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We show that the use of probabilistic noiseless amplification in entangled coherent state-based schemes for

the test of quantum nonlocality provides substantial advantages. The threshold amplitude to falsify a Bell-CHSH

nonlocality test, in fact, is significantly reduced when amplification is embedded into the test itself. Such a

beneficial effect holds also in the presence of detection inefficiency. Our study helps in affirming noiseless

amplification as a valuable tool for coherent information processing and the generation of strongly nonclassical

states of bosonic systems.

DOI: 10.1103/PhysRevA.87.052112 PACS number(s): 03.65.Ud, 42.50.−p, 03.67.Mn

It is well known that entangled two-mode states endowed

with a Gaussian Wigner function [1] and subjected to Gaussian

phase-space measurements are unable to reveal any nonlocal

feature. This point was originally used by Bell to conjecture

that the (non-normalized) entangled Einstein-Podolski-Rosen

state
∫ ∞
−∞ dx|x,x + x0〉 [2] (with |x〉 and |x + x0〉 two-position

eigenstates of a harmonic oscillator), whose Wigner function

is positive in the whole phase space, would not falsify any

local hidden variable model [3]. However, Banaszek and

Wódkiewicz later devised a phase-space approach based

on the statistics gathered from the measurement of photon

parity operators [4], demonstrating the key role played by

non-Gaussianity in the revelation of the nonlocal feature of

entangled two-mode states. This sort of approach finds its

complement in nonlocality tests performed using Gaussian

operations and measurements on non-Gaussian states, such

as entangled coherent states (ECSs) [5], or de-Gaussified

two-mode states achieved by resorting to photon subtraction

(photon addition) [6–10]. On the other hand, recently it

has been shown that the combination of Gaussian and non-

Gaussian measurements can lead to significant violations

of local realistic models using continuous-variable systems

[11,12].

In particular, the nonlocal nature of an ECS has been

extensively studied in past years, addressing tests based on ef-

fective pseudospin operators, photon parity operators, effective

rotations, and dichotomized homodyne measurements, even in

the presence of decoherence [13–17]. The latter approaches

have been used for the violation of Bell-CHSH inequality [18]

by states having a very large thermal occupation number

[19], thus showing the possibility to reveal their nonclassical

character, even under mechanisms that, naively, would be

expected to wash out any quantumness. A conspicuous feature

of ECS-based tests using homodyne measurements is that

the violation of a Bell-CHSH inequality occurs only for

coherent-state components having amplitude larger than a

given threshold. Under realistic conditions, the threshold is

typically determined by the operative conditions (detection

inefficiencies and purity of the state resource, among other

factors) under which the test is run. In light of the experimental

difficulties encountered in the generation of ECS of large-

amplitude components [20], it is clearly desirable to identify

viable strategies for the falsification of local realistic theories

with lower amplitude thresholds, so as to ease the experimental

efforts required for such an important task.

In this paper we report a test of local realism for ECS

of light having an arbitrarily small amplitude, supplemented

by the application of local noiseless amplification to the

components of the system, after the implementation of the

necessary local operations that are part of the Bell test [21,22].

By increasing the amplitude of the coherent-state components

without amplifying the quantum fluctuations, we show that the

maximal violation of the Bell inequality can be approached.

The threshold for the violation of the CHSH inequality can

be considerably lowered, thus realising the mechanism sought

above.

An important point needs to be addressed here. In the

experimental scenario where noiseless amplification can only

be implemented as a probabilistic heralded process, the

implementation of the amplification stage after the local

operations makes the detection of the correct amplified ECS

state a probabilistic event which, in turns, opens up a loophole

in the test to be run. In fact, this implies that only the

cases where the amplification operation is successful for

both involved parties of the state at hand should then be

considered for the nonlocality test [23]. Such postselection

step requires us to invoke a fair-sampling assumption, similarly

to what is done for the well-known detection loophole in

Bell-CHSH inequalities, an assumption that we will maintain

throughout the paper. As a further result, we mention that

the inclusion of noiseless amplification is also beneficial when

considering the resilience to key sources of imperfections, such

as inefficient measuring apparatuses. The relation between

amplification and the detection loophole has been discussed

and experimentally shown in [24].

We can also treat the Bell inequality violation as an

advanced entanglement witness independent of assumed

quantum-mechanical descriptions of the employed states and
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measurements [25]. The probabilistic nature of the test is

not limiting for this goal—the operations are still local and

any detection of entanglement safely implies entanglement

in the original state. Thus we demonstrate that, despite its

unavoidable probabilistic features, the noiseless amplifier can

be useful in state detection, as well as in state preparation.

The remainder of this paper is organized as follows. In Sec. I

we gradually introduce the effects of local amplification on the

protocol for the violation of Bell-CHSH inequalities with ECS,

local rotations, and dichotomic homodyne measurements.

We first address the nonphysical case of ideal noiseless

amplification, providing the rationale for our proposal. We

show that the threshold value of the coherent-state amplitudes

for the violation of a Bell-CHSH inequality decreases with the

amplification gain. We then turn to an experimentally imple-

mentable approximation of the full amplifier, demonstrating

that the predicted effect persists even at the lowest significant

order (with respect to the gain) in the series expansion of the

amplification operator. In Sec. II we include the influences

of inefficient homodyne detection and the modification to the

behavior of the Bell-CHSH function induced by the use of a

series of physical operations that, for coherent states of large

amplitudes, approximate well the effects of the local rotations.

We show that the amplification is effective in reducing the

threshold amplitude, even under such unfavorable conditions.

Finally, in Sec. III we draw our conclusions and provide

an outlook for future developments along the lines of this

paper.

Our work strengthens the role of noiseless local amplifi-

cation in coherent quantum information processing, showing

its usefulness in the design of tests for the revelation of

nonclassicality in important classes of entangled states.

I. BELL-CHSH INEQUALITY WITH LOCALLY

AMPLIFIED ECS

A. Full amplification

We consider the un-normalized ECS |ECS+(α)〉 = |α,α〉 +
| − α, − α〉 with |α〉 a coherent state of amplitude α ∈ C.

It is well known that for even moderately large values of

α, we have 〈α| − α〉 ≃ 0, which entails the fact that, upon

proper normalization, |ECS+(α)〉 carries up to a full ebit of

entanglement for α � 1. On the other hand, for α ≪ 1 the state

approaches the un-normalized state |00〉 + α2|11〉 in the space

spanned by the Fock states {|0〉,|1〉}, which can also violate

a Bell inequality despite its weak degree of entanglement.

However, the entanglement is quite particle type, due to the

single-excitation Fock state-based decomposition above.

Following the proposal put forward in Ref. [16], the

nonlocal nature of ECSs can be tested by means of local

operations, implemented by cascading linear and nonlinear

transformations, and dichotomized homodyne measurements.

We modify such earlier schemes by introducing, immediately,

the key point of our protocol, which consists of supplementing

such local transformations with local amplification stages,

along the lines of the scheme shown in Fig. 1. We thus

introduce the local transformations

Ûj = Ĝj R̂j (θj ) (j = A,B), (1)

FIG. 1. (Color online) Scheme for the violation of the CHSH

inequality with amplified entangled coherent state. We show the

source of ECS states, the local oscillator (LO) needed for homodyne

measurements, and the decomposition of the local unitary transforma-

tions Ûj given in terms of the rotations R̂(θj ) and local amplification

Ĝj (j = A,B). We also show the symbols for beam splitters and

homodyners.

with R̂j (θj ) the local rotations in the space spanned by the

quasiorthogonal coherent states {|α〉,| − α〉} that have been

discussed in [16] and whose form reads

R̂j (θj )vj =
(

cos θj sin θj

sin θj − cos θj

)

vj (j = A,B). (2)

Here, vj = (|α〉〉j | − α〉j )T is the vector of coherent-state

components for mode j . The other transformation in our

scheme is the local noiseless amplification described by the

operator Ĝj = exp[(g − 1)â
†
j âj ] [26], where g � 1 is the gain

of the amplifier and âj and â
†
j are the bosonic annihilation and

creation operators for mode j . For now, we retain the full form

of the amplification operator to illustrate, in a clear-cut way,

the working principle of our proposal. It should be noticed

that in Ref. [27] the use of local amplification preceding the

local rotations has been discussed for Bell test purposes, a case

that reduces to the offline preparation of a locally amplified

resource and does not require any fair-sampling assumption.

In what follows, we will retain only the cases where bilateral

local amplification is successfully performed. Let us consider

the effect of ÛA ⊗ ÛB on the ECS |ECS+(α)〉. As Ĝj |α〉j =
|α̃〉j with α̃ = αeg−1, it is straightforward to show that

|ψf 〉 = N (ÛA ⊗ ÛB)|ECS+(α)〉
= N {cos[2(θB − θA)]|ECS+(α̃)〉

+ sin[2(θB − θA)]|ECS′
−(α̃)〉}, (3)

with N the normalization factor

N =
(

2 + 2νe−4α̃2)−1/2
, (4)

ν = cos[2(θA − θB)], and where we have introduced the

un-normalized ECS |ECS′
−(α)〉 = |α, − α〉AB − | − α,α〉AB .

Equation (3) has the very same structure that would be taken by

|ECS+(α)〉 upon bilocal rotation and no amplification [16], the

only change being the actual amplitude of the coherent-state

components. In turn, this implies that, upon application of

the proposal for the Bell-CHSH test discussed in [16,17],

which is based on dichotomized homodyne measurements

performed on modes A and B, we get the following expression

for the correlation function between measurement outcomes

following the rotation of the modes’ state by θA and θB ,
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FIG. 2. (Color online) Bell-CHSH function B(α̃,�), optimized

over the set of rotation angles �, plotted against α for g = 1 (solid red

line), g = 2 (blue dashed line), and g = 3 (purple dot-dashed line).

The light straight line marks the local realistic bound.

respectively,

C (α̃,θA,θB) =
Erf2[

√
2α̃]ν

1 + νe−4α̃2
, (5)

with Erf[·] the error function. In this framework, the Bell-

CHSH function is written as

B(α̃,�) = C (α̃,θA1,θB1) + C (α̃,θA1,θB2)

+C (α̃,θA2,θB1) − C (α̃,θA2,θB2), (6)

where � = {θA1,θA2,θB1,θB2} is a set of rotation angles.

Local realistic theories impose the bound |B| � 2. Quantum

mechanically, this inequality can be violated using ECSs, the

set of rotations in Eq. (2), and dichotomic homodyne detection.

From this analysis it is clear that by calling α the amplitude

of the coherent-state components at which the Bell-CHSH

inequality is first violated and having prepared |ECS+(αa)〉
with αa ≪ α, we can get B > 2 using an appropriate gain,

according to the relation

g � 1 + ln(α/αa). (7)

The behavior of B against α and for a set of values of the gain

is shown in Fig. 2, which demonstrates the quick saturation

of the Bell-CHSH function to the Csirel’son bound 2
√

2 and

the reduction (exponential with the value of the gain g) in the

threshold amplitude for the violation of the inequality.

B. Effective amplification

It is well known that the unbound nature of Ĝj makes the

transformation |α〉 → |αeg−1〉 unphysical and, as remarked

in the previous section, implementable only probabilistically.

The realization of noiseless amplification has been at the

center of an intense theoretical and experimental activity

[21,22,26,28–30]. The role of noiseless amplification in

quantum information processing and quantum communication

has been addressed in an ample variety of ways [27,30,31]. For

weak coherent states and small values of gain, the amplification

operator can be expanded to the first order in g as [21]

Ĝj ≃ 1̂ + (g − 1)â
†
j âj = (g − 2)â

†
j âj + âj â

†
j . (8)

The amplification thus results in the application of a weighted

coherent superposition of the operators â
†
j âj and âj â

†
j . Both

photon-subtraction and addition operations have already been

realized experimentally for arbitrary states of light [32]. A

general superposition of these two operators can be experimen-

tally engineered with a suitable configuration of stimulated

parametric down conversion and linear optics elements and

with only a negligible contribution from multiphoton events

[33].

A remark is due at this stage. When Eq. (8) is used

together with the local operations discussed in Sec. I A and

dichotomized homodyne measurements, the actual ordering

of the amplification and rotation stages is key to the success

of the overall protocol. In particular, it takes a straightforward,

albeit lengthy calculation to show that when the amplification

(with g ≪ 1) precedes the bilocal rotations, no advantage

with respect to the no-amplification version of the scheme

is achieved. Indeed, the state resulting from the application of

the operator Û ′
A ⊗ Û ′

B [with Ĝj approximated as in Eq. (8)

and only the cases of successful bilateral amplification being

retained] reads

|ψ ′
f 〉 = N ′(Û ′

A ⊗ Û ′
B)|ECS+(α)〉

≃ N {cos[2(θB − θA)]|ECS+(α)〉
+ sin[2(θB − θA)]|ECS′

−(α)〉}, (9)

which bears no dependence on the amplification gain. Dif-

ferently, we will prove in what follows that amplification

following local rotations indeed results in a more advantageous

resource that exhibits features similar to those of the fully

amplified state in Eq. (3). We thus describe the protocol for

the construction of the Bell-CHSH function resulting from

the application of the Ûj ’s onto |ECS+(α)〉 and dichotomized

homodyne measurements. This demonstrates that noiseless

amplification is important to fulfill the demanding task at the

core of this paper.

The initial state |ECS+(α)〉 is correspondingly transformed

into |ψf 〉 = (ÛA ⊗ ÛB)|ECS+(α)〉 and measured via homo-

dyne detection. Taking α ∈ R without loss of generality, the

joint probability amplitude to get homodyne signals xA and xB

at sites A and B, respectively, is

Cg(xA,xB ,θA,θB) =
∑

γ=±α

Ŵg
γ (xA,θA)Ŵg

γ (xB ,θB), (10)

where Ŵ
g
±α(xj ,θj ) = j 〈x| Ûj | ± α〉j and |x〉j is an eigenstate

of the quadrature operator x̂j = (â
†
j + âj )/2. An explicit

calculation gives us

Ŵ
g
±α(xj ,θj ) =

1
4
√

π
[ξ∓α(xj ) sin θj ± ξ±α(xj ) cos θj ], (11)

where we have introduced the functions ξ±α(y) =
e−(y∓α)2

[1 + (g − 1)(±2αy − α2)](y = xA,xB). To construct

the Bell function the continuous variables must be di-

chotomized. This is done by assigning a value +1 to a

homodyne measurement larger than 0 and −1 otherwise,

constructing in this way a set of dichotomic observables. The

joint probabilities of the measurement outcomes are

P
g

kl(θA,θB) =
1

K

∫

�k

dxA

∫

�l

dxB |Cg(xA,xB ,θA,θB)|2, (12)

where k,l = ± correspond to the bilateral measurement

outcomes ±1, �+ = [0,∞], �− = [−∞,0] and K is a
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FIG. 3. (Color online) Bell function (optimized numerically over

the set of rotation angles �) plotted against the coherent-state

amplitude α for g = 1.0 (red curve) and g = 1.4 (blue curve). Inset:

Same as in the main panel but for g = 1.0 (red curve) and g = 1.1

(blue curve) and α ∈ [0,2]. Even small increases in the gain factor

result in noticeable reductions of the threshold for the violation of the

Bell-CHSH inequality.

normalization constant. The Bell-CHSH function is then

Bg(α,�) = C
g(α,θA1,θB1) + C

g(α,θA1,θB2)

+C
g(α,θA2,θB1) − C

g(α,θA2,θB2), (13)

with the correlation function

C
g(α,θA,θB) =

∑

k=±

P
g

kk(θA,θB) −
∑

k =l=±

P
g

kl(θA,θB)

=
√

μα ν Erf[
√

2α]
√

π (μα + ν)2
{4

√
2α(g − 1)(μα + ν)

+
√

πμαErf[
√

2α]{μα+[1 + 8(g − 1)α2]ν}}
(14)

and μα = exp[4α2]. While a local realistic description of the

entangled coherent state in the presence of the ideal local

rotations and without amplification is not possible for α �
0.63, for a state locally amplified by g = 1.1 such threshold is

lowered to 0.57 [cf. inset of Fig. 3].

Further reductions of the threshold value of α can be

obtained by increasing the gain, still remaining within the

limits of validity of the second-order expansion within which

our calculations have been performed. For instance, in the

main panel of Fig. 3 we show the Bell function, optimized

numerically over �, for g = 1 (red curve) and g = 1.4 (blue

curve), plotted against the coherent-state amplitude α. The

value of α at which the Bell-CHSH inequality is first violated

when the state is locally amplified goes down to 0.43, an

approximately 30% reduction in the value corresponding to

no local amplification. In this case the inaccuracy due to the

second-order expansion in g is about 2 × 10−3. As an example,

we report the value of the optimized Bell’s function without

amplification for α = 0.7, which is B1
id (0.7,�0.7) ≃ 2.14, and

compare it to B1.4
id (0.7,�

g

0.7) ≃ 2.76, which corresponds to

g = 1.4. We can see that, already at α = 0.7, the Bell’s

function is almost saturated.

II. INEFFICIENT HOMODYNE DETECTORS

AND EFFECTIVE ROTATIONS

In this section we show the effect that inefficient detectors

have on the behavior of the Bell function. Moreover, we replace

the idealized local rotations in Eq. (2) with a cascade of local

unitary operations whose resulting effect on a single mode

is to approximate R̂j (θj ). As shown in Refs. [16,17], both

the detection inefficiency and the replacement of the idealized

rotations with effective ones increase the threshold value of α

for the violation of the Bell-CHSH inequality.

Let us start with the analysis of nonideal homodyne

detectors, each being modeled as a perfect detector preceded

by beam splitters of transmittivity η. The latter mixes mode j to

an ancillary mode âj (j = A,B) prepared in the vacuum state.

At the output port of the beam splitter, the reduced state of

mode j (after tracing out the corresponding ancilla) describes

the signal detected by a homodyner of efficiency η.

By proceeding along the lines of the calculations described

in Sec. I, we get the correlation function

C
g

d
(α,θA,θB) =

μαν e−2κ2
η Erf(

√
2κη)

[
√

π (μα + ν)2]

{

4
√

2κη(μα + ν)

+
√

πe2κ2
η

[

μα +
[

1 + 2(g − 1)
(

4α2 + κ2
η

)]

×ν Erf(
√

2κη)
]}

with κη = ηα. In Fig. 4 we compare the optimized Bell

function for no gain and detection efficiency η = 0.9 to what

is obtained by introducing the local amplification stages (with

g = 1.4) and for the same value of η. The amplified ECS

violates the Bell-CHSH inequality for smaller values of α

than the nonamplified state affected by the same degree of

detection inefficiency. It also overcomes the performance of

the Bell function for no amplification and ideal homodyne

detectors.

We now pass to the construction of the correlation function

resulting from the use of the operations approximating the

local rotation operators on each mode of our system. In order

to simplify our mathematical approach, from here on we will

only consider ideal detectors, the extension to imperfect ones

being performed following the lines sketched above. Equation

(2) is well approximated by the cascade of the transformation

FIG. 4. (Color online) Numerically optimized Bell’s function

plotted against the amplitude of the coherent states with detection

inefficiencies. The black point indicates the value of α for which the

violation occurs with perfect detectors (η = 1) and no amplification.

Setting η = 0.9 we obtained the purple curve for g = 1.0 and the

green curve for g = 1.4.
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FIG. 5. (Color online) Numerically optimized Bell’s function

plotted against the amplitude of the coherent states with effective

rotations for g = 1.0 (purple curve) and g = 1.3 (green curve). The

black point represents the value of α for which the violation occurs

with ideal rotations and no amplification.

resulting from the self-Kerr Hamiltonian Ĥj = h̄�(â
†
j âj )2

and a phase-space displacement by an appropriate amplitude

according to the overall expression

V̂j (θj ) = eiπ(â
†
j âj )2

D̂j (iθj/α) eiπ(â
†
j âj )2

. (15)

When applied to the components of the set of quasiorthogonal

states {|α〉j ,| − α〉j }, this leads to the following set of

transformations [16]:

V̂j (θj )|α〉j = 1
2
[eiθj (|α + iθj/α〉j + i| − α − iθj/α〉j )

+ ieiθj (| − α + iθj/α〉j + i|α − iθj/α〉j )]

V̂j (θj )| − α〉j = 1
2
[ieiθj (|α + iθj/α〉j + i| − α − iθj/α〉j )

+ eiθj (| − α + iθj/α〉j + i|α − iθj/α〉j )].

(16)

In order to evaluate the correlation functions upon local

rotations and homodyne detection, we replace Eq. (10) with

Ceff
g (xA,xB ,θA,θB) =

∑

γ=±α

�g
γ (xA,θA)�g

γ (xB ,θB), (17)

with �
g
±α(xj ,θj ) =j 〈xj |Ĝj V̂j (θj )| ± α〉j . We get

�
g
±α(xj ,θj ) = ∓

iδ
±α
α

4
√

π
{ieiθj [ξ+

χ+
(xj ,θj ) + iξ−

χ+
(xj ,θj )]

∓ e−iθj [ξ−
χ−

(xj ,θj ) + iξ+
χ−

(xj ,θj )]}, (18)

where we have introduced χ
j
± = α ± iθj

α
and

ξ±
χ±

(xj ,θj ) = e−(xj ∓χ
j
±)2[

1 + (g − 1)
(

±2χ
j
±xj − χ

j2
±

)]

. (19)

Figure 5 shows the optimized Bell’s function with effective

rotations for g = 1.0 (purple curve) and g = 1.3 (green

curve). In this case, the threshold for the violation of the

Bell-CHSH inequality is lowered from α = 0.84, which is

the value achieved using the effective rotations, to α =
0.63, corresponding to the use of the ideal rotation, perfect

homodyne measurements, and no amplification.

III. CONCLUSIONS AND OUTLOOK

We have discussed the effectiveness of local noiseless

amplification in lowering the threshold for the violation of

a Bell-CHSH inequality by an ECS. The strategy that we

have applied consists of local rotations performed over the

two modes of the system followed by local amplification

and dichotomic homodyne measurements, which are known

to be effective in revealing the nonlocal properties of ECSs.

With the underlying fair-sampling assumption needed by the

inherent probabilistic nature of experimental noiseless ampli-

fication operations, the advantages of using local amplifiers

is evident in a significant reduction of the amplitude of the

coherent-state components of the ECS needed to go beyond

the bound imposed by local realistic theories. It will be

very interesting to extend the domain of usefulness of local

noiseless amplification for quantum information processing

by addressing the violation of a Bell-CHSH inequality

through local photon parity measurements performed over

entangled Gaussian states, such as a two-mode squeezed

vacuum state. Our task is to affirm approximate noiseless

amplification as a valid and viable alternative to the use of

conditional photosubtraction for the enhancement of the non-

locality properties of interesting classes of continuous-variable

states.

ACKNOWLEDGMENTS

We thank J. Brask, D. Cavalcanti, and N. Brunner for

useful discussions. G.T. and G.McK. thank the Centre for

Theoretical Atomic, Molecular, and Optical Physics, Queen’s

University Belfast, and the Department of Optics, Palacký
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