PAYLOAD.QTY
where ITEM.ITEM# = PAYLOAD.ITEM#

Now, the relationship among ITEM.WEIGHT, PAY-
LOAD.QTY, and PAYLOAD.WEIGHT places con-
straints on how the data are classified; for example, if

PAYLOAD.WEIGHT is regarded as TOP-SECRET, then
it would not be secure to classify both ITEM.WEIGHT
and PAYLOAD.QTY as SECRET since a user with a SE-
CRET clearance could access these attributes and deduce
PAYLOAD.WEIGHT. More generally, it would not be
secure to classify any two of the attributes lower than the
third, and this is true regardless of whether PAY-
LOAD.WEIGHT is actually stored in the database. We
will show how this problem is handled later.
As another example, suppose that a sum is taken over

all records in a relation, where the individual elements
used to compute the sum are all SECRET, and that it is
desired to release the sum at a lower level, say CONFI-
DENTIAL, on the grounds that it sufficiently sanitizes the
individual elements. Here again, the decision whether the
sum can be marked down depends only on the inferences
that can be drawn from it, and not on whether it is actually
stored in the database.

It is not necessary or indeed practical to represent all
conceivable derivations in the database schema-that is,
the database need not represent the inferential closure. As
in the relational model, users can compute their own views
of the data represented in the, database using the query
language.

E. Views
A view is a mapping (multivalued function) from a

database (set of relations) to a relation (or set thereof).
For security, we are particularly concerned about the sub-
set of data in the database that is used to compute the
resulting relation. We shall call this subset of elements
the view source. In general, the source will consist of
those data elements whose attributes are named (explicitly
or implicitly) in the view mapping and whose tuples are
selected by conditions in the mapping. The elements in
the source may be joined and manipulated (e.g., by nu-
merical operators) to compute the result. We call this re-
sult the view target. We require that a view target corre-
spond to a complete or partial relation (or set thereof) in
the database-that is, that the attributes and tuples in the
result correspond to (stored or derived) attributes and tu-
ples in the database (the correspondence need not neces-
sarily be 1-1). The target of a view can overlap with its
source.
For a view V, we will express the derivation source

target in an SQL-like query language that includes the
relational and arithmetic operators. We can express our
definition of PAYLOAD.WEIGHT as a view as follows:

view PAYLOAD.WEIGHT

ITEM.WEIGHT * PAYLOAD.QTY
where ITEM.ITEM# = PAYLOAD.ITEM#

Here the source is all elements associated with the attri-
butes ITEM.ITEM#, ITEM.WEIGHT,
PAYLOAD.ITEM#, and PAYLOAD.QTY. The target is
the elements associated with PAYLOAD.WEIGHT.
A view may have parameters that bind to data in the
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domains of the attributes. (At least initially, we have made
the simplifying assumption that parameters cannot bind to-
a relation or attribute name in the schema or to a func-
tion.) The following definition for a view HEAVIER-
THAN(x) specifies as its source and target all records in
the ITEM relation where WEIGHT > x for parameter x.

view HEAVIER-THAN(x) :=1TEM.all
where ITEM.WEIGHT > x

(The parameter x is bound to an actual value at the time
the view is evaluated-e.g., when a query on the view is
made. The notation "R.all" means all attributes in rela-
tion R.)
The term "view" is sometimes used to refer to the ac-

tual data returned when a view specification is applied to
an instance of the database. Here, we shall reserve the
term "view" for the specification or mapping function,
and use "view instance" or simply "data" to refer to the
data bound to a view at view application time.
Every view V is defined by a view specification or def-

inition, which has an access class. If the access class of
the view specification is not dominated by the access class
of a user, then that view cannot be applied by that user.
This has consequences for views that are used to label
data, as we shall discuss later.
We shall use views for two distinct purposes: labeling

new data with an access class and accessing data. Views
for labeling new data are called classification constraints,
while views for accessing data are called access views.
First we shall describe views for labeling data. Next we
shall describe views for accessing data. Then we shall re-
turn to the aggregation problem.

III. LABELING DATA WITH ACCESS CLASSES
Data entering the database as inserts or updates are as-

signed an access class according to a set of classification
constraints.

ment depends on its value or on the value or access class
of another element or tuple in the database.

* Source-Level-The access class of a data element is
the access class of the user or information source.

* Source-Label-The access class of a data element is
obtained from the security label provided by the source or
specified by the user entering the data.
Whenever a classification constraint yields an access

class that is lower than (i.e., strictly dominated by) the
user's login class, then assigning that class reflects a
downgrade operation. Requiring user confirmation of the
assigned access class via a "trusted path" [1] can provide
additional assurance that this downgrade is correct.
The following classification constraints on the Flight

database specify that all data associated with the attributes
FLIGHT#, ITEM#, and QTY of relation PAYLOAD are
to be classified SECRET, whereas all data associated with
the attribute WEIGHT is to be classified TOP-SECRET
(i.e., classification is at the attribute level as in the Hinke-
Schaefer [15] design).

classification constraints on PAYLOAD
FLIGHT#, ITEM#, QTY

class SECRET
WEIGHT

class TOP-SECRET

This is an example of type-dependent classification con-
straints.
Value-dependent classification constraints provide a

means of classifying data at the tuple or element level,
where the classification is context- or content-dependent
(or, more generally, dependent on any information in the
database). For example, the following content-dependent
constraints classify the records in the FLIGHTS relation
at either SECRET or TOP-SECRET depending on their
destination:

classification constraints on FLIGHTS
ALL

class TOP-SECRET where FLIGHTS.DEST = 'Iran'
class SECRET where else

A. Classification Constraints
A classification constraint specifies an access class to

be assigned to all data in its target. The access class can

be expressed as a constant or as a formula over the access

classes of the data in the source using the lattice operators
"G" (for least upper bound) and "0" (greatest lower
bound). The set of all classification constraints is denoted
by ,CC.
We plan to support the following types of classification

constraints (or combinations thereof):
* Type-Dependent-The access class of a data element

is determined solely by its type (i.e., the attribute with
which it is associated).

* Value-Dependent-The access class of a data ele-

Assuming we do not want to make this classification rule
available to SECRET users, the rule must be classified
TOP-SECRET. Doing so, however, means that an addi-
tional rule, at the SECRET level, is needed in order that
a SECRET user can insert new records into the FLIGHTS
relation. Such a constraint might specify that all records
are to be classified SECRET:

classification constraint on FLIGHTS
ALL

class SECRET
Consequently, if a SECRET user inserts a record with
DEST = 'Iran', then that record will be classified SE-
CRET. If the SECRET user attempts to insert a record
with a primary key (FLIGHT#) corresponding to an ex-
isting TOP-SECRET record, the "'duplicate" record will
be inserted into the relation. This is because the existing
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record must be completely invisible to the user and all
database subjects operating on the user's behalf in order
to avoid introducing covert channels. This does not, how-
ever, violate the requirement for "no duplicate keys" be-

Derivation Axiom:

vy E D.target, y.class = G {x.classlx E D.source}.

The following is a derivation rule that classifies PAY-
LOAD.WEIGHT:

derivation rule on PAYLOAD
PAYLOAD.WEIGHT := PAYLOAD.QTY * ITEM.WEIGHT
where PAYLOAD.ITEM# = ITEM.ITEM#

The access class for each element of PAYLOAD.
cause the concept of key can be extended to include its WEIGHT is computed to be:
access class. We use the term polyinstantiation to refer to
the extension of object name to include its access class ITEM,ITEM#.class, PAYLOAD.ITEM#.class,.
With value-dependent classification constraints, the ac- The access class computed by a derivation rule is used

cess class for new data can depend on the access class of to attach a convenience label to derived data presented to
related data in the database. Given the preceding con- a user and to locate certain inference problems (see Sec-
straints, the following shows how data in the PAYLOAD tion III-E). If derived data is stored back into the data-
relation can be classified according to the access class of base, then the computed access class can be assigned to
the flight they are associated with:

classification constraint on PAYLOAD
ALL

class FLIGHTS.FLIGHT#.class
where PAYLOAD.FLIGHT# = FLIGHTS.FLIGHT#

This classification constraint assigns the access class
associated with a flight (denoted by FLIGHTS.FLIGHT#.
class) to all fields of all payload records for that flight
(assuming that the FLIGHTS relation has a record for that
flight that is visible to the user inserting the payload rec-
ord).

It is often desirable to insert data into a database where
the access class associated with the incoming data is sup-
plied with the data. For example, items may be inserted
in the ITEM relation through messages that contain an
item number, name, weight, and access class for the item
(i.e., for the entire record). This would be done with a
source-labeled classification constraint.
We shall now discuss two special types of classification

constraints, derivation rules and sanitization rules.

B. Derivation Rules
A derivation rule specifies how derived data are com-

puted. Because derived data generally reveal information

the stored data only if: 1) it dominates the access class
associated with the user on whose behalf it was computed;
or 2) the downgrade is authorized and confirmed by the
user.

C. Sanitization Rules
A sanitization rule is like a derivation rule, except that

it sanitizes its source so that the access class of the target
can be strictly dominated by the least upper bound of the
source access classes. Let SR be the set of all sanitization
rules; because sanitization rules are classification con-
straints, SR C CC. For S E SR, the following axiom states
that the access class assigned by the constraint to the tar-
get data must be at least the least upper bound of the ac-
cess classes of all data that can be inferred from the target
about the source, but at most the least upper bound of the
access classes of all data in the source:

Sanitization Axiom:

Vy E S. target, y. class 2 () {x. classIx E S. source A S. target - x},
and y. class c G {x. class Ix e S. source}

about the source data, each derivation rule is also inter-
preted as a classification constraint, where the access class
associated with the derived data is computed as the least
upper bound of the access classes of all data in the source

(derivations that sanitize their source are described in the
next subsection).

Let DR be the set of all derivation rules; since deriva-
tion rules are classification constraints, we have DR C

CC. For a derivation rule D E DR, the access class of the
derived data is expressed by the following axiom:

where y -- x means that x can be inferred from y. Infer-
ence can be defined in several ways. The following uses
classical information theory (the basics are in Denning
[6]) to state that the relative equivocation (reduction in
uncertainty) of x given y is at least h for some threshold
h e [0, 1]:

y -+ x = [requiv(y, x) 2 h],
where

requiv( y,x) = H(x )-
H(x)
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H(x) is the uncertainty of x (in bits) and Hy(x) is the
uncertainty of x given y (equivocation). If y discloses no
information about x, then Hy (x) = H(x), and requiv ( y,
x) = 0; if y discloses the exact value of x, then Hy (x) =
0, and requiv ( y, x) = 1; thus, the value of requiv is al-
ways between 0 and 1. Setting h = 1 implies that exact
disclosure is required for inference. The relation y - x
could also be formulated in terms of logic or confidence
intervals. The proof that a sanitization axiom is satisfied
requires a demonstration that the assigned access class is
correct with respect to the given definition of inference.
The following is an example of a sanitization rule for

attribute FLIGHTS.WEIGHT, which represents the sum
of all payload weights for a given flight:

straints is said to be complete if an access class is defined
for each element; it is consistent if no two constraints,
both of which must be satisfied simultaneously, define
conflicting classes. We are presently investigating the
conditions under which completeness and consistency can
be determined by analyzing the constraints with respect
to the database schema, and algorithms for doing so.

E. Derivation Rules as an Inference Tool
Although derivation rules specify an access class for

derived data, an access class for derived data may also be
specified by a classification constraint that reflects what
its perceived classification should be. The two constraints
can then be analyzed for consistency to determine whether

sanitization rule on FLIGHTS
FLIGHTS.WEIGHT := sum(PAYLOAD.WEIGHT)

where count(PAYLOAD.ITEM#) > 1 0
and FLIGHTS.FLIGHT# = PAYLOAD.FLIGHT#

class G {FLIGHTS.FLIGHT#.class, PAYLOAD.FLIGHT#.class, SECRET}

The above rule sanitizes the values of PAYLOAD.
WEIGHT, thereby excluding the attribute PAYLOAD.
WEIGHT from the access class specification (all data in
this example are classified at the attribute level). The ac-
cess class specification includes all other attributes in the
source (even though the total weight discloses no infor-
mation about flight numbers), and also states that the re-
sulting access class will be at least SECRET. The clause
"count(PAYLOAD.WEIGHT) > 10" ensures that a
minimum number of items is on board each flight so that
no single weight can be inferred from the sum.
A common form of sanitization involves removing the

precision from sensitive data. Consider a relation schema:
LOCATION(OBJECT, LONG, LAT,

GROSS-LONG, GROSS-LAT)
where LONG and LAT give geographical longitude and
latitude to 8 significant digits and GROSS-LONG and
GROSS-LAT give only 2 digits of precision. Suppose that
LONG (and LAT) are SECRET. The following shows
how GROSS-LONG could be defined CONFIDENTIAL
through a sanitization rule:

sanitization rule on LOCATION
GROSS-LONG := round(LONG,6)
class CONFIDENTIAL

where round (x, d) rounds x by removing d digits of pre-
cision.
The following is another example of sanitization. Sup-

pose that A and B are large SECRET numbers and that C
is the ciphertext encryption of plaintext A under SECRET
key B, where encryption is multiplication modulo a prime.
Then C could be released as UNCLASSIFIED through a
sanitization rule.
D. Consistency and Completeness
The set CC of all classification constraints must be

complete and consistent. A set of classification con-

there is an inference problem associated with the derived
data.
For example, consider again the derivation rule for

PAYLOAD.WEIGHT, which we shall write in brief
as PAYLOADWEIGHT = ITEM.WEIGHT * PAY-
LOAD.QTY, ignoring for the moment the fact that both
ITEM.ITEM# and PAYLOAD.ITEM# are included in the
source in order to do the join. Let us further abstract this
to C = A*B. Consider the following classification con-
straints and derivation rules:

classification constraints on R
A, B
class SECRET

C
class TOP-SECRET

derivation rule on R
C := A * B

Here the user has added the additional classification con-
straint for C (which is not needed for completeness be-
cause a label for C is computed from the derivation rule).
Now, because the first two classification constraints label
A and B as SECRET, the derivation rule for C will label
C as SECRET, thereby conflicting with the classification
constraint for C, which specifies that C is TOP-SECRET.
This inconsistency reveals an inference problem: if C is
TOP-SECRET, then simply labeling it as TOP-SECRET
is not enough because it can be derived from A and B.
The user might then redefine the constraints so that at least
one of A and B is TOP-SECRET.

Returning to our Flight database, the situation is some-
what more complicated because the join attributes
ITEM.ITEM# and PAYLOAD.ITEM# are also in the
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source for PAYLOAD.WEIGHT. If either of the join at-
tributes are classified higher than ITEM.WEIGHT and
PAYLOAD.QTY, then PAYLOAD.WEIGHT will be
forced to the higher access class. This could be avoided
by expressing the derivation as the following sanitization
rule (and demonstrating that ITEM# cannot be inferred
from PAYLOAD.WEIGHT):

lation, be stored at relation-low. This means that a user
knows in advance that there may be invisible data asso-
ciated with an attribute.
Mandatory security, namely the simple security and

*-properties [20], will be enforced in the reference mon-
itor (see Section VI).

sanitization rule on PAYLOAD
PAYLOAD.WEIGHT:= PAYLOAD.QTY * ITEM.WEIGHT
where PAYLOAD.ITEM# = ITEM.ITEM#

class (3 {ITEM.WEIGHT.class, PAYLOAD.QTY.class}

IV. VIEWS FOR AcCESSING DATA

Data in the database are accessed through access views,
which control database retrieval and update.
A. Access Views

All accesses to the database for retrieval, update, in-
sert, and delete are controlled by a set AV of views called
access views. Because access views are generally referred
to as "views" in the literature, henceforth we shall refer
to them simply as views. A view specifies some subset of
the database and can also specify computations. The view
specification has a classification, and the view has an as-
sociated authorization list for discretionary security.
For a view V E AV, the security 'requirements are stated

in terms of two axioms. The first deals with mandatory
security, and the second with discretionary security.

B. Filtering Axiom
The first axiom for access views specifies the filtering

requirement: that all data bound to the source of V (when
the view is evaluated) are dominated by the login access
class of the user U, denoted U. class. As previously noted,
restricting the classification of the source data is essential
in order to prevent user inferences [17]-[19].

Filtering Axiom:

U.class 2 x.class, vx E V.source.

In practice, the filtering logically removes all data from
the view source that is not dominated by U. class as fol-
lows:

1) If no value for an attribute is dominated by U. class,
then the attribute is deleted.

2) If no value for an entire record is dominated by
U. class, then the record is deleted.

3) If, after removing attributes and records, an element
remains that is not dominated by U. class, the element is
replaced by nil (meaning "undefined") and assigned the
access class UNCLASSIFIED.
Note that the replacement of classified data by nil val-

ues does not completely hide the data in that the existence
of data at higher access classes is disclosed (although it
may not be always possible to distinguish between hidden
data and other undefined data). However, such hiding does
not provide a leakage path, because we require that the
relation schema, including a specification for the range of
access classes that can be assigned to elements in the re-

The user's clearance, of course, must dominate the lo-
gin access class:
Login Access Class Axiom:

U.clearance 2 U.class.

A user may update multilevel data through a single
view. For example, a TOP-SECRET user could update a
tuple containing both SECRET and TOP-SECRET attri-
butes. Although permitting multilevel updates is highly
desirable, it also introduces some risk. One way of con-
trolling this risk is to limit the range over which a multi-
level update can be performed (e.g., to two adjacent ac-
cess classes); another is to require that all such updates
originate from the user via a "trusted path" (rather than
from software).
When a query result is displayed to the user, the display

will include the following as convenience labels: the se-
curity markings for all source data; the labels computed
by all derivation rules; and a label for the query result as
an aggregate, computed as the least upper bound of the
access classes for all data accessed during the processing
of the query. Because the system adheres to the *-prop-
erty, these are convenience labels only, and the query re-
sult must be protected at the access class of the user (which
may be higher than any of the computed labels). This is
because the database subjects running on behalf of the
user inherit the user's access class and, therefore,, have
access to data in that access class.

C. Discretionary Access
The second axiom on access views states that U can

perform an operation o on V only if o is specifically au-
thorized to U on V:

Discretionary Access Axiom:

access ( U, V, o) D auth ( U, V, o).
In addition to the above axioms, we require that all

views used for update, insert, and delete be well-de-
fined-i.e., that the data in the target can be mapped back
onto the source. In general, this requires that the target
for each such view be stored (rather than derived) data
and include a key for each relation named.
Views need not be revoked when a user's clearance

changes (revocation is needed only if the discretionary
policy changes), since the reference monitor, which en-
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forces mandatory security, will not return any data to a
user through a view unless the access class of the user
dominates the access class of the data, and will not ac-
knowledge the existence of a view to a user unless the
access class of the user dominates the access class of the
view specification. To illustrate, consider the following
SECRET view, which retrieves the flight number and date
of all flights:

view FLIGHT-DATES
FLIGHT# := FLIGHTS.FLIGHT#
DATE := FLIGHTS.DATE
class SECRET
auth retrieve

Because the view definition is SECRET, users with clear-
ances less than SECRET will not have access to the view.
Moreover, SECRET users retrieving data through the
view will not have access to any TOP-SECRET data.
In particular, under the classification constraints on
FLIGHTS given earlier, all flights to Iran will be invisible
to SECRET users. The "auth" specification states which
operations are permitted to which users; for simplicity,
we have stated operations only. A user authorized to use
this view could issue a retrieval against it-for example,

retrieve DATE from FLIGHT-DATES
where FLIGHT# = 1735

A view can contain predicates that depend on arbitrary
states of the database. For example, suppose that our da-
tabase includes a single-record relation STATE with at-
tribute TIME giving the current time, and a relation USER
with attribute UID giving the user identifier for each
logged-in user, and an attribute CONNECT giving the
type of login connection for the user. Letting "*" denote
the user id of the user applying a view, the preceding view
could be written as follows in order to require that all
accesses be from local terminals during the hours 8:00
AM to 5:00 PM:

view FLIGHT-DATES
FLIGHT# := FLIGHTS.FLIGHT#
DATE := FLIGHTS.DATE
where STATE.TIME > = 0800
and STATE.TIME <= 1700
and USER.CONNECT = 'local'
and USER.UID = *

class SECRET
auth retrieve

Note that we include all access predicates in the view
rather than expressing them separately through special ac-
cess rules as is done in INGRES [7] and by Bonyun [21].
For many applications, users want data presented

graphically or statistically, or they want some complex
calculation to be performed over the data. Users may
compose one or more views and use numeric and statis-
tical operators and operators for formatting and display.
Many of these operators (e.g., those used for formatting)
will be invisible to the user and implicit in the retrieve

command. In general, users are free to form queries across
views for which they are authorized.

V. AGGREGATION

We now turn to the aggregation problem, that is, re-
stricting access to collections of data beyond that required
for the individual elements. The aggregation problem
arises when data are brought together through associa-
tions to provide a larger context. Although one could in
principle define an aggregate to be an arbitrary set of data,
the cases of practical interest seem to fall into the follow-
ing categories:

1) Qualitative Associations: These correspond to as-
sociations among different attributes of the schema or
among different instances of the same attribute, and fall
into two subcategories:

a) Entity Associations: Here, it is the association be-
tween different entities (as represented by relations) that
is sensitive. Examples are the association between the
source and receiver of a transmission, and between a flight
and item (meaning the item is in the flight's payload).

b) Property Associations: Here, associations among
some of the properties (as represented by attributes) of a
single entity are more sensitive than the properties taken
separately. An example is an association between longi-
tude and latitude for an object, which might be more sen-
sitive than either coordinate alone.

2) Quantitative Associations: These correspond to
size-based associations where any collection of more than
n tuples over the same attributes is considered to be more
sensitive than a single tuple. For example, an insurance
agent might be allowed to retrieve the dollar value of in-
dividual insurance policies, but is not allowed to retrieve
more than n of them. Or, a particular cashier might be
authorized to write checks drawn on the company's ac-
count, but may not write checks totaling more than n dol-
lars in any one day.

In the following sections, we discuss three methods for
dealing with aggregation problems: 1) database design, 2)
sanitization, and 3) discretionary aggregation constraints.

A. Database Design
Many qualitative associations can be handled through

database design. Consider first associations among entity
types, where each entity type is represented by a relation.
Here, we can represent the association either by a separate
relation that contains join attributes for both relations, or
by join attributes that are stored in either or both of the
entity relations. In general, these join attributes will be
primary or secondary keys, but entities can be related by
non-key attributes as well. If the join attributes are stored
in the entity relations, then the association can be pro-
tected by classifying at least one of each pair of attributes
used for joining the relations at the higher access class.
Where the association is represented entirely by a separate
relation (i.e., no meaningful associations can be made by
joining the relations for the separate entities), the entire
relation may be classified up.
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To illustrate how an association can be protected, sup-

pose in the Flight database that all flights and items are

classified SECRET, but that the association between
flights and' items is to be regarded as TOP-SECRET. Since
this association is represented entirely by the PAYLOAD
relation (no meaningful associations can be made by join-
ing the attributes in FLIGHTS and ITEM), the problem
is readily solved by classifying the entire PAYLOAD
relation TOP-SECRET. (Classifying only PAY-
LOAD. ITEM# as TOP-SECRET would not solve the
problem since the result of PAYLOAD. WEIGHT/PAY-
LOAD.QTY could be joined with ITEM. WEIGHT to get
ITEM#).

Associations among different instances of the same en-

tity type can be similarly handled by classifying the as-

sociation at the higher access class. To illustrate, suppose

that knowing that employees Smith, Jones, and Davis are

working together on a project may reveal SECRET infor-
mation about the mission of the project, although other
project and employee information may be CONFIDEN-
TIAL. We can store employee information in a CONFI-.
DENTIAL relation EMPLOYEES(EMPLOYEE-ID,
NAME, DEPT-NO, TITLE), and we can store project
information in a CONFIDENTIAL relation PROJ-
ECTS(PROJECT-ID, PROJECT-NAME, BUDGET).
EMPLOYEES includes tuples < 12345, Smith, 15, Car-
tographer>, < 14000, Jones, 9, Driver>, and < 10800,
Davis, 11, Explosives-Expert > . PROJECTS includes tu-
ples <21, Product-X, 250000> and <19, Special-De-
liveries, 500000>.. The association of employees and the
projects they are assigned to can be stored in the relation
WORKS-ON(PROJECT-ID, EMPLOYEE-ID), where
classification can be at the tuple level. IfWORKS-ON has
all three of the tuples < 19, 12345 >, < 19, 14000 >, and
< 19, 10800 > (indicating that Smith, Jones, and Davis
are all working together on the Special-Deliveries proj-
ect), then these three tuples would be classified SECRET,
whereas the other tuples in WORKS-ON would be clas-
sified CONFIDENTIAL (unless there were other projects
that Smith, Jones, and Davis work together on).

B. Sanitization
Sanitization rules are required for most property asso-

ciations and quantitative associations. With respect to
property associations, we note that simply assigning a

higher access class to one or more of the attributes form-
ing the aggregate often does not address the problem. For
example, consider a relation R(ID, A, B, C) with key ID,
where ID, A, B, and C are each' SECRET, but the asso-

ciation (A, B) is TOP-SECRET. We could split up A and
B by storing one -say A-in a separate relation (ID, A),
with the join attribute ID labeled as TOP-SECRET. How-
ever, this would also prevent making SECRET associa-
tions between A and ID and A and C. We have the same

problem if we simply classify attribute A higher in the
original relation R. Such cases are better dealt with as

sanitization problems, using sanitization rules. With this
approach, we protect the aggregate at the higher access

class, and require a sanitization rule to release subsets of
the aggregate to users at lower access classes. (In this
case, we require a proof,that the sanitization is sufficiently
lossy with respect to the whole rather than to the individ-
ual elements.) This has the additional advantage that the
reference monitor can provide mandatory security for the
aggregate, even though the reference monitor does not
know about aggregate definitions made at the view layer.
If the aggregate were not protected at the higher access
class, then the aggregate would be vulnerable to unau-
thorized disclosure if the view manager could be circum-
vented.

Similarly, quantitative associations can be handled by
sanitization. To illustrate, consider the familiar "phone
book" problem, where the entries in the phone book for
a well-known agency are at one access class, but the en-
tire phone book, or even a set of more than n entries from
the book, is at a higher access class. Here we protect the
entire phone book at the higher access class (its actual
classification) and require sanitization to release an indi-
vidual phone number to users at lower access classes. This
corresponds to how the phone book is treated in the man-
ual world.

C. Aggregation Constraints

Aggregation constraints are used for qualitative and
quantitative associations of a discretionary nature when
the aggregation problem cannot be solved through design
alone.
An aggregation constraint W is a view that is defined

by an attribute set, W. attset, and a count, W. count, which
specifies a lower bound on the number of tuples over the
attributes in W. attset required to form the aggregate. A
relation aggregate-restrict specifies what users are indi-
vidually or collectively restricted access to an aggregate.
In' particular, a user U is restricted access to an aggregate
W if U belongs to a group G where aggregate-restrict ( G,
W) Restrictions are placed on individual users by form-
ing singleton groups.
We assume that the scope of each aggregation con-

straint is minimal. This means that a minimal set of attri-
butes is specified (i.e., any smalle-r set of attributes does
not cause an aggregation problem), and, for quantitative
aggregation, a minimal number of records is'specified.

Access to an aggregate W is controlled through addi-
tional restrictions on access views. For a given set of ac-
cess views VS, we say that VS covers W if and only if the
set of attributes named in VS includes all attributes in
W. attset. A set of view instantiations, denoted VI, con-
tains W, written VI v W, if and only if the views in VI
cover Wand the number of tuples returned by VI is at least
W. count. The following axiom then states that if a group
of users G has collectively accessed an aggregate W, then
it must not be the case that aggregate-restrict ( G, W):
Aggregate Access Axiom:

access(G, VI) A VI v W D
-aggregate-restrict ( G, W).
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As an example, consider the following aggregation
constraint, which defines FLIGHT-AGG to consist of any
10 or more complete tuples in FLIGHTS:

aggregation constraint FLIGHT-AGG
FLIGHTS. ALL
count = 10
restrict {Smith}, {Jones, Young}

The aggregate is restricted to Smith individually, and to
Jones and Young collectively (but not to Smith and Jones
collectively, for example). Neither of these two groups
would be allowed to retrieve more than 10 records over
time from any set of views over the entire FLIGHTS re-
lation. However, because all attributes in FLIGHTS are
needed to form the aggregate, the users could retrieve an
unlimited number of records from a view that accesses,
say, only the FLIGHT# and DEST fields. Records accu-
mulated over time might be excluded from the aggregate
when they become outdated (perhaps after some predeter-
mined elapsed time).
One might want aggregation restrictions to apply to sin-

gle view instantiations only, and not to accumulations over
time. This option might be specified in an aggregation
constraint.
Because aggregation constraints are discretionary ac-

cess controls, they have the limitations of any other dis-
cretionary controls. For example, they provide little pro-
tection against Trojan Horses or collusion between users.

VI. SYSTEM DESIGN

The preceding sections have outlined a high-level pol-
icy model for a secure database system based on views.
The axioms state the security conditions that must be sat-
isfied by the system and each instance of the database. In
this section, we give a rough sketch of a tentative system
design to support our view concepts.
We decompose the system into a set of k layers. Each

layer i builds on lower layers and implements a security
policy Pi, which is a set of triples (U, I, o) specifying
that user U can perform operation o on information I. Each
layer has the property that its policy further constrains
access by requiring that additional axioms be satisfied;
thus, Pi C Pi -1 for i = 2, . * *, k. Our formal model
will parallel the design layers.
The following is a possible decomposition that takes

advantage of existing kernel technology. The layers are
listed from top to bottom, with the boundaries for the
trusted computing base (TCB) and reference monitor as
shown in Fig. 1.
Layer 1 is a security kernel implementing the Bell and

LaPadula model [20]. The kernel supports mandatory se-
curity (secrecy and integrity) for single-level objects (such
as files, etc.), subjects (users, processes, etc.), process
and memory management, and other resource managers.
With respect to the view model, this layer supports the
underlying physical representation of the database, user
clearances, and login access class. The kernel will be used
to implement the higher layers. We envisage using the
GEMSOS security kernel [22] in our design.

5. User interface

4. Database management functions

3. View manager Trusted

TCB- 2. Relational operators Subjects

1. Reference Monitor (security kernel)

Discretionary
Security
Perimeter

Mandatory
Security
Perimeter

Fig. 1. System decomposition.

The reference monitor enforces filtering. By filtering all
data passed from this layer to higher (untrusted) layers in
the database system, a Trojan Horse in the query proces-
sor cannot leak high-level data by encoding it in a low-
level response [18].
Layer 2 implements single-level base relations. This

layer provides the relational operators as well as other nu-
meric or symbolic operators provided by the database sys-
tem (e.g., for computing statistics) and implements the
access methods, including index structures.
Layer 3, the view manager, implements views. This

layer provides the mapping of multilevel views onto the
single-level base relations of Layer 2, and decomposes
transactions on multilevel views into single-level trans-
actions on the single-level base relations of Layer 2. Layer
3 supports classification constraints, including derivation
and sanitization rules, aggregation constraints, and dis-
cretionary access controls (e.g., access-control lists or
user/group/world vectors). It is responsible for checking
that a set of constraints is complete and consistent, and
for assigning -access classes to the data (through calls on
Layer 1).
As shown in the figure, we have identified distinct se-

curity perimeters with respect to mandatory and discre-
tionary security. The TCB encompasses both. Although
classification and aggregation constraints are within the
TCB, they are outside the reference monitor because they
are potentially quite complex and rely to some extent on
the correct implementation of the relational operators.
The mandatory security perimeter includes the refer-

ence monitor as well as "trusted subjects" to perform
downgrades arising from sanitization and rule-based clas-
sification (specifically, to allow data to be assigned an ac-
cess class that is lower than that of the user entering the
data). The trusted subjects will require a demonstration
that information at a high access class cannot leak through
them to a low access class. For downgrades arising from
the classification constraints, user confirmation of the ac-
cess classes to be assigned to data may also be required
for increased assurance. For sanitization, we may restrict
the data that can be retrieved and limit the amount by
which the data can be marked down. We will also have
to show that the sanitization rules lose sufficient infor-
mation about the source.
The discretionary security perimeter includes every-

thing through Layer 3, the view manager. Although Layer
3 cannot compromise the mandatory secrecy and integrity
provided by Layer 1, it is still a part of the TCB. (Every-
thing above Layer 3 is untrusted in the sense of the TCB,
although user application environments at Layer 5 may
themselves enforce more refined application policies.)
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Because Layer 3 is constrained by the reference monitor
of Layer 1, which ensures enforcement of the mandatory
policy, the view manager will not require the same degree
of assurance as the reference monitor.
Layer 4 provides data management functions that are

not needed by the lower layers. Although we are not yet
sure what functions can reside in this layer, possible can-
didates are transaction management, parsing and query
optimization, and distributed database management. Our
goal is to place as much of the database system as possible
outside the TCB.
Layer 5 provides the user interface. It corresponds to

the application layer.
Each successive layer in the TCB (through Layer 3) in-

troduces further axioms, thereby restricting while enrich-
ing the policy of the system. Although the higher layers
cannot give increased access to the data beyond that given
by the reference monitor, by supporting classification
down to the element level, rule-based assignment of se-
curity labels, sanitization, derivation rules, and aggrega-
tion constraints, the higher layers can provide increased
support for security while allowing data to be classified at
its true access class and not become over-classified.

VII. CONCLUSIONS
The concepts described in this paper represent a starting

point for a model that reaches into new areas of database
security. By introducing rule-based classification to con-
strain the access classes of the data, the model provides a
framework for addressing some inference problems, ag-
gregation, sanitization, context- and content-dependent
classification, and dynamic classification. There are,
however, many difficult problems that must be solved be-
fore these concepts can be realized in an actual system.
We are now formalizing some of these concepts as a

security model. We expect that in the process of formal-
ization, the model will undergo revisions and enhance-
ments as we find better ways of expressing the basic con-
cepts and uncover implementation problems. Our goal is
to develop a model and system design that can be imple-
mented in a three to five year period.
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