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Abstract 1 

1. When data are not normally distributed (e.g. skewed, zero-inflated, binomial, or count data) 2 

researchers are often uncertain whether it may be legitimate to use tests that assume Gaussian errors 3 

(e.g. regression, t-test, ANOVA, Gaussian mixed models), or whether one has to either model a more 4 

specific error structure or use randomization techniques. 5 

2. Here we use Monte Carlo simulations to explore the pros and cons of fitting Gaussian models to 6 

non-normal data in terms of risk of type I error, power and utility for parameter estimation. 7 

3. We find that Gaussian models are remarkably robust to non-normality over a wide range of 8 

conditions, meaning that P-values remain fairly reliable except for data with influential outliers 9 

judged at strict alpha levels. Gaussian models also perform well in terms of power and they can be 10 

useful for parameter estimation but usually not for extrapolation. Transformation of data before 11 

analysis is often advisable and visual inspection for outliers and heteroscedasticity is important for 12 

assessment. In strong contrast, some non-Gaussian models and randomization techniques bear a range 13 

of risks that are often insufficiently known. High rates of false-positive conclusions can arise for 14 

instance when overdispersion in count data is not controlled appropriately or when randomization 15 

procedures ignore existing non-independencies in the data. 16 

4. Overall, we argue that violating the normality assumption bears risks that are limited and 17 

manageable, while several more sophisticated approaches are relatively error prone and difficult to 18 

check during peer review. Hence, as long as scientists and reviewers are not fully aware of the risks, 19 

science might benefit from preferentially trusting Gaussian mixed models in which random effects 20 

account for non-independencies in the data in a transparent way.  21 
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Introduction 22 

In the biological, medical and social sciences, the validity or importance of research findings is 23 

generally assessed via statistical significance tests. Significance tests ensure the trustworthiness of 24 

scientific results and should reduce the amount of random noise entering the scientific literature. 25 

Brunner and Austin (2009) even regard this as the “primary function of statistical hypothesis testing in 26 

the discourse of science”. However, the validity of parametric significance tests may depend on 27 

whether model assumptions are violated (Gelman & Hill 2007; Zuur et al. 2009). In a growing body 28 

of literature, researchers express their concerns about irreproducible results (Open Science 29 

Collaboration 2015; Ebersole et al. 2016; Camerer et al. 2018; Silberzahn et al. 2018) and it has been 30 

argued that the inappropriate use of statistics is a leading cause of irreproducible results (Forstmeier, 31 

Wagenmakers & Parker 2017). Yet researchers may often be uncertain about which statistical 32 

practices enable them to answer their scientific questions effectively and which might be regarded as 33 

error prone. 34 

 35 

One of the most widely known assumptions of parametric statistics is the assumption that errors 36 

(model residuals) are normally distributed (Lumley et al. 2002). This “normality assumption” 37 

underlies the most commonly used tests for statistical significance, that is linear models “lm” and 38 

linear mixed models “lmm” with Gaussian error, which includes the often more widely known 39 

techniques of regression, t-test and ANOVA. However, empirical data often deviates considerably 40 

from normality, and may even be categorical such as binomial or count data. Recent advances in 41 

statistical modelling appear to have solved this problem, because it is now possible to fit generalized 42 

linear mixed models “glmm” with a variety of error distributions (e.g. binomial, Poisson, zero-inflated 43 

Poisson, negative binomial; O'Hara 2009; Harrison et al. 2018) or to use a range of randomization 44 

techniques such as bootstrapping (Good 2005) in order to obtain P-values and confidence intervals for 45 

parameter estimates from data that does not comply with any of those distributions.  46 

 47 

While these developments have supplied experts in statistical modelling with a rich and flexible 48 

toolbox, we here argue that these new tools also have created substantial damage, because they come 49 
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with a range of pitfalls that are often not sufficiently understood by a large majority of scientists who 50 

are not outspoken experts in statistics, but who nevertheless implement the tools. The diversity of 51 

possible mistakes is so large and sometimes specific to certain software applications that we only 52 

want to provide some examples that we have repeatedly come across (see Box 1). Our examples 53 

include failure to account for overdispersion in glmms with Poisson errors (Harrison 2014; Ives 2015; 54 

Forstmeier, Wagenmakers & Parker 2017), inadequate resampling in bootstrapping techniques (e.g. 55 

Ihle et al. 2019; Santema, Schlicht & Kempenaers 2019), as well as problems with pseudoreplication 56 

due to issues with model convergence (Barr et al. 2013; Forstmeier, Wagenmakers & Parker 2017; 57 

Arnqvist 2020). These issues may lead to anticonservative P-values and hence a high risk of false 58 

positive claims.  59 

 60 

In light of these difficulties we here want to argue whether it may often be “the lesser of two evils” 61 

when researchers fit conventional Gaussian (mixed) models to non-normal data, because, as we will 62 

show, Gaussian models are remarkably robust to non-normality, ensuring that type I errors (false-63 

positive conclusion) are kept at the desired low rate. Hence, we argue that for the key purpose of 64 

limiting type I errors it may often be fully legitimate to model binomial or count data in Gaussian 65 

models, and we also would like to raise awareness of some of the pitfalls inherent to non-Gaussian 66 

models.      67 

 68 

Box 1 | Examples of specialized techniques that may result in biased parameter estimates or in a high 69 

rate of false-positive findings due to unrecognized problems of pseudoreplication.  70 

(A) Many researchers, being concerned about fitting an “inappropriate” Gaussian model, hold the 71 

believe that binomial data always requires modelling a binomial error structure, and that count 72 

data mandates modelling a Poisson-like process. Yet, what they consider to be “more appropriate 73 

for the data at hand” may often fail to acknowledge the non-independence of events in count data 74 

(Harrison 2014; Harrison 2015; Ives 2015; Forstmeier, Wagenmakers & Parker 2017). For 75 

instance, in a study of butterflies choosing between two species of host plants for egg laying, an 76 

individual butterfly may first sit down on species A and deposit a clutch of 50 eggs, followed by 77 
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a second landing on species B where another 50 eggs are laid. If we characterize the host 78 

preference for species A of this individual by the total number of eggs deposited (p(A) = 0.5, N = 79 

100) we obtain a highly anticonservative estimate of uncertainty (95% CI for p(A): 0.398–0.602), 80 

while if we base our preference estimate on the number of landings (p(A) = 0.5, N = 2) we obtain 81 

a much more appropriate confidence interval (95% CI for p(A): 0.013–0.987). Even some 82 

methodological “how-to” guides (e.g. Fordyce et al. 2011; Ramsey & Schafer 2013; Harrison et 83 

al. 2018) forgot to clearly explain that it is absolutely essential to model the non-independence of 84 

events via random effects or overdispersion parameters (Zuur et al. 2009; Harrison 2014; 85 

Harrison 2015; Ives 2015). Unfortunately, non-Gaussian models with multiple random effects 86 

often fail to reach model convergence (e.g. Brooks et al. 2017), which often lets researchers 87 

settle for a model that ignores non-independence and yields estimates with inappropriately high 88 

confidence and statistical significance (Barr et al. 2013; Forstmeier, Wagenmakers & Parker 89 

2017; Arnqvist 2020). 90 

(B) When observational data do not comply with any distributional assumption, randomization 91 

techniques like bootstrapping seem to offer an ideal solution for working out the rate at which a 92 

certain estimate arises by chance alone (Good 2005). However, such resampling can also be risky 93 

in terms of producing false-positive findings if the data is structured (temporal autocorrelation, 94 

random effects; e.g. Ihle et al. 2019) and if this structure is not accounted for in the resampling 95 

regime (blockwise bootstrap; e.g. Önöz & Bayazit 2012). Specifically, there is the risk that non-96 

independence introduces a strong pattern in the observed data, but, in the simulated data, 97 

comparably strong patterns do not emerge because the confounding non-independencies were 98 

broken up (Ihle et al. 2019). We argue that pseudoreplication is a well-known problem that has 99 

been solved reasonably well within the framework of mixed models, and the consideration or 100 

neglect of essential random effects can be readily judged from tables that present the model 101 

output. In contrast, the issue of pseudoreplication is more easily overlooked in studies that 102 

implement randomization tests, where the credibility of findings hinges on details of the 103 

resampling procedure that are not understood by the majority of readers. 104 
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(C) When distributions of counts contain a high fraction of zeroes, many researchers think that this 105 

issue can be fixed by specifying a zero-inflated model with Poisson or negative binomial error 106 

structure. However, they may not be aware of the concept that underlies such models and hence 107 

may not understand that such a model, depending on the distribution of the non-zero values, may 108 

effectively treat all zeroes as missing values rather than as valid data. This could yield biased 109 

parameter estimates in those cases where zeroes represent a valid phenotype rather than a case of 110 

missing information. In contrast, such zero-inflated models are ideal when trying to separate two 111 

processes, one that is responsible for the occurrence of (some of the) zeroes and one that is 112 

responsible for variation in counts (possibly including some zeroes; Brooks et al. 2017).  113 

 114 

A wide range of opinions about violating the normality assumption 115 

Throughout the scientific literature, linear models are typically said to be robust to the violation of the 116 

normality assumption when it comes to hypothesis testing and parameter estimation as long as outliers 117 

are handled properly (Box & Watson 1962; Miller 1986; Ali & Sharma 1996; Lumley et al. 2002; 118 

Gelman & Hill 2007; Zuur, Ieno & Elphick 2010; Ramsey & Schafer 2013; Williams, Grajales & 119 

Kurkiewicz 2013; Puth, Neuhauser & Ruxton 2014; Warton et al. 2016), yet authors seem to differ 120 

notably in their opinion on how serious we should take the issue of non-normality. 121 

 122 

At one end of the spectrum, Gelman and Hill (2007) write “The regression assumption that is 123 

generally least important is that the errors are normally distributed” and “Thus, in contrast to many 124 

regression textbooks, we do not recommend diagnostics of the normality of regression residuals” (p. 125 

46). At the other end of the spectrum, Osborne and Waters (2002) highlight four assumptions of 126 

regression that researchers should always test, the first of which is the normality assumption. They 127 

write “Non-normally distributed variables (highly skewed or kurtotic variables, or variables with 128 

substantial outliers) can distort relationships and significance tests”. And since only few research 129 

articles report having tested the assumptions underlying the tests presented, Osborne and Waters 130 
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(2002) worry that they are “forced to call into question the validity of many of these results, 131 

conclusions and assertions”. 132 

 133 

Between those two ends of the spectrum, many authors adopt a cautious attitude, and regard models 134 

that violate the distributional assumptions as ranging from “risky” to “not appropriate”, hence 135 

pleading for the use of transformations (e.g. Miller 1986; Bishara & Hittner 2012; Puth, Neuhauser & 136 

Ruxton 2014), non-parametric statistics (e.g. Miller 1986), randomization procedures (e.g. Bishara & 137 

Hittner 2012; Puth, Neuhauser & Ruxton 2014), or generalized linear models where the Gaussian 138 

error structure can be changed to other error structures (e.g. Poisson, binomial, negative binomial) that 139 

may better suit the nature of the data at hand (O'Hara 2009; O'Hara & Kotze 2010; Fordyce et al. 140 

2011; Warton & Hui 2011; Szöcs & Schäfer 2015; Warton et al. 2016; Harrison et al. 2018). The 141 

latter suggestion, however, may bear a much more serious risk: while Gaussian models are generally 142 

accepted to be fairly robust to non-normal errors (here and in the following, we mean by “robust” 143 

ensuring a reasonably low rate of type I errors), Poisson models are highly sensitive if their 144 

distributional assumptions are violated (see Box 1), leading to a substantially increased risk of type I 145 

errors if overdispersion remains unaccounted for (Warton & Hui 2011; Ives 2015; Szöcs & Schäfer 146 

2015; Warton et al. 2016). 147 

 148 

In face of this diverse literature, it is rather understandable that empirical researchers are largely 149 

uncertain about the importance of adhering to the normality assumption in general, and about how 150 

much deviation and which form of deviation might be tolerable under which circumstances (in terms 151 

of sample size and significance level threshold). With the present article we hope to provide 152 

clarification and guidance. 153 

 154 

We here use Monte Carlo simulations to explore how violations of the normality assumption affect 155 

the probability of drawing false-positive conclusions (the rate of type I errors), because these are the 156 

greatest concern in the current reliability crisis (Open Science Collaboration 2015). We aim at 157 

deriving simple rules of thumb, which researchers can use to judge whether the violation may be 158 
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tolerable and whether the P-value can be trusted. We also assess the effects of violating the normality 159 

assumption in terms of bias and precision on parameter estimation. Furthermore, we provide an R 160 

package (“TrustGauss”) that researchers can use to explore the effect of specific distributions on the 161 

reliability of P-values and parameter estimates. 162 

 163 

Counter to intuition, but consistent with a considerable body of literature (Box & Watson 1962; Miller 164 

1986; Ali & Sharma 1996; Lumley et al. 2002; Gelman & Hill 2007; Zuur, Ieno & Elphick 2010; 165 

Ramsey & Schafer 2013; Williams, Grajales & Kurkiewicz 2013; Puth, Neuhauser & Ruxton 2014; 166 

Warton et al. 2016) we find that violations of the normality of residuals assumption are rarely 167 

problematic for hypothesis testing and parameter estimation, and we argue that the commonly 168 

recommended solutions may bear greater risks than the one to be solved. 169 

 170 

The linear regression model and its assumptions 171 

At this point we need to briefly introduce the notation for the model of least squares linear regression. 172 

In its simplest form, it can be formulated as Yi = a + b × Xi + ei, where each element of the dependent 173 

variable Yi is linearly related to the predictor Xi through the regression coefficient b (slope) and the 174 

intercept a. ei is the error or residual term, which describes the deviations (residuals) of the actual 175 

from the true unobserved (error) or the predicted (residual) Yi and whose sum equals zero (Sokal & 176 

Rohlf 1995; Gelman & Hill 2007). An F-test is usually employed for testing the significance of 177 

regression models (Ali & Sharma 1996). 178 

 179 

Basic statistics texts introduce (about) five assumptions that need to be met for interpreting all 180 

estimates from linear regression models safely (Box 2: validity, independence, linearity, 181 

homoscedasticity of the errors and normality of the errors; Gelman & Hill 2007). Out of these 182 

assumptions, normally distributed errors are generally assumed to be the least important (yet probably 183 

the most widely known; Lumley et al. 2002; Gelman & Hill 2007). Deviations from normality usually 184 

do not bias regression coefficients (Ramsey & Schafer 2013; Williams, Grajales & Kurkiewicz 2013) 185 

or impair hypothesis testing (no inflated type I error rate, e.g. Bishara & Hittner 2012; Ramsey & 186 
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Schafer 2013; Puth, Neuhauser & Ruxton 2014; Ives 2015; Szöcs & Schäfer 2015; Warton et al. 187 

2016) even at relatively small sample sizes. With large sample sizes ≥ 500 the Central Limit Theorem 188 

guarantees that the regression coefficients are on average normally distributed (Ali & Sharma 1996; 189 

Lumley et al. 2002). 190 

 191 

Box 2 | Five assumptions of regression models: validity, independence, linearity, homoscedasticity of 192 

the errors and normality of the errors (Gelman & Hill 2007). Three of these criteria are concerned 193 

with the dependent variable Y, or — to be more precise — the regression error e (assumptions 2, 4 and 194 

5, see below). The predictor X is often not considered, although e is supposed to be normal and of 195 

equal magnitude at every value of X. 196 

(1) Validity is not a mathematical assumption per se but it still poses “the most challenging step in 197 

the analysis” (Gelman & Hill 2007), namely that regression should enable the researcher to 198 

answer the scientific question at hand (Kass et al. 2016). 199 

(2) Each value of the dependent variable Y is influenced by only a single value of the predictor X, 200 

meaning that all observations and regression errors ei are independent (Quinn & Keough 2002). 201 

Dependence among observations commonly arises either through cluster (i.e. data collected on 202 

subgroups) or serial effects (i.e. data collected in temporal or spatial proximity; Ramsey & 203 

Schafer 2013). We will discuss the independence assumption later because it is arguably the 204 

riskiest to violate in terms of producing type I errors (Zuur et al. 2009; see “A word of caution”). 205 

(3) The dependent variable Y and the predictors should be linearly (and additively) related through 206 

the regression coefficient b. That being said, quadratic or higher-order polynomial relationships 207 

can also be accommodated by squaring or raising the predictor variable X to a higher power, 208 

because Y is still modelled as a linear function through the regression coefficient (Williams, 209 

Grajales & Kurkiewicz 2013). 210 

(4) The variance in the regression error e (or the spread of the response around the regression line) is 211 

constant across all values of the predictor X, i.e. the samples are homoscedastic. Deviations from 212 

homoscedasticity will not bias parameter estimates of the regression coefficient b (Gelman & 213 

Hill 2007). Slight deviations are thought to have only little effects on hypothesis testing (Osborne 214 
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& Waters 2002) and can often be dealt with by weighted regression, mean-variance stabilizing 215 

data transformations (e.g. log-transformation) or estimation of heteroscedasticity-robust standard 216 

errors (Huber 1967; White 1980; Miller 1986; Zuur et al. 2009; see “A word of caution” for 217 

further discussion). 218 

(5) The errors of the model should be normally distributed (normality assumption), which should be 219 

tested via inspecting the distribution of the model residuals e (Zuur, Ieno & Elphick 2010). Both 220 

visual approaches (probability or QQ-plots) and formal statistical tests (Shapiro-Wilk) are 221 

commonly applied. Formal tests for normality have been criticized because they have low power 222 

at small sample sizes and almost always yield significant deviations from normality at large 223 

sample sizes (Ghasemi & Zahediasl 2012). Thus, researchers are mostly left with their intuition 224 

to decide how severely the normality assumption is violated and how robust regression is to such 225 

violations. A researcher who examines the effect of a single treatment on multiple dependent 226 

variables (e.g. health parameters) may adhere strictly to the normality assumption and thus 227 

switch forth and back between reporting parametric and non-parametric test statistics depending 228 

on how strongly the trait of interest deviates from normality, rendering a comparison of effect 229 

sizes difficult. 230 

 231 

Importantly, the robustness of regression methods to deviations from normality of the regression 232 

errors e does not only depend on sample size, but also on the distribution of the predictor X (Box & 233 

Watson 1962; Mardia 1971). Specifically, when the predictor variable X contains a single outlier, then 234 

it is possible that the case coincides with an outlier in Y, creating an extreme observation with high 235 

leverage on the regression line. This is the only case where statistical significance gets seriously 236 

misestimated based on the assumption of Gaussian errors in Y which is violated by the outlier in Y. 237 

This problem has been widely recognized (Box & Watson 1962; Miller 1986; Ali & Sharma 1996; 238 

Osborne & Waters 2002; Zuur, Ieno & Elphick 2010; Ramsey & Schafer 2013) leading to the 239 

conclusion that Gaussian models are robust as long as there are no outliers that occur in X and Y 240 

simultaneously. Conversely, violations of the normality assumption that do not result in outliers 241 

should not lead to elevated rates of type I errors. 242 
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 243 

Distributions of empirical data may deviate from a Gaussian distribution in multiple ways. Rather 244 

than being continuous, data may be discrete, such as integer counts or even binomial character states 245 

(yes/no data). Continuous variables may deviate from normality in terms of skewness (showing a long 246 

tail on one side), kurtosis (curvature leading to light or heavy tails), and even higher-order moments. 247 

All these deviations are generally thought to be of little concern (e.g. Bishara & Hittner 2012), even if 248 

they are far from fitting to the bell-shaped curve, such as binomial data (Cochran 1950). However, 249 

heavily skewed distributions typically result in outliers, which, depending on the distribution of X, can 250 

be problematic in terms of type I error rates as just explained above (see also Blair & Lawson 1982). 251 

In our simulations we try to representatively cover much of the diversity in possible distributions, in 252 

order to provide a broad overview that extends beyond the existing literature. We focus on fairly 253 

drastic non-normality because only little bias can be expected from minor violations (Hack 1958; 254 

Glass, Peckham & Sanders 1972; Bishara & Hittner 2012; Puth, Neuhauser & Ruxton 2014). 255 

 256 

Simulations to assess effects on P-values, power and parameter estimates 257 

To illustrate the consequences of violating the normality assumption, we performed Monte Carlo 258 

simulations on five continuous and five discrete distributions that were severely skewed, platy- and 259 

leptokurtic or zero-inflated (distributions D0–D9 in Figure 1A left column, Table 1), going beyond 260 

previous studies that examined less dramatic violations (Bishara & Hittner 2012; Puth, Neuhauser & 261 

Ruxton 2014; Ives 2015; Szöcs & Schäfer 2015; Warton et al. 2016) but that are still of biological 262 

relevance (Gelman & Hill 2007; Frank 2009; Zuur et al. 2009). For example, measures of fluctuating 263 

asymmetry are distributed half-normally (distribution D4, Table 1) or survival data can be modelled 264 

using a gamma distribution (distribution D9, Table 1). The R-code for generating these distributions 265 

can be found in the R package “TrustGauss” in the Supplementary Material, where we also provide 266 

the specific parameter settings used for generating distributions D0–D9. Moments of these 267 

distributions are provided in Table 1. We explored these 10 distributions across a range of sample 268 

sizes (N = 10, 25, 50, 100, 250, 500, 1000). Starting with the normal distribution D0 for reference, we 269 

sorted the remaining distributions D1–D9 by increasing tendency to produce strong outliers because 270 
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these are known to be problematic (calculated as the average proportion of data points with Cook’s 271 

distance exceeding a critical value (see below) at a sample size of N = 10). We used these data both as 272 

our dependent variable Y and as our predictor variable X in linear regression models, yielding 10 × 10 273 

= 100 combinations of Y and X for each sample size (see Figure S1 for distributions of the 274 

independent variable Y, the predictor X, and residuals). A detailed documentation of the TrustGauss-275 

functions and their application is provided in the Supplement. 276 

 277 

We assessed the significance of the models via an F-test wherever possible and used a likelihood ratio 278 

test otherwise. We fitted these models to 50,000 datasets for each combination of the dependent and 279 

predictor variable. We did not simulate any effect, which means that both the regression coefficient b 280 

and the intercept a were on average zero. This enabled us to use the frequency of all models that 281 

yielded a P-value ≤ 0.05 as an estimate of the type I error rate at a significance level (α) of 0.05. The 282 

null distribution of P-values is uniform on the interval [0,1] and because all P-values are independent 283 

and identically distributed, we constructed concentration bands using a beta-distribution (cf. Casella 284 

& Berger 2002; Knief et al. 2017; QQ-plots of expected vs observed P-values are depicted in Figure 285 

S1). We assessed the deviation of observed from expected -log10(P-values) at an expected exponent 286 

value of 3 (P = 10-3; -log10(10-3) = 3) and 4 (P = 10-4) and by estimating the scale shift parameter υ = 287 

σobserved / σexpected (Lin 1989), where σ is the standard deviation in -log10(P-values). We further 288 

calculated studentized residuals (R), hat values (H) and Cook’s distances (D) as measures of 289 

discrepancy, leverage and influence, respectively, and assessed which proportion exceeded critical 290 

values of R > 2, H > (2 × (k + 1)) / n and D > 4 / (n - k - 1), where k is the number of regression slopes 291 

and n is the number of observations (Zuur, Ieno & Smith 2007). 292 

 293 

Since some of the predictor variables were binary rather than continuous, our regression models also 294 

comprise the situation of classical two-sample t-tests, and we assume that the results would also 295 

generalize to the situation of multiple predictor levels (ANOVA), which can be decomposed to 296 

multiple binary predictors. To demonstrate that our conclusions from univariate models (involving a 297 

single predictor) generalize to the multivariate case (involving several predictors), we fitted the above 298 
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models with a sample size of N = 100 to the same 10 dependent variables with three normally 299 

distributed predictors and one additional predictor sampled from the 10 different distributions. We 300 

further fitted the above models as mixed-effects models using the lme4 R package (v1.1-14, Bates et 301 

al. 2015). For that we simulated N = 100 independent samples each of which was sampled twice, such 302 

that the single random effect “sample ID” explained roughly 30% of the variation in Y. We encourage 303 

readers to try their own simulations using our R package “TrustGauss”. 304 

 305 

We evaluated power, bias and precision of parameter estimates using a sample size of N = 10, 100, 306 

1000 and the same 10 distributions of the independent and dependent variables as above. We 307 

simulated multivariate data by first Z-transforming the independent variable Y and the covariate X. 308 

We then used an iterative algorithm (SI technique, Ruscio & Kaczetow 2008) that samples from the 309 

Z-transformed distributions of Y and X to introduce a predefined effect size of r = 0.15, 0.2 and 0.25 310 

in 50,000 simulations. Additionally, to remove the dominating effect of sample size on power 311 

calculations, we calculated the effect size that would be needed to reach a power of 0.5 (rounded to 312 

the third decimal) for N = 10, 100 and 1000 if Y and X were normally distributed using the 313 

powerMediation R package (v0.2.9, Dupont & Plummer 1998; Qiu 2018). This yielded effect sizes of 314 

0.59, 0.19 and 0.062, respectively. We then introduced effects of such magnitudes with their 315 

respective sample sizes in 50,000 simulations. For distribution D6 and the combinations of D8 with 316 

D9 we were unable to introduce the predefined effect size also at very large sample sizes (N = 317 

100,000) and we removed those from further analyses. We estimated power (β) as the proportion of 318 

all simulations that yielded a significant (at α = 0.05 or α = 0.001) regression coefficient b. In the case 319 

of normally distributed Y and X, this yielded power estimates that corresponded well with the 320 

expectations calculated using the powerMediation R package (v0.2.9, Table S1, Dupont & Plummer 321 

1998; Qiu 2018). We used the mean and the coefficient of variation (CV) of the regression coefficient 322 

b as our measures of bias and precision, respectively. We also assessed interpretability and power of 323 

Gaussian versus binomial (mean = 0.75) and Poisson (mean = 1) at a sample size of N = 100 by fitting 324 

models with a Gaussian, binomial or Poisson error structure in the glms. The effect sizes were chosen 325 
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such that we reached a power of around 0.5 (see Table S2 for details on distributions and effect sizes) 326 

and models were fitted to 50,000 of such datasets. 327 

 328 

Results 329 

Effects on P-values 330 

The rate at which linear regression models with Gaussian error structure produced false-positive 331 

results (type I errors) was very close to the expected value of 0.05 (Figure 1B). When sample size 332 

was high (N = 1000), type I error rates ranged only between 0.044 and 0.052, across the 100 333 

combinations of distributions of the dependent variable Y and the predictor X. Hence, despite of even 334 

the most dramatic violations of the normality assumption (see e.g. distributions D8 and D9 in Figure 335 

1A), there was no increased risk of obtaining false-positive results. At N = 100, the range was still 336 

remarkably narrow (0.037–0.058), and only for very low sample sizes (N = 10) we observed 4 out of 337 

100 combinations which yielded notably elevated type I error rates in the range of 0.086 to 0.11. 338 

These four cases all involved combinations of the distributions D8 and D9, which yield extreme 339 

leverage observations (Figure S2). For this low sample size of N = 10, there were also cases where 340 

type I error rates were clearly too low (down to 0.015, involving distributions D1–D3 where extreme 341 

values are rarer than under the normal distribution D0; for details see Figure S2 and Table S3). 342 

 343 

Next, we examine the scale shift parameter (Figure 1C) which evaluates the match between observed 344 

and expected distributions of P-values across the entire range of P-values (not only the fraction at the 345 

5% cut-off). Whenever either the dependent variable Y or the predictor X was normally distributed, 346 

the observed and expected P-values corresponded very well (first row and first column in Figure 1C). 347 

Accordingly, the P-values fell within the 95% concentration bands across their entire range (rightmost 348 

column in Figures S1). This observation was unaffected by sample size (Table S4). However, if both 349 

the dependent variable Y and the predictor X were heavily skewed, consistently inflated P-values 350 

outside the concentration bands occurred, yet this was almost exclusively limited to the case of N = 10 351 

(Figure 1C). For larger sample sizes only the most extreme distribution D9 produced somewhat 352 

unreliable P-values (Figure 1C). This latter effect of unreliable (mostly anti-conservative) P-values 353 
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was most pronounced when judgements were made at a very strict α-level (Figure 1D α = 0.001 and 354 

Figure 1E α = 0.0001). At a sample size of N = 100, and for α = 0.001, observed -log10(P-values) 355 

were biased maximally 3.36-fold when both X and Y were sampled from distribution D9. This means 356 

that P-values of about P = 10-10 occurred at a rate of 0.001 (P = 10(-3 × 3.36) = 10-10.08; Figure 1D). At N 357 

= 100, and for α = 0.0001, the bias was maximally 4.54-fold (Figure 1E). Our multivariate and 358 

mixed-model simulations confirmed that these patterns are general and also apply to models with 359 

multiple predictor variables (Figure S3) and to models with a single random intercept (Figure S4). 360 

 361 

Based on the 100 simulated scenarios that we have constructed, P-values from Gaussian models are 362 

highly robust to even extreme violation of the normality assumption and can be trusted, except when 363 

involving X and Y distributions with extreme outliers (distribution D9; see also Blair & Lawson 364 

1982). For very small sample sizes, judgements should preferably be made at α = 0.05 (rather than at 365 

more strict thresholds) and should also beware of outliers in both X and Y. The same distributions of 366 

the dependent and the independent variable introduced the same type I error rates, meaning that 367 

effects were symmetric (Box & Watson 1962). We reference the reader to the “A word of caution” 368 

section, where we discuss both the assumption of equal variances of the errors and the effects of non-369 

normality on other applications of linear regression. 370 

 371 

Effects on power and parameter estimates 372 

Power of linear regression models with a Gaussian error structure was only weakly affected by the 373 

distributions of Y and X, whereas sample size and effect size were much more influential (Figure 2B, 374 

Figures S5B, S6B). Power appears to vary notably between distributions when sample size and hence 375 

power are small (N = 10 in Figure 2B), but this variability rather closely reflects the corresponding 376 

type I error rates shown in Figure 1B (Pearson correlation r = 0.69 between Figure 1B and 2B across 377 

the N = 79 combinations with power estimates at regression coefficient b = 0.2 and sample size N = 378 

10). To assess the effects of sample size and non-normality on power, we adjusted the regression 379 

coefficients such that power stayed constant at 50% for normally distributed Y and X at sample sizes 380 

of N = 10, 100 and 1000 (b = 0.59, 0.19 and 0.062, respectively, Figure 2C). Then, for N = 1000, 381 
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power was essentially unaffected by the distribution of Y and X, ranging from 0.48 to 0.52 for all but 382 

one combination of Y and X (β = 0.45 when Y and X are distributed as D9, that is gamma Γ(0.1, 100), 383 

Table 1). In that particular combination, power was not generally reduced but the distribution of P-384 

values was shifted, such that power could either be reduced or increased depending on the α-threshold 385 

(at α = 0.001 that combination yielded the highest power). At N = 100, power varied slightly more 386 

(0.44–0.60) but still 87% of all power estimates were between 0.48 and 0.52. Only at a sample size of 387 

N = 10, power varied considerably between 0.05 and 0.87 (30% of all estimates between 0.48 and 388 

0.52, Figure 2C). 389 

 390 

For most distributions of Y and X, regression coefficients were unbiased, which follows from the 391 

Lindeberg-Feller Central Limit Theorem (Lumley et al. 2002). The strongest bias occurred at a 392 

sample size of N = 10 and when the distribution of X was highly skewed (D9), resulting in such a high 393 

frequency of high leverage observations that the Lindeberg-Feller Central Limit Theorem did not hold 394 

(Figure S2). In the most extreme case, the mean regression coefficients at N = 10 were below zero 395 

(indicated as additional white squares in Figure S5D, S6D). However, the bias shrunk to maximally 396 

1.32-fold when the sample size increased to N = 100 and to 1.03-fold at a sample size of N = 1000 397 

(Figure 2D). 398 

 399 

We used the coefficient of variation in regression coefficients as our measure of the precision of 400 

parameter estimates. Similar to the pattern in bias, regression coefficients were precise for most 401 

distributions of Y and X and the lowest precision occurred at a sample size of N = 10 and when the 402 

distribution of X was highly skewed (D9). However, there was no gain in precision when increasing 403 

the sample size from N = 100 to N = 1000 (Figure 2E) and precision slightly decreased at larger 404 

effect sizes (Figure S5E, S6E). 405 

 406 

We conclude that in our 79 simulated scenarios neither power nor bias or precision of parameter 407 

estimates are heavily affected by violations of the normality assumption by both the distributions of 408 

the dependent variable Y and the predictor X, except when involving predictors with extreme outliers 409 
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(i.e. high leverage, distribution D9). An increase in sample size protects against severely biased 410 

parameter estimates but does not make estimates more precise. We provide further advice in the “A 411 

word of caution” section. 412 

 413 

Comparison between error distributions 414 

In the previous section, we have shown that Gaussian models are robust to violations of the normality 415 

assumption. How do they perform in comparison to Poisson and binomial models and how do Poisson 416 

models perform if their distributional assumptions are violated? To address these questions, we fitted 417 

glms with a Gaussian, Poisson or binomial error structure to data where the dependent variable Y was 418 

Gaussian, Poisson or binomial distributed and the predictor variable X followed a Gaussian, gamma or 419 

binomial distribution. This allowed us to directly compare the effect of the error structure on power, 420 

bias and precision of the parameter estimate. Interestingly, models with a Gaussian error structure 421 

were largely comparable in terms of power and bias to those fitted using the appropriate error 422 

structure. However, parameter estimates were less precise using the Gaussian error structure (Table 423 

2), which argues in favour of the more specialized models for the purpose of parameter estimation. 424 

 425 

More importantly for the reliability of science, and in contrast to Gaussian models, Poisson models 426 

are not at all robust to violations of the distribution assumption. For comparison, we fitted the above 427 

univariate models involving the five discrete distributions (D1, D2, D6, D7, D8) with a sample size of 428 

N = 100 using a Poisson error structure (inappropriately). This yielded heavily biased type I error rates 429 

(at α = 0.05) in either direction ranging from 0 to as high as 0.55 (Figure 3, right column, Figures 430 

S7). Yet when also inappropriately modelling these distributions as Gaussian, type I error rates are 431 

very close to the nominal level of 0.05 (Figure 3, left column). Controlling for overdispersion in 432 

counts through the use of a glmm with an observation-level random effect (Harrison et al. 2018) fixed 433 

the problem of inflated type I error rates for distributions D2 and D7 (Figure 3, indicated in red) but 434 

did not solve the problem of low power for distributions D1, D6, and D8 (Figure 3, indicated in blue). 435 

Using a quasi-likelihood method (“Quasipoisson”, Wedderburn 1974) provided unbiased type I error 436 
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rates, like in the Gaussian models (Figure 3), but this quasi-likelihood method is not available in the 437 

mixed-effects package lme4 in R (Bates et al. 2015). 438 

 439 

A word of caution 440 

Our finding that violations of the normality assumption are relatively unproblematic with regard to 441 

type I errors should not be misunderstood as a carte blanche to violate any assumption of linear 442 

models. The probably riskiest assumption to violate (in terms of producing type I errors) is the 443 

assumption of independence of data points (Kass et al. 2016; Forstmeier, Wagenmakers & Parker 444 

2017), because one tends to overestimate the amount of independent evidence that is provided by the 445 

data points, which are not real replicates (hence this is called “pseudoreplication”). 446 

 447 

Another assumption that is not to be ignored concerns the homogeneity of variances across the entire 448 

range of the predictor variable (Box 1953; Glass, Peckham & Sanders 1972; Miller 1986; 449 

McGuinness 2002; Osborne & Waters 2002; Zuur et al. 2009; Ramsey & Schafer 2013; Williams, 450 

Grajales & Kurkiewicz 2013). Violating this assumption may result in more notable increases of type 451 

I errors (compared to what we examined here) at least when the violations are drastic. For instance, 452 

when applying a t-test that assumes equal variances in both groups to data that come from 453 

substantially different variances (e.g. σ1
2/ σ2

2 = 0.1), then high rates of type I errors (e.g. 23%) may be 454 

obtained in a situation where sample sizes are unbalanced (N1 = 15, N2 = 5), namely when the small 455 

sample comes from the more variable group (Glass, Peckham & Sanders 1972; Miller 1986). Also in 456 

this example, it is the influence of outliers (small N sampled from large variance) that results in 457 

misleading P-values. We further carried out some extra simulations to explore whether non-normality 458 

tends to exacerbate the effects of heteroscedasticity on type I error rates, but we found that normal and 459 

non-normal data behaved practically in the same way (see Supplementary Methods and Table S5). 460 

Hence, heteroscedasticity can be problematic, but this seems to be fairly independent of the 461 

distribution of the variables.   462 

 463 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 5, 2020. ; https://doi.org/10.1101/498931doi: bioRxiv preprint 

https://doi.org/10.1101/498931
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Diagnostic plots of model residuals over fitted values can help identifying outliers and recognizing 464 

heterogeneity in variances over fitted values. Transformation of variables is often a helpful remedy if 465 

one observes that variance strongly increases with the mean. This typically occurs in comparative 466 

studies, where e.g. body size of species may span several orders of magnitude (calling for a log-log 467 

plot). Most elegantly, heteroscedasticity can be modelled directly, for instance by using the “weights” 468 

argument in lme (see Pinheiro & Bates 2000, p. 214), which also enables us to test directly whether 469 

allowing for heteroscedasticity increases the fit of the model significantly. Similarly, 470 

heteroscedasticity-consistent standard errors could be estimated (Hayes & Cai 2007). For more advice 471 

on handling heteroscedasticity see McGuinness (2002). 472 

 473 

Another word of caution when running Gaussian models on non-Gaussian data should be expressed 474 

when it comes to the interpretation of parameter estimates of models. If the goal of modelling lies in 475 

the estimation of parameters (rather than hypothesis testing) then such models should be regarded 476 

with caution. First, recall that distributions with extreme outliers are often better characterized by their 477 

median than by their mean, which gets pulled away by extreme values. Second, parameter estimates 478 

for counts or binomial traits may be acceptable for interpretation when they refer to the average 479 

condition (e.g. a typical family having 1.8 children consisting of 50% boys). However, parameter 480 

estimates may become nonsensical outside the typical range of data (e.g. negative counts or 481 

probabilities). In such cases one might also consider fitting separate models for parameter estimation 482 

and for hypothesis testing (Warton et al. 2016). 483 

 484 

Finally, in the above we were exclusively concerned with associations between variables, that is 485 

parameter estimates derived from the whole population of data points. However, sometimes we might 486 

be interested in predicting the response of specific individuals in the population and we need to 487 

estimate a prediction interval. In that case, a valid prediction interval requires the normality 488 

assumption to be fulfilled because it is based directly on the distribution of Y (Lumley et al. 2002; 489 

Ramsey & Schafer 2013). 490 

 491 
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The issue of overdispersion in non-Gaussian models 492 

We have shown that Poisson models yielded heavily biased type I error rates (at α = 0.05) in either 493 

direction ranging from 0 to as high as 0.55 when their distribution assumption is violated (Figure 3 494 

right column, Figures S7). This of course is an inappropriate use of the Poisson model, but still this is 495 

not uncommonly found in the scientific literature. Such inflations of type I error rates in glms already 496 

have been reported frequently (Young, Campbell & Capuano 1999; Warton & Hui 2011; Ives 2015; 497 

Szöcs & Schäfer 2015; Warton et al. 2016) and this problem threatens the reliability of research 498 

whenever such models are implemented with insufficient statistical expertise. 499 

 500 

First, it is absolutely essential to control for overdispersion in the data (that is more extreme counts 501 

than expected under a Poisson process), either by using a quasi-likelihood method (“Quasipoisson”) 502 

or by fitting an observation level random effect (“OLRE”; Figure 3). Overdispersion may already be 503 

present when counts refer to discrete natural entities (for example counts of animals), but may be 504 

particularly strong when Poisson errors are less appropriately applied to measurements of areas (e.g. 505 

counts of pixels or mm2), latencies (e.g. counts of seconds), or concentrations (e.g. counts of 506 

molecules). Similarly, there may also be overdispersion in counts of successes versus failures that are 507 

being analysed in a binomial model (e.g. fertile versus infertile eggs within a clutch). Failure to 508 

account for overdispersion (as in Figure 3B and 3D) will typically result in very high rates of type I 509 

errors (Young, Campbell & Capuano 1999; Warton & Hui 2011; Ives 2015; Szöcs & Schäfer 2015; 510 

Warton et al. 2016; Forstmeier, Wagenmakers & Parker 2017). 511 

 512 

Second, even after accounting for overdispersion, some models may still yield inflated or deflated 513 

type I error rates (not observed in our examples of Figure 3), therefore requiring statistical testing via 514 

a resampling procedure (Warton & Hui 2011; Ives 2015; Szöcs & Schäfer 2015; Warton et al. 2016), 515 

but this may also depend on the software used. While several statistical experts have explicitly 516 

advocated for such a sophisticated approach to count data (O'Hara 2009; O'Hara & Kotze 2010; Szöcs 517 

& Schäfer 2015; Warton et al. 2016; Harrison et al. 2018), we are concerned about practicability 518 

when non-experts have to make decisions about the most adequate resampling procedure, particularly 519 
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when there are also non-independencies in the data (random effects) that have to be considered. In this 520 

field of still developing statistical approaches it seems much easier to get things wrong (and obtain a 521 

highly overconfident P-value) than to get everything right (Bolker et al. 2009). 522 

 523 

In summary, we are worried that authors being under pressure to present statistically significant 524 

findings will misinterpret type I errors (due to incorrect implementation) optimistically as a true 525 

finding and misattribute the gained significance to a presumed gain of power when fitting the 526 

“appropriate” error structure (note that such power gains should be quite small; see Table 2 and also 527 

Szöcs & Schäfer 2015; Warton et al. 2016). Moreover, we worry that sophisticated methods may 528 

allow presenting nearly anything as statistically significant (Simmons, Nelson & Simonsohn 2011) 529 

because complex methods will only rarely be questioned by reviewers. 530 

 531 

Practical advice 532 

Anti-conservative P-values usually do not arise from violating normality in Gaussian models (except 533 

for the case of influential outliers), but rather from various kinds of non-independencies in the data 534 

(see Box 1). We therefore recommend the Gaussian mixed-effect model as a trustworthy and 535 

universal standard tool for hypothesis testing, where transparent reporting of the model’s random 536 

effect structure clarifies to the reader which non-independencies in the data were accounted for. Non-537 

normality should not be a strong reason for switching to a more specialized technique, at least not for 538 

hypothesis testing, and such techniques should only be used with a good understanding of the risks 539 

involved (see Box 1). 540 

 541 

To avoid the negative consequences of strong deviations from normality that may occur under some 542 

conditions (see Figure 1) it may be most advisable to apply a rank-based inverse normal (RIN) 543 

transformation (aka rankit scores, Bliss 1967) to the data, which can approximately normalize most 544 

distributional shapes and which effectively minimizes type I errors and maximises statistical power 545 

(Bishara & Hittner 2012; Puth, Neuhauser & Ruxton 2014). Note that we have avoided 546 

transformations in our study simply to explore the consequences of major non-normality, but we agree 547 
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with the general wisdom that transformations can mitigate problems with outliers (Osborne & 548 

Overbay 2004), heteroscedasticity (McGuinness 2002), and sometimes with interpretability of 549 

parameter estimates. 550 

 551 

In practice, we recommend the following to referees: 552 

(1) When a test assumes Gaussian errors, request a check for influential observations, particularly if 553 

very small P-values are reported. Consider recommending a RIN-transformation or other 554 

transformations for strong deviations from normality. 555 

(2) For Poisson models or binomial models of counts, always check whether the issues of 556 

overdispersion and resampling are addressed, otherwise request an adequate control for type I errors 557 

or verification with Gaussian models. 558 

(3) For randomization tests, request clarity about whether observed patterns may be influenced by 559 

non-independencies in the data that are broken up by the randomization procedure. If so, ask for 560 

possible alternative ways of testing or of randomizing (e.g. blockwise bootstrap). 561 

(4) When requesting a switch to more demanding techniques (e.g. non-Gaussian models, 562 

randomization techniques), reviewers should accompany this recommendation with sufficient advice, 563 

caveats and guidance to ensure a safe and robust implementation. 564 

 565 

Conclusion 566 

If we are interested in statistical hypothesis testing, linear regression models with a Gaussian error 567 

structure are generally robust to violations of the normality assumption. Judging P-values at the 568 

threshold of α = 0.05 is nearly always safe, but if both Y and X are skewed, we should avoid being 569 

overly confident in very small P-values and examine whether these result from outliers in both X and 570 

Y (see also Blair & Lawson 1982; Osborne & Overbay 2004). With this caveat in mind, violating the 571 

normality assumption is relatively unproblematic and there is much to be gained when researchers 572 

follow a standardized way of reporting effect sizes (Lumley et al. 2002). This is good news also for 573 

those who want to apply models with Gaussian error structure to binomial or count data when models 574 

with other structures fail to reach convergence or produce nonsensical estimates (e.g. Ives & Garland 575 
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2014; Plaschke et al. 2019). While Gaussian models are rarely misleading, other approaches (see 576 

examples in Box 1) may bear a non-trivial risk of yielding anti-conservative P-values when applied by 577 

scientists with limited statistical expertise. 578 

 579 

Data availability 580 

All functions are bundled in an R package named “TrustGauss”. The R package, R scripts, 581 

supplementary figures S1, S3, S4 and S7 and the raw simulation outputs are accessible through the 582 

Open Science Framework (https://osf.io/r5ym4/?view_only=5d79da4f8b4441e1addf99b0d435a45e). 583 
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 768 
Figure 1 | P-values from Gaussian linear regression models are in most cases unbiased. (A) Overview 769 

of the ten different distributions that we simulated. Distributions D0 is Gaussian and all remaining 770 

distributions are sorted by their tendency to produce strong outliers. Distributions D1, D2, D6, D7 and 771 

D8 are discrete. The numbers D0–D9 refer to the plots in (B–E) where on the Y-axis the distribution 772 

of the dependent variable and on the X-axis of the predictor is indicated. (B) Type I error rate at an α-773 

level of 0.05 for sample sizes of N = 10, 100 and 1000. Red colours represent increased and blue 774 

conservative type I error rates. (C) Scale shift parameter, (D) bias in P-values at an expected P-value 775 

of 10-3 and (E) bias in P-values at an expected P-value of 10-4.776 
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 777 
Figure 2 | Power, bias and precision of parameter estimates from Gaussian linear regression models 778 

are in most cases unaffected by the distributions of the dependent variable Y or the predictor X. (A) 779 

Overview of the different distributions that we simulated, which were the same as in Figure 1. The 780 

numbers D0–D9 refer to the plots in (B–E) where on the Y-axis the distribution of the dependent 781 

variable and on the X-axis of the predictor is indicated. (B) Power at a regression coefficient b = 0.2 782 

for sample sizes of N = 10, 100 and 1000. Red colours represent increased power. (C) Power at 783 

regression coefficients b = 0.59, 0.19 and 0.06 for sample sizes of N = 10, 100 and 1000, respectively, 784 

where the expected power derived from a normally distributed Y and X is 0.5. Red colours represent 785 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 5, 2020. ; https://doi.org/10.1101/498931doi: bioRxiv preprint 

https://doi.org/10.1101/498931
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

increased and blue colours decreased power. (D) Bias and (E) precision of the regression coefficient 786 

estimates at an expected b = 0.2 for sample sizes of N = 10, 100 and 1000.787 
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 788 
Figure 3 | Distribution of observed P-values (when the null hypothesis is true) as a function of 789 

different model specifications (columns) and different distributions of the dependent variable Y (rows 790 

A to E). Each panel was summed up across 10 different distributions of the predictor X (500,000 791 

simulations per panel with N = 100 data points per simulation). Models were fitted either as glms with 792 

a Gaussian error structure that violate the normality assumption (first column), as glms with a 793 

Quasipoisson error structure that take overdispersion into account (second column), as glmms with a 794 
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Poisson error structure and an observation-level random effect (OLRE; Harrison et al. 2018) or as 795 

glms with a Poisson error structure that violate the assumption of the Poisson distribution. In each 796 

panel, TIER indicates the realized type I error rate (across the 10 different predictor distributions), 797 

highlighted with a colour scheme as in Figure 1B (blue: below the nominal level of 0.05, red: above 798 

the nominal level, grey: closely matching the nominal level). The dependent variable Y was 799 

distributed as (A) distribution D1, (B) distribution D2, (C) distribution D6, (D) distribution D7 or (E) 800 

distribution D8 (see Table 1 and Figure 1A for details).801 
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Table 1 | Description of the 10 simulated distributions of the independent variable Y and the predictor X. 802 
Name 

 

Sampling distribution 

 

Mean 

 

Variance 

 

Categories 

 

Degree of 

zero-inflation 

Skewness† 

 

Kurtosis† 

 

Arguments in TrustGauss§ 

 

D0 Gaussian 0 1 - 0 1.9 × 10-5 3.00 DistributionY=“Gaussian”, MeanY.gauss=0, SDY.gauss=1 

D1 Binomial 0.5 0.25 - 0 6.5 × 10-6 1.00 DistributionY=“Binomial”, zeroLevelY.zero=0.5 

D2 Gaussian with categories and zero-inflation# 0 1 5 0.5 0.64 2.02 DistributionY=“GaussianZeroCategorical”, MeanY.gauss=3, SDY.gauss=1, nCategoriesY.cat=5 

D3 Gaussian with zero-inflation# 0 1 - 0.5 0.45 1.69 DistributionY=“GaussianZero”, MeanY.gauss=3, SDY.gauss=1, zeroLevelY.zero=0.5 

D4 Absolute Gaussian# 0 1 - 0 1.00 3.87 DistributionY=“AbsoluteGaussian”, MeanY.gauss=0, SDY.gauss=1 

D5 Student's t 0 2 - 0 0.01 20.71 DistributionY=“StudentsT”, DFY.student=4 

D6 Gamma with categories# 10 100 3 0 3.45 15.09 DistributionY=“GammaCategorical”, nCategoriesY.cat=3, ShapeY.gamma=1, ScaleY.gamma=10 

D7 Negative Binomial 10 110 - 0 2.00 9.02 DistributionY=“NegativeBinomial”, ShapeY.gamma=1, ScaleY.gamma=10 

D8 Binomial 0.9 0.09 - 0 -2.67 8.12 DistributionY=“Binomial”, zeroLevelY.zero=0.90 

D9 Gamma 10 1000 - 0 6.32 62.84 DistributionY=“Gamma”, ShapeY.gamma=0.1, ScaleY.gamma=100 
# Mean and Variance refer to the distributions prior to adding categories, zero-inflation or taking the absolute values. 803 
† Skewness and kurtosis were estimated from the simulated distributions with 50 million data points using the moments R package (v0.14, Komsta & Novomestky 2015). 804 
§ Here we specified the arguments for the dependent variable Y only. However, the specified values are identical for the independent variable X.805 
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Table 2 | Summary of power, bias and precision of parameter estimates and interpretability from 50,000 simulation runs across the six combinations of the 806 
dependent variable Y and the predictor X. Each combination was either fitted using a Gaussian error structure or the appropriate error structure according to 807 
the distribution of Y (that is either Poisson with a mean of 1 or binomial with a mean of 0.75). The predefined effect was chosen such that a power of around 808 
0.5 was reached (see Table S2 for details). The column Effect is the mean estimated effect (intercept + slope) after back-transformation. 809 

Distribution 
of Y 

Distribution 
of X 

Error 
Distribution 

Sample 
size 

Power at 
α = 0.05 

Power at 
α = 0.001 

Mean of 
slope b 

Variance in 
slope b 

CV of 
slope b 

Mean 
intercept a 

Variance in 
intercept a 

CV of 
intercept a 

Effect 
 

Variance in 
effect 

Poisson Gaussian Gaussian 100 0.522 0.094 0.200 9.96 × 10-3 0.498 1.000 9.70 × 10-3 0.098 1.201 0.023 

Poisson Gaussian Poisson 100 0.511 0.090 1.228 0.015 0.100 0.976 9.80 × 10-3 0.101 1.195 0.022 

Binomial Gaussian Gaussian 100 0.502 0.085 0.085 1.79 × 10-3 0.500 0.750 1.82 × 10-3 0.057 0.835 2.84 × 10-3 

Binomial Gaussian Binomial 100 0.504 0.091 0.617 3.63 × 10-3 0.098 0.762 2.03 × 10-3 0.059 0.834 2.75 × 10-3 

Poisson Gamma Gaussian 100 0.588 0.162 0.023 1.28 × 10-4 0.502 0.776 1.28 × 10-4 0.176 0.798 0.017 

Poisson Gamma Poisson 100 0.537 0.095 1.019 7.67 × 10-5 0.009 0.818 7.67 × 10-5 0.142 0.833 0.013 

Binomial Gamma Gaussian 100 0.459 0.029 0.008 1.55 × 10-5 0.481 0.669 4.12 × 10-3 0.096 0.677 3.75 × 10-3 

Binomial Gamma Binomial 100 0.549 0.113 0.517 1.15 × 10-4 0.021 0.634 6.87 × 10-3 0.131 0.650 5.59 × 10-3 

Poisson Binomial Gaussian 100 0.673 0.126 0.534 0.039 0.371 0.599 0.025 0.265 1.133 0.014 

Poisson Binomial Poisson 100 0.699 0.189 1847.624 1.70 × 1011 223.359 0.599 0.025 0.264 1.132 0.014 

Binomial Binomial Gaussian 100 0.510 0.127 0.200 0.012 0.551 0.600 9.96 × 10-3 0.166 0.800 2.15 × 10-3 

Binomial Binomial Binomial 100 0.491 0.094 0.717 0.011 0.146 0.600 0.010 0.167 0.800 2.16 × 10-3 

 810 
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