
Views on Software Engineering from the Twin Peaks of
Requirements and Architecture

Matthias Galster
University of Canterbury, New Zealand

mgalster@ieee.org

Mehdi Mirakhorli
DePaul University, USA

mehdi@cs.depaul.edu

Jane Cleland-Huang
DePaul University, USA

jhuang@depaul.edu

Janet E. Burge
Miami University, USA

burgeje@muohio.edu

Xavier Franch
Universitat Politècnica de

Catalunya, Spain

franch@essi.upc.edu

Roshanak Roshandel
Seattle University, USA

roshanak@seattleu.edu

Paris Avgeriou
University of Groningen, The

Netherlands

paris@cs.rug.nl

DOI: 10.1145/2507288.2507323
http://doi.acm.org/10.1145/2507288.2507323

ABSTRACT
The disciplines of requirements engineering (RE) and software
architecture (SA) are fundamental to the success of software projects.
Even though RE and SA are often considered in isolation, drawing a
line between RE and SA is neither feasible nor reasonable as
requirements and architectural design impact each other. This
observation motivated the Twin Peaks model that was the subject of the
Second International Workshop on the Twin Peaks of Requirements and
Architecture (TwinPeaks@ICSE 2013). TwinPeaks@ICSE 2013 was
held in conjunction with the 35th International Conference on Software
Engineering 2013 in San Francisco, CA. The workshop aimed at
providing a forum for researchers, practitioners and educators from the
areas of RE and SA to discuss their experiences, forge new
collaborations, and explore innovative solutions that address the
challenges that occur when relating RE and SA. The workshop provided
participants with an opportunity to become familiar with the
relationship between RE and SA in the broader context of software
engineering, rather than in an isolated context of either RE or SA. The
workshop featured one industrial keynote, five research paper
presentations, two invited talks and four working group discussions.

Keywords
Requirements engineering, software architecture, Twin Peaks model.

1. INTRODUCTION
Drawing a line between software requirements and architecture is
neither feasible nor reasonable as requirements and architectural design
processes impact each other. Requirements are constrained by what is
technically feasible and by time and budget restrictions. On the other
hand, feedback from the architecture leads to renegotiating architecture-
significant requirements with stakeholders.

The topic of bridging requirements engineering (RE) and software
architecture (SA) has been discussed in both the RE and SA
communities, but mostly independently. Therefore, the motivation for
Second International Workshop on the Twin Peaks of Requirements and
Architecture (TwinPeaks@ICSE 2013) was to bring both communities
together in order to identify key issues, explore the state-of-the-art in

research and practice, identify emerging trends, and define challenges
related to the transition and the relationship between RE and SA. The
conceptual foundation for the workshop was the Twin Peaks model
proposed by Nuseibeh which suggests an intertwinement of software
requirements and architecture to achieve incremental development and
speedy delivery [1].

TwinPeaks@ICSE 2013 (http://re.cs.depaul.edu/twinpeaks/ICSE13/)
was held in conjunction with the 35th International Conference on
Software Engineering (ICSE 2013) in San Francisco, CA. Around 30
participants were registered for the workshop. The workshop was a
follow-up event of the First International Workshop on the Twin Peaks
of Requirements and Architecture, held at the International Conference
on Requirements Engineering in 2012
(http://re.cs.depaul.edu/twinpeaks/RE12/).

2. PRESENTATIONS
The workshop featured one industrial keynote (“Surveying the Twin
Peaks”) delivered by Rich Hilliard. Rich argued that surveying is
essential in the planning and execution of nearly every form of
construction. In his talk, Rich surveyed the Twin Peaks of requirements
and architecture, their surroundings, geology, morphology, etc. to
examine questions, such as what are the Twin Peaks made of, why do
requirements and architecture intertwine (they intertwine because of
concerns), what exactly intertwines, and are there only two peaks in the
Twin Peaks model. For example, according to Rich, non-functional
requirements, a term frequently used in the RE community, is a non-
category for requirements. Furthermore, Rich argued that “architecture
is architecture”, i.e., there is no good reason for differentiating “types”
of architectures, such as enterprise architecture, system architecture and
software architecture. This is because the cognitive processes required
to design any of these architectures are the same. Rich argued that only
the roles involved in the design of these architectures differ. Also, the
required knowledge and expertise may differ depending on the type of
architecture.

Prior to the workshop, we invited workshop participants to submit one
slide to be presented in one minute. The slide should cover a topic or
question that participants were passionate about and interested in

ACM SIGSOFT Software Engineering Notes Page 40 September 2013 Volume 38 Number 5

discussing with other workshop participants. We received nine single
slides of which some posed questions (e.g., how can we make
requirements architecture friendly) while others proposed potential
solutions to problems related to intertwining requirements and
architecture (e.g., how can we bridge the gap between requirements and
architecture based on a distributed cognition theory). These short
presentations triggered interesting discussions among participants.

Based on a peer reviewer process, the workshop selected five research
papers for inclusion in the proceedings. The papers were presented in
20-minute presentations. The list of papers can be found in the
workshop summary [2]. Furthermore, we included two invited talks. Ian
Gorton from the SEI talked about tales from the (scientific software)
engineering abyss. Leyna Zimdars explored a practitioner’s perspective
on developing requirements using a twin peaks paradigm. Furthermore,
Bashar Nuseibeh, the original author of the Twin Peaks model, joined
for a brief interview through Skype.

3. WORKING GROUP DISCUSSIONS
The presentations provided starting points for the discussion in four
working group sessions. The following topics and questions were
selected for further discussion:

1. Twin Peaks in software engineering (SE) education: How can
we improve the understanding of the importance of the
interplay between requirements and architecture in software
engineering education?

2. Twin Peaks in software product line engineering (SPLE):
What is the role of Twin Peaks when engineering systems that
are part of a software product line?

3. Twin Peaks and decisions: Does the Twin Peaks paradigm
affect requirements and architecture decision making, and if
so, how?

4. Twin Peaks and related “spaces”: What are the relationships
between the requirements and architecture design spaces?

The topics were selected based on the interests of workshop
participants, i.e., the selected four topics received the most votes from
the participants. We formed groups that established a balance between
participants from academia and industry. Thus, all groups discussed
both, the industrial and academic perspectives on the topics listed
above. The following sections elaborate on the results of the discussions
in the working groups.

3.1 Twin Peaks in SE Education
The group explored the shortcomings of existing SE curricula to support
the intertwinement of requirements and architecture. A major
shortcoming was identified in that requirements and architectures are
often taught independently and in a fashion that resembles a waterfall
process. The discussion led to a proposed Master’s curriculum that
would leverage course components, capstone projects and research
components. The curriculum intentionally combines teaching
requirements and architecture topics in a more coordinated way.

Typical of many software engineering programs, the course component
would include a course designated to cover topics related to
requirements solicitation, modeling and analysis techniques and another
course to cover architecture related topics. The two courses should be
taught as co-requisites, be synchronized, and may use a shared project
or case study. The synchronous nature of the courses along with the use
of a shared case study project will allow the students to traverse the two
peaks at the same time while in-depth treatment of topics in each course
will offer them the thorough knowledge needed in each discipline.
Ideally advanced courses in requirements analysis and software
architecture would be offered as electives to provide a more
comprehensive coverage of topics.

The capstone project typically offered in the final year of the program
should involve industrial partners as customers. Students would have
the opportunity to be exposed to a real and true experience of
intertwining requirements and architecture. Similarly, the research
project should involve industrial partners and explore a topic that is
relevant for practitioners from a research perspective.

In addition to these three components, the Master’s curriculum should
also incorporate programming and development approaches to provide
students with hands-on experience and allow them to experience the full
intertwinement, from requirements to architecture to detailed design to
implementation. This will further prepare students for an industry-
sponsored capstone project.

3.2 Twin Peaks in SPLE
The group explored the extension of the Twin Peaks model for a
product line context and variability-intensive system. Furthermore, the
group explored challenges related to intertwining requirements and
architecture in the context of product lines. The following challenges
were identified:

1. Consistency: Achieving consistency between requirements
and architecture appears to be more difficult in SPLE since
requirements in a product line context include requirements
that apply to all products of a product line (core or common
requirements), and requirements that only apply to some
products of the product line (variable requirements).

2. Evolution: Similar as with consistency, evolution usually
happens separately for the two types of requirements (core
and variable requirements).

The group found that many research prototypes and tools exist for
linking requirements and features to architecture elements / artifacts. In
this sense, one could argue that software product line engineering
enforces the intertwinement of requirements and architectures.

Figure 1 shows an adaptation of the Twin Peaks model in the context of
software product line engineering. The main characteristics of this
adaptation are outlined below.

Detail
level

Implementation dependence

Core (common)
requirements

Product
architecture

Variable
requirements

Product line
architecture

Figure 1. The Twin Peaks model in the context of SPLE

1. Instead of one set of requirements, the model includes one
peak that covers two types of requirements. Core (or
common) requirements are requirements that must be
implemented in all products of a product line. Variable
requirements represent variation points in requirements.
These requirements may or may not be implemented in a
concrete product of the product line, depending on the
configuration of the concrete product.

ACM SIGSOFT Software Engineering Notes Page 41 September 2013 Volume 38 Number 5

2. Instead of one peak for the architecture, the adapted model
contains two peaks related to architecture. One peak
represents the product line architecture, i.e., the architecture
for all products of a product line. The second peak relates to
architecture represents the architecture of a concrete product
of a product line.

3. In contrast to the original Twin Peaks model, the adapted
model develops progressively more detailed core
requirements and product line architecture, variable
requirements and product line architecture, and requirements
(core and variable) and product architecture. The lines in
Figure 1 only show one iteration. However, as with the
original Twin Peaks model, multiple iterations to achieve true
intertwinement would occur in practice.

3.3 Twin Peaks and Decisions
The discussion was about the similarities and differences of decisions
on requirements and architectural decisions. The group concluded that
both types of decisions are fundamentally the same thing across system
design. The major difference is in the people involved in making the
respective decisions and the skills and knowledge required to make
these two different types as decisions. However, the cognitive biases
involved in the two types of decisions are the same.

3.4 Twin Peaks and Related “Spaces”
There are many “spaces” involved in requirements elicitation /
elaboration and in design: requirements space, design space, problem
space, and solution space. The group discussed the relationship between
the requirements and the design space. Requirements constrain the
design space by describing what the system has to do, and sometimes
how it has to do it, particularly when the system under development
interfaces with previously existing systems. Design exploration elicits
requirements both through modeling and simulation and through
prototyping. Design decisions constrain requirements—they may
involve the reuse of prior (design/code/system) expertise, be limited by

personnel availability, and be influenced significantly by politics.
Which requirements are documented may depend the level of project
risk and on the organizational experience with the domain and
application.

One question raised by the group was if there is any way to automate
design space search and if the requirements sufficiently define the
boundaries of the design space to make this possible. The suspicion
was that this often was not the case.

4. CONCLUSIONS
The workshop discussed the applicability of the Twin Peaks model in
current software engineering practices as a conceptual approach to
visualize and reason about the tight relationship between requirements
engineering and software architecture. As briefly reported here, there
are some emerging lines of research which call for further efforts in the
community. Therefore, the third edition of the workshop will be held at
the 21st IEEE International Requirements Engineering Conference
(TwinPeaks@RE13, http://re.cs.depaul.edu/twinpeaks/RE13/).

5. ACKNOWLEDGMENTS
We extend our thanks to all who have participated in the organization of
the workshop, particularly submitters and presenters, workshop
participants, the members of the program committee, and the ICSE
organizers.

6. REFERENCES
[1] B. Nuseibeh, Weaving Together Requirements and Architecture,

IEEE Software, 34 (2001) 115-117.
[2] P. Avgeriou, J. Burge, J. Cleland-Huang, X. Franch, M. Galster,

M. Mirakhorli, Roshanak Roshandel, 2nd International Worskhop
on the Twin Peaks of Requirements and Architecture (TwinPeaks
2013), in: 35th International Conference on Software Engineering,
IEEE Computer Society, San Francisco, CA, 2013, pp. 1556-1557.

ACM SIGSOFT Software Engineering Notes Page 42 September 2013 Volume 38 Number 5

