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Abstract. Using airborne multispectral digital camera imagery, we compared a
number of feature combination techniques in image classification to distinguish
vineyard from non-vineyard land-cover types in northern California. Image pro-
cessing techniques were applied to raw images to generate feature images including
grey level co-occurrence based texture measures, low pass and Laplacian filtering
results, Gram-Schmidt orthogonalization, principal components, and normalized
difference vegetation index (NDVI). We used the maximum likelihood classifier
for image classification. Accuracy assessment is performed using digitized bound-
aries of the vineyard blocks. The most successful classification as determined by
t-tests of the Kappa coefficients was achieved based on the use of a texture image
of homogeneity obtained from the near infrared image band, NDVI and brightness
generated through orthogonalization analysis. This method averaged an overall
accuracy of 81 per cent for six frames of images tested. With post-classification
morphological processing (clumping and sieving) the overall accuracy was
significantly increased to 87 per cent (with a confidence level of 0.99).

1. Introduction
Accurate acreage estimates and mapping of California vineyards is of great

interest to vineyard owners, wineries, environmentalists and land-use planners.
According to the ‘California Grape Acreage’ report, California state-wide wine grape
acreage nearly doubled from 1990 to 1998 (California Agricultural Statistics Service
(CASS) 1999). Counties with the most rapid growth in vineyard development often
have the least reliable acreage statistics (Heaton and Merenlender 2000).
Furthermore, data published by CASS at the county level are not site-specific.
Improved geographical precision and maps of current and historical vineyard acreage
data would benefit land-use studies and wine industry strategic planning. A timely
mapping of vineyard distribution can only be done with the use of remote sensing.

Few studies have been reported on the use of remote sensing to identify vineyards.
Trolier et al. (1989) reported a failure in the State of New York when using Landsat
Thematic Mapper imagery in the summer to distinguish vineyards from other vegeta-
tion cover types with a maximum likelihood classification algorithm. Grierson (2000)
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reported no significantly different spectral changes between two types of grape under
different water conditions with data collected in South Australia with an 8-band
radiometer between 460–813 nm.

Vine canopy densities vary due to stress (water and disease), vine age, and vine
spacing. There may be portions of a vineyard that are so young or stressed that they
are unlikely to be classified as vineyard; however, from a user point of view these
areas would ideally be included in total vineyard acreage since the land-use is likely
to remain vineyard. The same situation holds for unplanted blocks. Although
unplanted blocks are likely to be classified as non-vineyard, certain applications may
prefer that these blocks be included in the vineyard land-use class. In Sonoma and
Napa counties, it is likely that unplanted blocks will eventually be replanted to
vineyard due to very high land value. In this paper we report the use of airborne
multispectral digital camera imagery with approximately 2m ground resolution in
the identification of vineyards in Northern California. We estimate vineyard acreage
regardless of vineyard status or health.

2. Methods
2.1. Study area

The study area includes images from Napa and Sonoma Counties. The primary
land-cover types are vineyards and oak woodlands. Uncultivated landscape features
in this Mediterranean climate are very dry in the summer. For example the hillside
grasses tend to have a golden brown colour, while vigorous vines are in green. The
proportion and shape of the vineyard and non-vineyard areas in the images vary,
as does the topography. Some of the images contain large, rectangular vineyard
blocks positioned primarily on the valley floor, and some contain irregularly shaped
vineyard blocks in the hills. The terrain variation is important in the accuracy
assessment of classification techniques since some methods will perform better than
others in different terrain types due to sun angle and differences in natural vegetation
with altitude.

2.2. Image data and training area selection
Aerial imagery was acquired on 31 July 1997 by Positive Systems, Inc., Whitefish,

Montana, with their manufactured ADAR aerial imaging system. The ADAR sensor
is composed of a series of four monochrome Kodak DCS 420 digital cameras. Each
camera collects data for one band (blue, green, red, or near infrared). The resulting
four bands are registered together to form an image with four co-registered bands.
The spectral range of each band is listed in table 1.

We classified six ADAR images. Two images from different terrain types are used
as examples throughout the paper ( listed as images 2 and 6 in the results). Figure 1(a)

Table 1. TM and ADAR spectral bands.

TM spectral range ADAR spectral range Colour
Band (mm) (mm)

1 0.45–0.52 0.45–0.54 Blue
2 0.52–0.60 0.52–0.60 Green
3 0.63–0.69 0.61–0.68 Red
4 0.76–0.90 0.78–1.00 Near infrared
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(a) (b)

Figure 1. Standard false colour composite. (a) Image 2, (b) image 6.

centers on valley floor vineyard blocks surrounded by hills with some hillside
vineyard blocks. Figure 1(b) centers on a hillside vineyard, with some valley floor
blocks in the upper left corner. The blue lines are the digitized vineyard blocks used
for accuracy assessment.

Training areas for supervised classification were created for each ADAR image
based on image interpretation for 10 cover classes (table 2). Each of the six ADAR
images has a unique set of training data created specifically for that image. Training
areas were selected at the pixel level and included at least 200 pixels per class, and
were distributed throughout the image to the extent that the features allowed.

The strategy for selecting training areas was to establish spectrally distinct cover
classes for classification. Training class selection was based on image interpretation
of a colour infrared image consisting of near infrared, red and green bands. We
divided vines into three categories: high vigour vines, which have bright red pixels
with solid canopy closure; medium vigour vines, which have medium intensity red
and moderate to solid canopy closure; and low vigour vines, which have pink to
light red pixels with low to moderate canopy closure. In post-classification processing
the 10 cover classes were grouped into two classes, vineyard and non-vineyard.
Accuracy assessment of the classification schemes is performed on these 2-class
images.

Table 2. ADAR training area cover classes.

Classification cover class Post-classification cover class

Vine—high vigour Vine
Vine—medium vigour Vine
Vine—low vigour Vine
Grass—light Non-vine
rass—dark Non-vine
Soil Non-vine
Water Non-vine
Tree—high vigour Non-vine
Tree—medium vigour Non-vine
Tree—shade Non-vine
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2.3. Feature image generation
2.3.1. Gram-Schmidt orthogonalization technique

Linear combinations of spectral bands can be used to form physically significant
indices (Jackson 1983). One example is the tasselled cap transformation (Kauth and
Thomas 1976, Crist and Kauth 1986). Tasselled cap coefficients were developed for
Landsat TM and MSS imagery only. We analysed the six ADAR images using the
Gram-Schmidt orthogonalization technique to calculate coefficients for greenness,
brightness and yellowness (Jackson 1983). As in the Kauth and Thomas transforma-
tion, greenness represents the abundance and vigour of living vegetation while
brightness represents soil condition (Campbell 1996). Yellowness is not representative
of recognizable landscape features, and is not used in this research.

Calculation of the coefficients for greenness, brightness and yellowness was based
on mean grey level values of the raw imagery of four cover types. Through examina-
tion of 2D scatterplots of infrared and red images we collected grey level values from
suitable areas for coefficient calculation. Water was used to represent wet soil because
very wet soils are rare in the imagery. Dry soil was selected from both dirt roads
and exposed soil. Tree canopies were found to be on the most extreme portion of
the vegetation line. Due to the Mediterranean climate natural grasses are typically
dried out in the summer, and are representative of the senesced vegetation that lies
on the extreme low end of the vegetation line in the project scenes. The grey level
values for the four classes averaged for all six ADAR images are listed in table 3.

The Gram-Schmidt coefficients were calculated separately for each ADAR image,
and table 4 lists these coefficients. The average of these coefficients was used to create
brightness, greenness and yellowness bands.

Table 3. Mean grey level values for sampled land areas in the six ADAR images.

Cover type Band 1 Band 2 Band 3 Band 4

Wet soil 90 76 77 66
Dry soil 175 176 207 159
Green vegetation 98 90 92 171
Senesced vegetation 144 139 167 139

Table 4. Calculated Gram-Schmidt band coefficients for the six ADAR images.

Brightness Greenness Yellowness

Image Blue Green Red NIR Blue Green Red NIR Blue Green Red NIR

1 0.37 0.47 0.66 0.46 −0.44−0.51−0.74 0.05 −0.41−0.56−0.66−0.30

2 0.45 0.51 0.61 0.40 −0.50−0.55−0.67 0.02 −0.41−0.56−0.66−0.30

3 0.41 0.47 0.62 0.48 −0.48−0.53−0.69 0.06 −0.44−0.52−0.59−0.44

4 0.42 0.48 0.62 0.44 −0.47−0.53−0.70 0.07 −0.45−0.56−0.61−0.32

5 0.38 0.46 0.63 0.50 −0.47−0.52−0.71 0.10 −0.47−0.55−0.62−0.30

6 0.44 0.50 0.60 0.45 −0.48−0.51−0.70 0.14 −0.48−0.54−0.63−0.28

Average 0.41 0.48 0.62 0.45 −0.47−0.53−0.70 0.07 −0.44−0.55−0.63−0.32

standard 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.04 0.03 0.01 0.03 0.06

deviation
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The resulting equations for greenness, brightness and yellowness are:

Greenness=−0.47(Blue)−0.53(Green)−0.70(Red)+0.07(NIR)

Brightness=0.41(Blue)+0.48(Green)+0.62(Red)+0.45(NIR)

Yellowness=0.44(Blue)−0.55(Green)−0.63(Red)−0.32(NIR)

Figures 2(a) and 2(b) depict the resulting brightness and greenness bands for
image 2. The highest values in the brightness image are representative of dry soil
and are shown in white. For example, the dirt roads between the vineyard blocks
appear white in figure 2(a). Trees have the highest value in the greenness image, as
seen on the left side of figure 2(b).

2.3.2. Co-occurrence texture measures
The spatial arrangement of spectral features can be used to help distinguish cover

classes in the ADAR images using texture measures. Texture is a measure of the
spatial and spectral relationships between neighbouring pixels (Campbell 1996).
Co-occurrence texture measures use a grey level spatial dependence matrix to calcu-
late texture values. This matrix contains relative frequencies of pixel values that
occur in two neighbouring pixels separated by a specified distance and direction
with a kernel of certain size. The matrix enumerates the number of occurrences of
the relationship between a pixel and its specified neighbour (Gong et al. 1992).

Several co-occurrence texture measures were initially examined in this study
including mean, variance, homogeneity, contrast, dissimilarity, entropy, second
moment, and correlation. Homogeneity provided the best and most consistent results
for the six images here. Of the four raw bands we determined through experimentation
that texture measures applied to the infrared band produced the best results for
distinguishing vineyard from non-vineyard classes. Through visual examination of
several kernel sizes we determined 15 by 15 to be the best.

2.3.3. PCA
Principal component analysis (PCA) uses a linear transformation of multi-band

data to translate and rotate data into a new coordinate system that removes correla-
tion between the axes. This technique reduces the dimensionality of multi-band
image by generating one or several bands that contains most of the data variability
(Gong and Howarth 1990a). Several kernel sizes were applied to the first principal

(a) (b)

Figure 2. Gram-Schmidt orthogonalization results from image 2. (a) Brightness image,
(b) greenness image.
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component (PC1). Analysis of Kappa coefficients derived from preliminary classi-
fications using these various kernel sizes lead us to choose 15 by 15 (figure 3). The
15×15 homogeneity filter of PC1 will be abbreviated 15HPC1.

2.3.4. High pass L aplacian and low pass filters
A Laplacian filter was applied to the NIR imagery. Through visual assessment

of several filter sizes (5×5, 7×7 and 9×9), we found a 7×7 Laplacian filter was
the most suitable in distinguishing the tree canopies from other cover types. However,
this filter produces edges with speckling effects. A smoothing can be applied to the
edge images to generate edge density images for classification purposes (Gong and
Howarth 1990b). Through visual examination of several filter sizes (7×7, 9×9,
15×15, 21×21, 29×29 and 35×35) we used a 29×29 filter size. The resulting
images of a 29×29 low pass filter applied to a 7×7 Laplacian filter of the NIR
band was referred to as 29LP7L. The resulting feature images for images 2 and 6
are presented in figure 4.

Low pass filters improve on the ability of the Laplacian filter in distinguishing
the trees from the other cover classes. We grouped greenness, brightness and the
29LP7L band for the fourth combination of feature images.

For the final band combination of feature images a 15×15 homogeneity texture
image was derived from the NIR band (figure 5).

(a) (b)

Figure 3. Homogeneity of PC-1 with a kernel size of 15×15. (a) Image 2, (b) image 6.

(a) (b)

Figure 4. (a) Laplacian applied to NIR image 2 then smoothed (29LP7LNIR), (b) Laplacian
applied to NIR image 6 then smoothed (29LP7LNIR).
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(a) (b)

Figure 5. Homogeneity texture images 15HIR. (a) Image 2, (b) image 6.

2.4. Post-classification processing
2.4.1. Sieve and clump classes

Many of the vine errors of commission are isolated clusters of pixels. Post-
classification processing is performed to remove these errors from the classified
image. We used ‘sieving’ and then ‘clumping’ for reducing the level of commission.

Sieving looks at the neighbouring four or eight pixels to determine if a pixel is
grouped with pixels of the same class. Similar to sifting soil through a sieve to retain
the rocks, the groups of adjacent pixels in a cover class smaller than that defined in
the sieve process are removed and replaced with unclassified pixels. Sieving will leave
speckles or holes in the classified image of unclassified pixels. Clumping can be
performed after sieving to replace the unclassified pixels into the class of the adjacent
pixels. The selected classes are clumped together by applying a morphological filter
to the sieved classification data by first performing a dilate operation and then an
erode operation on the classified image using a kernel of specific size (Research
Systems, Inc. 2000).

With post-classification processing some correctly classified pixels will be inappro-
priately changed. For example, weak vineyard blocks may have clumps of diseased
or dead vines, or absent vines that will be inappropriately changed to unclassified
pixels. Additionally, properly classified non-vine pixels surrounded by incorrectly
classified vine pixels may be inappropriately changed. A balance between commission
and omission can be obtained through experiment.

2.5. Accuracy assessment
Accuracy assessment was performed using reference images that consist of two

classes, vineyard and non-vineyard. Reference images were created using interpreta-
tion results of the raw images by one of the coauthors, who made a number of field
visits to the study area. Masks were digitized using vineyard blocks in each image.
Examples of the digitized boundaries are shown in figure 1; the vineyard blocks are
delineated in purple. Pixels within the digitized vineyard blocks were considered
to be vineyard, while pixels outside those boundaries non-vineyard. Classified
images were compared pixel by pixel with the reference images to derive the overall
accuracies and kappa coefficients of various classification methods.

In order to determine the impact of weak and possibly unplanted vineyard blocks,
we divided the digitized vineyard blocks into high, medium and low vigour. Vineyard
blocks were not rigorously defined; they were identified and categorized through
image interpretation. Some of those blocks appeared to be soil. Because of their
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shape and proximity to medium and high vigour vineyard blocks we could state
with confidence that the low vigour blocks were, are, or would become vineyard
blocks. Some vineyard blocks are consistently vigorous and healthy, while others
are patchy with some areas vigorous and other areas bare ground. Therefore, the
vigour class assignment of the digitized boundaries was determined by the dominant
status of the vines in a given block. Figure 6 shows examples of the digitized blocks.
High vigour digitized vineyard block boundaries in red, medium vigour in purple
and low vigour in yellow.

In the original method of accuracy assessment, all digitized vineyard blocks are
included in the vineyard class in the two-class reference images. In the alternative
classification accuracy assessments, the low vigour vines are moved from vineyard
to the non-vineyard class in the reference image; only the high and medium vigour
blocks are used in the vineyard class. The original method provides a better assess-
ment of the various classification methods’ ability to map land-use. The alternative
method provides a comparison of classification performance of the two methods.

3. Results
Results for the classification methods are listed in tables 7–9. Method 1 is the

classification of the four raw data bands. Methods 2–7 represent the six combination
classification schemes. Overall, methods 2, 3 and 4 produced very similar results,
while methods 5, 6 and 7 produced similar results that were superior to methods 2,
3 and 4. Methods 5b, 5b2, and 7b are the post-classification sieve and clump processes
applied to methods 5 and 7, respectively. Method 7c is the same as method 7 except
that the low vigour vineyard boundaries are considered to be non-vine. These
methods are listed below.

1. Raw ADAR bands.
2. Greenness, brightness, homogeneity (kernel 15×15) of principle component 1.
3. NDVI, brightness, homogeneity (kernel 15×15) of principle component 1.
4. IR, greenness, homogeneity (kernel 15×15) of principle component 1.
5. NDVI, brightness, low pass filter (15×15) applied to a homogeneity (kernel

15×15) of the IR band.
6. NDVI, brightness, low pass filter (29×29) of a Laplacian filter (7×7) applied

to the IR band.
7. Greenness, brightness, low pass filter (29×29) of a Laplacian filter (7×7)

applied to the IR band.

(a) (b)

Figure 6. Digitized blocks of different vineyard types for (a) image 2 and (b) image 6.
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5b. Sieve/clump (196 pixels) of vine and non-vine classes applied to method 5.
5b2. Same as method 5b, except that the low vigour vineyard boundaries are

considered non-vine.
7b. Sieve/clump (196 pixels) of vine and non-vine classes applied to method 7.
7c. Same as method 7, except that the low vigour vineyard boundaries are

considered non-vine.

Table 5 lists confusion matrices in percentages for vine and non-vine, errors of
commission and omission. Data are presented as an average of all six images. Because
vineyard land occupies less area than non-vine land in all images, particularly image
4, the errors of commission for vine are high. When image 4 is excluded, the errors
of commission for vine have dropped considerably (as shown in brackets of table 5).
Table 6 lists overall accuracy results and table 7 lists the Kappa coefficients all
derived from table 5.

Variance for the Kappa coefficients was derived for all of the classification
methods using equations in Congalton and Green (1999). A Z statistic can be
calculated to determine significant differences between pairs of classifications. Because
there are so many permutations of classification pairs, the methods were assessed in
groupings. All tests of significance have a confidence level of 0.99. Calculation for
two independent error matrices (equation 1) is presented below. Results of these
tests are listed in table 8.

Z=|K1−K2 |/((var (K1 )+var (K2 ))1/2 ) (1)

First we performed t-tests for classification methods 2, 3 and 4 to determine if

Table 5. Confusion matrices with errors of commission and omission.*

Ground truth Ground truth Errors of Errors of
Method Class vine non-vine commission commission

1 Vine 77 29 192 (96) 23
Non-vine 23 71 10 29

2 Vine 70 18 141 (56) 28
Non-vine 28 82 12 18

3 Vine 74 20 158 (60) 26
Non-vine 26 80 11 20

4 Vine 71 18 146 (64) 29
Non-vine 29 82 12 21

5 Vine 74 14 121 (34) 26
Non-vine 26 86 11 14

6 Vine 76 16 147 (41) 24
Non-vine 24 84 10 16

7 Vine 74 14 121 (36) 26
Non-vine 26 86 11 14

5b Vine 69 6 63 (8) 31
Non-vine 31 94 13 6

5b2 Vine 80 7 87 (18) 20
Non-vine 20 93 5 7

7b Vine 68 7 43 (7) 32
Non-vine 32 96 13 4

7c Vine 80 6 63 (17) 20
Non-vine 21 94 5 6

*Numbers in brackets are calculated by excluding image 4.
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Table 6. Overall classification accuracy of combination methods 1–7c.

Image 1 2 3 4 5 6 7 5b 5b2 7b 7c

1 69 78 75 78 79 72 77 87 92 86 91
2 72 77 76 76 78 82 82 81 89 82 88
3 74 78 80 79 78 82 81 86 90 89 93
4 64 70 65 72 68 64 71 82 81 88 87
5 70 82 82 82 89 88 87 89 92 90 93
6 81 86 85 85 95 94 93 96 97 96 96
Average 72 78 77 79 81 80 82 87 90 89 91

Table 7. Kappa coefficient for classification methods 1–7c.

Image 1 2 3 4 5 6 7 5b 5b2 7b 7c

1 27 36 32 36 41 32 38 54 66 54 64
2 44 53 52 53 57 65 65 62 76 64 75
3 42 48 52 49 48 55 53 65 71 69 78
4 13 17 14 18 16 13 17 29 25 38 34
5 35 56 56 55 70 69 67 71 77 74 78
6 38 43 44 42 71 69 66 78 79 75 76
Average 33 42 42 42 51 50 51 60 66 62 68

Table 8. Significant differences between classification methods.

Methods 2, Methods 5, Methods 1, Methods 5, 5b, Methods 7, 7b,
Image 3, 4 6, 7 2, 5 5b2 7c

1 2>4>3 5>7>6 5>2>1 5b2>5b>5 7b>7c>7
2 2>4>3 7=6>5 5>2>1 5b2>5b>5 7c>7>7b
3 4>2>3 7>5>6 2>5>1 5b>5b2>5 7b>7>7c
4 2>4=3 5>6>7 5>2>1 5b2>5b>5 7b>7c>7
5 3>2>4 6>7>5 5>2>1 5b2>5b>5 7b>7c>7
6 3>2>4 5>6>7 5>2>1 5b2>5b>5 7b>7c>7

significant differences exist. All three of these methods utilized texture (homogeneity)
of the first principle component. The other two bands used in these classifications
were NDVI and brightness for method 2, IR and greenness for method 3 and IR
and greenness for method 4. Method 2 was significantly better than the other two
methods for three of the six study images; method 3 was significantly better for two
of the images, and method 4 was significantly better for one image. While there are
not enough study images to select the best method of these three methods, we choose
method 2 for further comparisons since it produced the best results in the majority
of the six study images.

We then performed t-tests for classification methods 5, 6 and 7, which also
produced mixed results. These methods use low pass filters on either homogeneity
or Laplacian filters of the IR band. The other two bands used in these classifications
are NDVI and brightness for methods 5 and 6, and greenness and brightness for
method 7. Method 5 was significantly better than the other two methods for three
of the study images. There was no clearly ‘best’ method of these three, but we used
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method 5 for further comparison since it was significantly better than the others in
the majority of the images.

We compared methods 2, 5 and 1. Methods 2 and 5 were significantly better
than method 1 for all six images. Therefore, the generated bands improved upon the
raw data classification. For five of the six study images method 5 was significantly
better than method 2. There was one image for which method 2 was significantly
better than method 5. This suggests that homogeneity of the IR band is more effective
than homogeneity of the first principle component at distinguishing vine and
non-vine classes.

Methods 5, 5b and 5b2 were also assessed. Method 5b is the application of
clumping and sieving to the results of method 5. In all cases, method 5b was
significantly better than method 5. Therefore, the clumping and sieving process
applied to method 5 improved the classification results. Method 5b2 is the same as
method 5b except that low vigour vine blocks are considered to be non-vine in
method 5b2. In five of the six study images method 5b2 was significantly better
than method 5b. This suggests poor classification of low vigour vineyard blocks.

The final grouping of classification methods assessed with t-tests are methods 7,
7b and 7c. Method 7b applies sieving and clumping to method 7. Method 7c is the
same as method 7 except that low vigour vineyard blocks are considered to be non-
vine. Method 7b is better than method 7 in all but one of the study images, therefore,
the clumping and sieving post-classification process is an effective method of improv-
ing classification accuracy for method 7. Method 7c is better than method 7 in all
but one of the study images, suggesting again that the classification of low vigour
vineyard blocks is poor.

Of the six feature combination methods (2, 3, 4, 5, 6, and 7) method 5 had the
best overall performance. In all but one case the use of the sieve/clump process for
methods 5 and 7 significantly improved the accuracies. As discussed previously,
errors of omission for vine are expected due to the fact that there are many weak,
non-bearing, or unplanted vineyard blocks that are digitized and counted as vineyard
in the reference images, but unlikely to be classified as vineyard. Therefore, accuracy
results for 5b2 and 7c are listed as a reference to examine what the classification
accuracy would be if we did not include these blocks in the reference image as vine.
In all but one of 12 cases, the omission of low vigour vineyard blocks from the vine
class significantly improved the Kappa coefficient. This suggests a better method for
distinguishing these low vigour vineyard blocks is necessary.

The sieve and clump procedures used in methods 5b and 7b greatly reduced
errors of commission for vine but slightly increased vine errors of omission. Errors
of commission for non-vine were increased slightly in methods 5b and 7b (from
methods 5 and 7), while non-vine errors of omission were reduced by more than
half. Errors of omission for vine go up by approximately one fifth for the sieve/clump
methods. None of the methods improve the maximum likelihood classification results
for the raw data for errors of omission for vine (except methods 5b2 and 7c, which
exclude low vigour vines). All methods reduce errors of omission for non-vine as
compared to the raw data classification. All methods improve upon the raw data
maximum likelihood results for non-vine, however results for vine are not as good.

Figures 7(a) and (b) depict classifications 5 and 5b for images 2 and 6, respectively.
The exclusion of the low vigour blocks from the vineyard class in methods 5b2 and
7c improves the producer’s accuracy and user’s accuracy in methods 5 and 7. Vine
commission errors are a very large source of errors when ADAR image 4 is included,
and closer (or less than) vine errors of omission when ADAR image 4 is excluded.
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(a) (b)

(c) (d)

Figure 7. (a) Method 5 classification results for image 2, (b) method 5 classification results
for image 6, (c) method 5b classification results for image 2, (d ) method 5b classification
results for image 6.

4. Discussion and summary
The results of this research suggest that vineyards can be identified from 2m

resolution airborne multispectral digital camera imagery with an acceptable level of
accuracy (>85%). This must be done by using a combination of image spatial
features with spectral features followed by post-classification processing. Since there
are numerous spatial feature extraction methods and the number of spatial feature
combinations is large, it is difficult to exhaust all combinations and achieve the best
classification results. Thus there is room for further improvement. For example, the
best combination of bands for the three classification methods that utilized homogen-
eity of PC1 included greenness and brightness as the other two features in the
combination. Adjusting method 5 to use greenness instead of NDVI may produce
better results.

This research tested only the feasibility of airborne multispectral digital camera
imagery for identifying vineyards. To measure vineyard acreage at the county or
regional level would require complete image coverage. This would require additional
image processing such as image registration, orthorectification and finally mosaicing.
Mosaiced aerial data can then be classified to allow for non-repetitive acreage
estimates and geographic delineation of vineyards. Such classification results pro-
duced at the county level could be compared with county level data published by
CASS. These data would be of interest to land-use planners, environmentalists, and
the wine industry.

Spectral separability of the low vigour vineyard blocks from native grasses and
soil seems to be low and this presents the greatest challenge for improvement of
vineyard classification at a landscape level. The use of time series image data may
provide a solution to the spectral confusion of these classes. In late winter, the
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natural grasses in California are very green from the winter rains while the vineyards
are dormant. During the summer the natural grasses are dry and brown in colour;
while the vineyard canopies are at a mature stage and are bright green. Measurement
of differences in brightness values of the vineyard and non-vineyard cover classes at
different seasons may provide improved results. Since most vine growing areas in
the world are in the sunny climate zones with relatively dry summer seasons, good
atmospheric conditions are usually possible for either airborne and satellite imaging.
Although satellite imaging lacks the flexibility in overpass time that airborne imaging
does and the atmospheric effects on satellite images are usually greater than airborne
images, the most severely affected channels are the shorter wavelength channels such
as the blue and green bands. Since our results are primarily relaying on the longer
wavelength channels such as the red and infrared, the results obtained in this research
have direct relevance to the use of high resolution satellite imagery such as IKONOS
panchromatic and multispectral data which have 1m and 4m spatial resolutions,
respectively.
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