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Abstract. In the last decade, vine copulas emerged as a new effi-
cient techniques for describing and analyzing multi-variate dependence
in econometrics; see, e.g., [1–3, 7, 9–11, 13, 14, 21]. Our experience has
shown, however, that while these techniques have been successfully ap-
plied to many practical problems of econometrics, there is still a lot of
confusion and misunderstanding related to vine copulas. In this paper,
we provide a motivation for this new technique from the computational
viewpoint. We show that other techniques used to described dependence
– Bayesian networks and fuzzy techniques – can be viewed as a particular
case of vine copulas.

1 Copulas – A Useful Tool in Econometrics: Motivations
and Descriptions

Need for studying dependence in econometrics. Many researchers have observed
that economics is more complex than physics. In physics, many parameters,
many phenomena are independent. As a result, we can observe (and thoroughly
study) simple systems which can be described by a small number of parame-
ters. Based on these simple systems, we can separately determine the laws that
describe mechanics, electrodynamics, thermodynamics, etc., and then combine
these laws to describe more complex phenomena.

In contrast, in economics, most phenomena are interrelated. Thus, to nu-
merically describe economic phenomena, we need to take into account several
dependent parameters. So, in econometrics, studying dependence is of utmost
importance.

Statistical character of economic phenomena. An additional complexity of eco-
nomics – as compared to physics – is that while most physical processes are
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deterministic, in economics, we can only make statistical predictions. If we re-
peatedly drop the same object from the Leaning Tower of Pisa (as Galileo did),
we will largely observe the exact same behavior every time. In contrast, if sev-
eral very similar restaurants open in the same area, some of them will survive
and some will not, and it is practically impossible to predict which will survive
– at best, we can predict the probability of survival. We can deterministically
predict the future trajectory of a spaceship, but we can, at best, make statistical
predictions about the future values of a stock index.

Conclusion: we need to study dependence between random variables. Because of
the statistical character of economic phenomena, each parameter describing the
economics is a random variables. Thus, the need to study dependence means
that we need to study dependence between random variables.

Simplest case when random variables are independent: reminder. In order to
analyze how to describe dependence of random variables, let us recall how
independent random variables can be described.

In general, a random variable Xi can be described by its cumulative distri-

bution function Fi(xi)
def
= Prob(Xi ≤ xi). If two random variables X1 and X2

are independent, this means that their joint distribution function F (x1, x2)
def
=

Prob(X1 ≤ x1 &X2 ≤ x2) is equal to the product of the marginal distributions
F1(x1) and F2(x2): F (x1, x2) = F1(x1) · F2(x2).

Towards describing dependence between two random variables: the notion of a
copula. In the independent case, general, the joint distribution function F (x1, x2)
of two random variables X1 and X2 is equal to the product F1(x1) · F2(x2) of
the marginal distributions. In general, when the random variables X1 and X2

are dependent, the joint distribution function F (x1, x2) is different from the
product F1(x1)·F2(x2). It is reasonable to describe this general joint distribution
in such a way that we will clearly see how different is the joint distribution
from the independent case. In the independent case, F (x,x2) is the product of
the marginal distributions F1(x1) and F2(x2); to describe deviations from this
product, it make sense to consider more general combination functions, i.e., to
consider expressions of the type

F (x1, x2) = C(F1(x1), F2(x2)). (1)

Such combination functions C(a, b) are known as copulas; see, e.g., [19, 26] (see
also [1–3, 7, 9–11, 13, 14, 21]).

The independence case corresponds to the product combination function
C(a, b) = a · b. The more the combination function C(a, b) is different from
the product, the more dependent are the random variables X1 and X2.

Probability density function in terms of the copula. The expression for the prob-

ability density function f(x1, x2) =
∂2F (x1, x2)

∂x1∂x2
in terms of the copula can be
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obtained by differentiating the above formula with respect to x1 and x2. As a
result, we get the expression

f(x1, x2) = c(F1(x1), F2(x2)) · f1(x1) · f2(x2), (2)

where c(a, b)
def
=

∂2C(a, b)

∂a ∂b
and fi(xi)

def
=

dFi(xi)

dxi
are probability densities of the

marginal distributions.

Can copulas describe all possible dependencies? The expression (1) is a natural
generalization of the independence case. At first glance, it may sound that such
expressions describe some special class of dependent variables. However, it can be
shown that this expression is general enough to capture the general dependence
between random variables. Namely, for continuous distributions, e.g., for distri-
butions with well-defined probability density functions, once we know the joint
distribution function F (x1, x2) and marginal distributions F1(x1) and F2(x2),
we can get the representation (1) if we take C(a, b) = F (F−1

1 (a), F−1
2 (b)), where

F−1
i (a) denotes a function which is inverse to the function Fi(x).

Computational advantage of copulas. In many applications of econometrics, it
is important not only to have the right models for describing the corresponding
phenomena, it is also extremely important to have efficient algorithms which
use these models for predicting future values of the corresponding quantities. For
example, if several agents have access to the models that can predict the increase
in the price of a certain stock, but one of the agents has a faster algorithm for this
prediction, then this agent can learn about this future increase before everyone
else. This computational advantage will give this agent the opportunity to buy
the about-to-increase stock for the current price, and thus, earn a profit when
the price of this stock actually increases.

From this viewpoint, it should be noticed that a copula representation indeed
speeds up computations. To explain this speed-up, let us start with the case of
a single random variable. For a single variable Xi, we can use its observations
xi1, . . . , xiN to estimate the corresponding probability distribution. For example,
we can use a histogram distribution, i.e., approximate the probability by the

corresponding frequency: Fi(xi) = Prob(Xi ≤ xi) ≈
1

N
·#{j : xij ≤ xi}.

Comment. In practice, we rarely use the histogram distribution. Usually, we find
a smooth distribution which is sufficient close to the histogram one (e.g., in the
sense of the Kolmogorov-Smirnov criterion), so that this smooth distribution is
statistically possible, and use the corresponding smooth distribution.

For two random variables X1 and X2, we can, in principle, also use the cor-
responding pairs of observations (x1j , x2j), 1 ≤ j ≤ N , and estimate the prob-
ability F (x1, x2) = Prob(X1 ≤ x1 &X2 ≤ x2) as the corresponding frequency
1

N
·#{j : x1j ≤ x1 &x2j ≤ x2}. From the computational viewpoint, this would
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mean, however, that we need to process all N pairs (x1j , x2j) (i.e., all 2N num-
bers x1j and x2j) to find each of the values F (x1, x2). Usually, we have a large
amount of economic data, so the need to process all the data all the time makes
computations longer.

If instead of representing the unknown distribution by its joint distribution
function F (x1, x2), we use a copula representation, in which a distribution is
represented by two marginals F1(x1), F2(x2), and a copula C(a, b), then, to find
each of the marginals Fi(xi), we only need to process N values xij (j = 1, . . . , N)
(and we only need to process all 2N real values to determine the copula C(a, b)).
This decrease in the number of inputs speed up computations.

Case of three of more variables. As we have mentioned, to adequately describe
economic phenomena, we need to use several random variables

X1, . . . , Xn, n≫ 2.

Each such random tuple can be described by its probability distribution

F (x1, . . . , xn) = Prob(X1 ≤ x1 & . . . &Xn ≤ xn). (3)

Similarly to the case of two variables, when all the random variables are in-
dependent, the joint distribution is equal to the product of all the marginal
distributions:

F (x1, . . . , xn) = F1(x1) · . . . · Fn(xn).

Similarly to the two-variables case, the general distribution can be obtained
by applying an appropriate combination function (copula) C(a1, . . . , an) to the
marginals:

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (4)

To prove that such a representation is possible for a given joint distribution
F (x1, . . . , xn), we can take

C(a1, . . . , an) = F (F−1
1 (a1), . . . , F

−1
n (an)). (5)

2 From General Copulas to Vine Copulas: Motivations
and Descriptions

From the computational viewpoint, additional speed-up is needed. Similarly to the
two-variables case, the use of multi-dimensional copulas decreases the computa-
tion time. However, this decreased computation time still exponentially increases
with the dimension n.

Indeed, a full knowledge about a function f(x) of one variable defined on an
interval [0, 1] would mean that we know infinitely many values of this function,
corresponding to infinitely many real numbers x ∈ [0, 1]. In practice, we can only
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store finitely many values. So, to describe a function in a computer, we select a

small step h and only consider
1

h
values

f(0), f(h), f(2h), . . . , f(k · h), . . . , f(1), k = 1, 2, . . . ,
1

h
. (6)

Similarly, to describe a copula C(a1, . . . , an), we need to store values

C(k1 · h, . . . , kn · h)

corresponding to all possible combinations of integers k1, . . . , kn corresponding

to ki = 1, . . . ,
1

h
. For each of n variables ki, we have

1

h
possible values. Thus,

the total number of tuples (k1, . . . , kn) is equal to
1

hn
.

Each of these values needs to be estimated and processed. Thus, the resulting

computation time is proportional to
1

hn
and hence, exponentially grows with the

number of variables n. For large n, this computation time becomes unrealistically
large (see, e.g., [22]) – especially in view of the above-mentioned fact that in
econometrics, we need computations to be as fast as possible. Thus, an additional
speed-up is needed.

We already know that for two variables, a copula-based description – which
only uses functions of two variables – is realistic and practically useful. From this
viewpoint, it is desirable to only use functions of two variables in our description
of multi-variate distributions. Such a description is possible if we use vine copulas.
Let us explain how the corresponding vine copula techniques naturally emerge
from the analysis of our problem.

Main idea: using conditional probabilities. Our objective is to represent depen-
dence. To arrive at the copula techniques, we started with the description of in-
dependence, and we used this description to come up with a general copula-based
description of dependence. From the mathematical viewpoint, this copula-based
description is sufficient to describe an arbitrary dependence. However, from the
computational viewpoint, we need to go beyond the general copula-based for-
mula. To move forward, let us go back to the independence case, and see if there
are some other independence-related techniques that we can generalize to the
general dependence case.

Our previous analysis was based on the fact that independence between ran-
dom variables can be described in terms of the product of the corresponding
probabilities: F (x1, x2) = F1(x1) ·F2(x2). There is, however, an equivalent (and
probably more intuitive) description of independence, a representation in term
of conditional probabilities: F1|2(x1 |x2) = F1(x1), where

F1|2(x1 |x2)
def
= Prob(X1 ≤ x1 |X2 = x2). (7)

To relate this representation to the previous one, let us describe the condi-
tional probability in terms of the copula. By definition of the conditional prob-
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ability, we have

F1|2(x1 |x2) = Prob(X1 ≤ x2 |X2 = x2) =

lim
ε→0

Prob(X1 ≤ x2 |x2 − ε ≤ X2 ≤ x2 + ε) =

lim
ε→0

Prob(X1 ≤ x2 &x2 − ε ≤ X2 ≤ x2 + ε)

Prob(x2 − ε ≤ X2 ≤ x2 + ε)
. (8)

The probability in the numerator N of the corresponding fraction can be de-
scribed as

N = Prob(X1 ≤ x1 &X2 ≤ x2 + ε)− Prob(X1 ≤ x1 &X2 ≤ x2 − ε) =

F (x1, x2 + ε)− F (x1, x2 − ε). (9)

In terms of the corresponding copula C12(a, b) and the marginals F1(x1) and
F2(x2), we get

N = C12(F1(x1), F2(x2 + ε))− C12(F1(x1), F2(x2 − ε)). (10)

Since ε is small, we get

N ≈ 2ε · ∂C12(F1(x1), F2(x2))

∂x2
= 2ε · C1|2(F1(x1), F2(x2)) · f2(x2), (11)

where we denoted C1|2(a, b)
def
=

∂C12(a, b)

∂b
, and f2(x2) =

dF2(x2)

dx2
is the proba-

bility density of the second marginal distribution.
Similarly, the denominator D has the form

D = Prob(X2 ≤ x2 + ε)− Prob(X2 ≤ x2 − ε) = F2(x2 + ε)− F (x2 − ε). (12)

Since ε is small, we get
N ≈ 2ε · f2(x2).

Thus, the ratio F1|2(x1 |x2) is equal to:

F1|2(x1 |x2) = C1|2(F1(x1), F2(x2)). (13)

The corresponding conditional probability density f1|2(x1 |x2) can be obtained
by differentiating both sides of this equation with respect to x1:

f1|2(x1 |x2) = c12(F1(x1), F2(x2)) · f1(x1), (14)

where

c12(a, b) =
∂C1|2(a, b)

∂a
=

∂

∂a

(
∂C12(a, b)

∂b

)
=
∂2C12(a, b)

∂a ∂b
.

There are two ways to use conditional probabilities to speed up our compu-
tations. Let us illustrate both of them on the example of trivariate distributions.
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First idea: D-vine copulas. We know how to describe bivariate distributions in
terms of copulas: namely, each pair of random variables X1 and X2 with a joint
distribution F (x1, x2) can be represented as F (x1, x2) = C12(F1(x1), F2(x2)).
We would like to use this idea to describe three random variables X1, X2, and
X3. A natural idea is to fix the value x3, and to consider corresponding con-
ditional distributions. For each x3, we can have a similar representation of the
corresponding conditional distribution

F12|3(x2, x2 |x3)
def
= Prob(X1 ≤ x1 &X2 ≤ x2 |X2 = x3) =

C12|3(F1(x1 |x3), F2(x2 |x3), x3). (15)

In general, for different values x3, we can have different copulas C(a, b) =
C12|3(a, b, x3). These copula describe the dependence between X1 and X2. In
many practical situations, it makes sense to assume that the dependence be-
tween X1 and X2 does not depend on the value of X3. In such situations,
the copula C12|3(a, b) which describes this dependence does not depend on x3:
C12|3(a, b, x3) = C12|3(a, b). Then, the formula (14) takes the simplified form

F12|3(x1, x2 |x3) = C12|3(F1|3(x1 |x3), F2|3(x2 |x3)). (16)

We already know how to describe conditional distributions F1|3(x1 |x3) and
F2|3(x2 |x3) in terms of bivariate copulas and marginals: specifically, we can
use the formula (13). Thus, we can describe the conditional probabilities
F12|3(x1, x2 |x3) in terms of bivariate copulas and marginals.

Our goal is to compute the distribution function F (x1, x2, x3). To describe
the corresponding probabilities F (x1, x2, x3) in terms of conditional probabilities
F12|3(x1, x2 |x3), we can use the formula of total probability:

F (x1, x2, x3) =

∫ x3

−∞
F12|3(x1, x2 | z) · f3(z) dz. (17)

Combining formulas (13), (16), and (17), we get the following expression of the
multivariuate distribution in terms of bivariate copulas and marginal distribu-
tions:

F (x1, x2, x3) =

∫ x3

−∞
C12|3(F1(x1 | z), F2|3(x2 | z)) dz, (18)

where

F1|3(x1 | z) = C1|3(F1(x1), F3(z)), F2|3(x2 | z) = C2|3(F2(x2), F3(z)), (19)

C1|3(a, b)
def
=

∂C13(a, b)

∂b
, and C2|3(a, b)

def
=

∂C23(a, b)

∂b
. This description is a par-

ticular case of a D-vine copula.
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Second idea: C-vine copulas. The idea behind C-vine copulas comes from con-
sidering not directly probabilities and conditional probabilities (as for D-vine
copulas), but rather probability densities and conditional probability densities.
A multivariate probability density can be described in terms of conditional prob-
ability densities, as

f(x1, x2, x3) = f1|23(x1 |x2, x3) · f23(x2, x3). (20)

The probability density f23(x2, x3) can also be similarly represented as
f2|3(x2 |x3) · f3(x3), so we conclude that

f(x1, x2, x3) = f1|23(x1 |x2, x3) · f2|3(x2 |x3) · f3(x3). (21)

We know, from the formula (14), that

f2|3(x2 |x3) = c23(F2(x2), F3(x3)) · f2(x2). (22)

For dependence f1|23(x1 |x2, x3), we have a similar formula for each x3:

f1|23(x1 |x2, x3) = c12|3(F1|3(x1 |x3)), F2|3(x2 |x3), x3) · f1|3(x1 |x3). (23)

In general, the corresponding copula c12|3 depends on x3. However, in many
practical situations, it makes sense to assume that this copula – describing the
dependence – does not depend on x3, i.e., that we have

f1|23(x1 |x2, x3) = c12|3(F1|3(x1 |x3)), F2|3(x2 |x3)) · f1|3(x1 |x3). (24)

We already know how to describe conditional distributions F1|3(x1 |x3) and
F2|3(x2 |x3) and conditional probability density f1|3(x1 |x3) in terms of bivariate
copulas and marginals: specifically, we can use the formulas (13) and (14). Thus,
we can describe the conditional probability density f1|23(x1 |x2, x3) in terms of
bivariate copulas and marginals. By combining the formulas (21), (22), and (24),
we get

f(x1, x2, x3) = c12|3(F1|3(x1 |x3)), F2|3(x2 |x3)) · f1|3(x1 |x3)·

c23(F2(x2), F3(x3)) · f2(x2) · f3(x3), (25)

where

F1|3(x1 |x3) = C1|3(F1(x1), F3(x3)); F2|3(x2 |x3) = C2|3(F2(x2), F3(x3));

f1|3(x1 |x3) = c13(F1(x1), F3(x3)) · f1(x1). (26)

This description is a particular case of a C-vine copula.
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Comment. Similar expressions can be obtained for any number of variables.
To get such an expression, we need to make some assumptions about copula
independence. Depending on which assumptions we make, we get different ex-
pressions. For example, the above expression (25)–(26) corresponds to the case
when we assume that the copula combining:

– the conditional dependence F1|3(x1 |x3) of x1 on x3 and

– the conditional dependence F2|3(x2 |x3) of x2 on x3

into a conditional joint dependence F12|3(x1, x2 |x3) of x1 and x2 on x3 does not
depend on x3. Alternatively, we could assume that the copula combining:

– the conditional dependence F2|1(x2 |x1) of x2 on x1 and

– conditional dependence F3|1(x3 |x1) of x3 on x1

into a conditional joint dependence F23|1(x2, x3 |x1) of x2 and x3 on x1 does not
depend on x1; this would lead to a different expression of the type (25)–(26).

How do we select a model? In some cases, from the econometric context, we
know which dependencies are independent in each variables. In many practical
situations, however, such an information is not available. In such situations, out
of models corresponding to different dependencies, we need to select the model
which is the best fit for the observations.

3 Comparing Vine Copulas with Other Techniques for
Describing Multi-Variate Dependence

Vine copulas vs. general copulas. Vine copulas are a practically important class
of copulas: they only use bivariate functions to describe a multi-variate depen-
dence and are, thus, computationally easier (and more feasible) to implement.

It is important to remember, however, that vine copulas do not describe
a general dependence. As we have mentioned earlier, vine copulas are based
on certain independence assumptions: e.g., that the copula that transforms the
conditional distributions F1|3(x1 |x3) and F2|3(x2 |x3) into a joint conditional
distribution F12|3(x1, x2 |x3) does not depend on the value x3.

It is worth mentioning that vine copulas’ inability to represent a general
function of three or more variables is not a drawback of any particular scheme,
but rather a general property of smooth (differentiable) functions. Namely, as
part of the work on D. Hilbert’s 13th problem – one of the famous 23 problems
presented in 1900 as a challenge to 20 century mathematics – a Russian mathe-
matician A. G. Vitushkin proved that for any given integer N , it is not possible
to represent (or even approximate) a general smooth function of three (or more)
variables as a composition of functions of two or fewer variables; see, e.g., [5, 16,
27–29].
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Vine copulas vs. Bayesian networks. Another approach actively used in applica-
tions to represent multivariate dependence is the approach of Bayesian networks,
initiated by Judea Pearl; see, e.g., [18, 23–25]. Bayesian newtorks are based on
the assumption that for some variables, the corresponding conditional distribu-
tions are independent. For example, for the case of three variables, a typical
assumption is that the conditional distributions F1|3(x1 |x3) and F2|3(x2 |x3)
are independent, i.e., that

F12|3(x1, x2 |x3) = F1|3(x1 |x3) · F2|3(x2 |x3). (27)

One can easily see that the resulting formula is a particular case of the vine
copula formula (16), corresponding to C1|2(a, b) = a · b. Thus, the Bayesian
network approach can be viewed as a particular case of the general vine copula
approach.

Vine copulas vs. fuzzy techniques. Another practically successful approach for
describing and analyzing multivariate dependence is an approach of fuzzy tech-
niques; see, e.g., [12, 20, 30].

One of the main ideas behind fuzzy techniques is that

– while we can extract, from the experts, their degrees of confidence (= subjec-
tive probability) in different possible statements S1, S2, . . . , Sn about their
domain of expertise,

– it is not realistically possible to extract, from the users, their degrees of con-
fidence in different logical combinations of such statements, such as Si &Sj

or Si &Sj &Sk – since there are, in general, exponentially many (2n) such
combinations.

Since we cannot elicit all the values, we need to estimate the degree of confidence
in a statement S&S′ based on the known degrees of confidence d(S) and d(S′)
in component statements S and S′. The algorithm f&(a, b) which transforms the
known degrees a = d(S) and b = d(S′) into an estimate f&(d(S), d(S

′)) for the
desired degree d(S&S′) is known as an “and”-operation or a t-norm.

From the mathematical viewpoint, there are many possible t-norms. In
practice, a t-norm is selected empirically, based on the cases when we do
elicit the expert’s degree of confidence d(S&S′) in the composite statement
S&S′. Once these values are known, we select a function f&(a, b) for which
f&(d(S), d(S

′)) ≈ d(S&S′) for all such pairs of statements.
The resulting “and”-operation depends on the domain. Such an empirical

determination was first implemented for the world’s first practically successful
expert system, a medical expert system MYCIN intended for diagnosing rare
blood diseases; see, e.g., [6]. It is worth mentioning that the authors of the cor-
responding empirical study initially thought that the resulting “and”-operation
is a general description of human reasoning. Alas, when they applied their idea
to geophysics, it turned out that the medically best “and”-operation is not ap-
propriate for geophysics at all. After the fact, it makes sense: e.g., in search for
oil, it makes sense to start drilling a well once there is a reasonable expecta-
tion that this well will be productive – and it is OK that a large portion of
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these wells do not produce, as long as on average, we are successful. In contrast,
in medicine, we do not want to perform a serious surgery on a patient unless
we are absolutely sure about the diagnosis. In short, in medicine, experts use
very conservative estimates, while in geophysics, they use more optimistic ones.
As a result, different application domains use different “and”-operations – but
the same “and”-operation is useful for all statements within a given application
domain.

The main problem that we solve by using copulas can be described in similar
terms. Namely, we have two statements S = “X1 ≤ x1” and S′ = “X2 ≤ x2”,
whose probabilities are values of the marginal distributions d(S) = F1(x1) and
d(S′) = F2(x2). The logical combination S&S′ is the statement

X1 ≤ x1 &X2 ≤ x2

whose probability is equal to F (x1, x2). Our objective is to transform the known
degrees d(S) = F1(x1) and d(S′) = F2(x2) into an estimate f&(d(S), d(S

′)) =
f&(F1(x1), F2(x2)) for F (x1, x2):

F (x1, x2) ≈ f&(F1(x1), F2(x2)). (28)

From this viewpoint, the copula is an “and”-operation.
The fuzzy approach can be viewed as a particular case of the vine copula

approach, The main difference between fuzzy approach and the general vine
copula approach is that:

– in the fuzzy case, the same “and”-operation is used to combine the proba-
bilities corresponding to different variables, while

– in the general vine copula approach, we can use different copulas to combine
the probabilities of different pairs of variables.

Summarizing our analysis. Vine copulas are a particular case of general copulas,
and Bayesian network and fuzzy approaches can be viewed as particular cases
of the vine copula approach:

General copulas
↓

Vine copulas
↙ ↘

Bayesian Fuzzy
networks techniques

Vine copula approach combines advantages of Bayesian and fuzzy approaches.
Both Bayesian networks and fuzzy techniques have numerous successful appli-
cations. The very fact that both techniques have been successful means that
for each of these techniques, there is an application areas where this particular
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technique works well. The fact that both techniques co-exist seems to indicate
that for each of these techniques, there are application areas where the other
technique works better.

In other words, each of these techniques has its own advantages and limita-
tions. Numerous researchers have expressed the desire to come up with a new
technique that would combine the advantages of both techniques – and have
none of their limitations. From this viewpoint, the vine copula approach, an
approach of which both Bayesian network and fuzzy techniques are particular
cases, seems like the desired combination:

– in contrast to Bayesian techniques, vine copula can handle dependence be-
tween variables, not just independence;

– in contrast to fuzzy techniques, where the same “and”-operation (t-norm) is
applied for combining all pieces of information, the vine copulas allow the
use of different “and”-operations (copulas) to combine information about
different variables.

4 How Vine Copulas Are Used in Econometrics

Main challenge: econometric processes are dynamic. Vine copulas describe de-
pendence between a few random variables X1, . . . , Xn. In econometrics, how-
ever, processes are highly dynamic, so what we have is random processes
X1(t), . . . , Xn(t), not random variables. How can we use vine copulas to describe
the dependence between random processes?

Main idea: use known models to describe the dynamics of each variable. For

each of the econometric dynamic variables rt
def
= Xi(t), there are known ways

to describe its dynamics. One of the most (and probably the most) ade-
quate models for such a dynamics are described by an appropriate combina-
tion of the Auto-Regressive Moving-Average Model (ARMA) and the Glosten-
Jagannathan-Runkle (GJR) form of a Generalized Auto-Regressive Conditional
Heteroskedasticity (GARCH) model [4]; see, e.g., [8, 15]. The corresponding
ARMA(p, q)-GJR(k, ℓ) model has the form

rt = c+

p∑
i=1

φi · rt−i + εi

q∑
j=1

ψj · εt−j , (29)

εt = ht · ηt, (30)

h2t = ω +
k∑

i=1

αi · ε2t−i +
∑

i: εt−i<0

γi · ε2t−i +
ℓ∑

j=1

βj · h2t−j , (31)

where εt and ht are auxiliary variables, c, φi, ψj , ω, αi, and βj are real-valued
constants (which need to be determined based on the observations), and residu-
als ηt corresponding to different moments of time t are independent identically
distributed random variables.
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The distribution of the residuals is usually assumed to be distributed ac-
cording to skewed student-t or skewed Generalized Error Distribution (GED). A
skewed t-distribution means that we combine, with fixed weights, t-distributions
f1(x) and f2(x) with different scalar parameters limited to, correspondingly, pos-
itive and negative values xi: f(x) = w1 · f1(x) when x ≥ 0 and f(x) = w2 · f2(x)
when x < 0.

A GED distribution is a distribution with a probability density proportional

to exp

(
−|x|ν

σν

)
; it generalizes Gaussian distribution – which corresponds to

ν = 2. A skewed GED distribution is a combination of two GED distributions
f1(x) and f2(x) corresponding to different values σ (but the same value ν):
f(x) = w1 · f1(x) when x ≥ 0 and f(x) = w2 · f2(x) when x < 0, where wi are
appropriate weights.

Resulting solution: copula describes the joint distribution of residuals. Copulas
in general (and vine copulas in particular) are a good technique for describing
the dependence between several random variables X1, . . . , Xn. In the dynamical
case, instead of n variables X1, . . . , Xn, we have, in effect, a much larger number
of dependent random variables Xi(t) corresponding to different values i and
different moments of time t. Not only are variablesXi(t) andXj(t) corresponding
to the same moment of time depending on each other, the valuesXi(t) andXi(t

′)
corresponding to different moments of time also depend on each other – and thus,
we also have dependence between Xi(t) and Xj(t

′).
We have already observed, in our motivation for the use of vine copulas, that

the larger the number of dependent variables to consider, the more computa-
tionally complex the resulting problem, the more computation time it takes to
process this data. We have econometric data corresponding to dozens of years,
hundreds of months, thousands of days, so we have thousands of dependent quan-
tities corresponding to different values of i and t. Thus, to be able to describe
and process the dependence between different econometric quantities within a
reasonable amount of computation time, we need to be able to reduce this depen-
dence between thousands of variables to a dependence between a much smaller
number of variables.

Good news is that such a reduction is possible: for such a reduction, we can
use the above dynamical equations. Indeed:

– while the values Xi(t) and Xi(t
′) of the original quantity at different mo-

ments of time t and t′ are, in general,
– the residuals ηt and ηt′ corresponding to different moments of time are in-

dependent (so all the dependence between Xi(t) and Xi(t
′) is described by

the dynamical equations themselves).

Since residuals corresponding to different moments of time are independent of
each other, it is sufficient to consider, for each moment of time t, the dependence
between n residuals corresponding to this moment of time; see, e.g., [17]. Thus,
for each t, we use a multi-variate copula to describe the dependence between the
n residuals corresponding to the original n quantities X1, . . . , Xn.
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