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Abstract

By analyzing elastic theory for nematic liquid crystals, we distin-
guish three regimes of elastic constants. In one regime, the Ericksen
inequalities are satisfied, and the ground state of the director field
is uniform. In a second regime, certain necessary inequalities are vio-
lated, and the free energy is thermodynamically unstable. Between
those possibilities, there is an intermediate regime, where the Erick-
sen inequalities are violated but the system is still stable. Remarkably,
lyotropic chromonic liquid crystals are in the intermediate regime.
We investigate the nonuniform structure of the director field in
that regime, show that it depends sensitively on system geometry,
and discuss the implications for lyotropic chromonic liquid crystals.

1 Introduction

In a nematic liquid crystal, the molecules have orientational order along an
axis, which is called the nematic director and is represented by the unit vector
n̂. The molecules are equally likely to orient up or down along this axis, and
hence n̂ and −n̂ represent the same physical state. The axis of orientational
order normally depends on position, so that the director becomes a position-
dependent field n̂(r). One fundamental problem of liquid-crystal elasticity
theory is to determine how the free energy depends on spatial gradients of the
director field. In early studies of liquid crystals, this problem was addressed by
Oseen [1] and Frank [2], and further by Nehring and Saupe [3, 4]. Their work
led to the Oseen-Frank free energy density, which includes terms representing
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three deformation modes—splay, twist, and bend—as well as a fourth term
called saddle-splay. Hence, it has four independent elastic coefficients.

In any elasticity theory, there must be certain inequalities on the elas-
tic coefficients so that the free energy is thermodynamically stable; i.e. no
deformation can make the free energy go to negative infinity. For example, in
conventional elasticity for an isotropic solid, the bulk and shear moduli must
both be positive. Soon after the development of the Oseen-Frank free energy
density for liquid crystals, Ericksen [5] derived a corresponding set of four
inequalities on the liquid-crystal elastic coefficients. These four inequalities will
be presented in detail below.

The purpose of this paper is to re-examine the Ericksen inequalities. There
are both theoretical and experimental reasons for this re-examination.

The theoretical reason is that our group has recently developed a reformu-
lation of liquid-crystal elasticity theory [6], which is based on a mathematical
decomposition of the director gradient tensor by Machon and Alexander [7].
This reformulation expresses the free energy density in terms of four direc-
tor deformation modes—splay, twist, bend, and a less-well-known fourth mode
represented as the tensor ∆. It is mathematically equivalent to the Oseen-
Frank free energy density, but it provides a conceptually simpler way to
describe many elastic phenomena in liquid crystals. Using this reformulation,
several groups have investigated geometric compatibility constraints on direc-
tor deformations [8–11]. As we will show, this theoretical progress provides
new insight into the Ericksen inequalities.

The experimental reason is that a violation of the Ericksen inequalities
has actually been observed in certain liquid-crystal materials. These materials
are lyotropic chromonic liquid crystals, such as Sunset Yellow (SSY) and dis-
odium cromoglycate (DSCG). In these materials, the molecules self-organize
into long stacks in aqueous solution, and the stacks form nematic orienta-
tional order. Several experiments have put these liquid crystals into cylindrical
capillaries [12, 13], rectangular capillaries [14], or cylindrical shells [15], with
degenerate planar anchoring on the surfaces. In these geometries, the director
field spontaneously forms a twisted structure rather than a uniform, achiral
state. The twisted structure has been modeled by the experimental groups
using a twist elastic constant that is anomalously small, violating one of the
Ericksen inequalities. Based on this observation, one must ask: Is the violation
consistent with liquid-crystal elasticity theory? If so, are there any constraints
on the elastic constants?

In Sec. 2 of this article, we present the four Ericksen inequalities, using
both the standard form of the Oseen-Frank free energy and our recent refor-
mulation. We point out that these inequalities are excessively strict, because of
the geometric constraints on the director deformation modes. In the following
sections, we investigate what happens if the Ericksen inequality on the twist
elastic constant is violated. In Sec. 3, we consider a severe violation (K22 < 0),
and show that the free energy can become arbitrary negative. This violation
is forbidden for reasons of thermodynamic stability (unless the free energy
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includes higher-order terms). In Sec. 4, we consider the intermediate regime
(0 < K22 < K24), as in the experiments on lyotropic chromonic liquid crystals,
and show that the free energy does not become arbitrary negative. Rather, the
liquid crystal has a well-defined, non-uniform ground state, which depends on
the system size. Finally, in Sec. 5, we discuss the implications of these results
for studies of lyotropic chromonic liquid crystals.

2 Theoretical background

Oseen-Frank theory shows all the ways that the free energy density can depend
on spatial gradients of the director field, as allowed by symmetry, up to
quadratic order in the gradients. The free energy density is conventionally
written as

F =
1

2
K11S

2 +
1

2
K22T

2 +
1

2
K33|B|2−K24∇ · [n̂(∇ · n̂) + n̂× (∇× n̂)] . (1)

Here, S = ∇·n̂ is the splay, T = n̂·(∇×n̂) is the twist, and B = −(n̂·∇)n̂ =
n̂ × (∇ × n̂) is the bend. These three deformation modes contribute to the
free energy density with elastic constants K11, K22, and K33, respectively.
The fourth term is called the saddle-splay term. This expression for saddle-
splay has been used, for example, by Burylov [16] to model transitions among
different director configurations in a cylindrical capillary.

In the literature, there are some variations in the notation for the
saddle-splay coefficient: it sometimes written as K24, 1

2K24, (K22 +K24), or
1
2 (K22 +K24). We choose the notation of Eq. (1), because it seems to be the
most common in recent articles, but our results can easily be translated into
any of the other notations.

In Ref. [6], we argue that the elastic free energy for nematic liquid crystals
can more easily be understood in terms of four bulk elastic modes, rather than
three. This argument is based on a mathematical construction of Machon and
Alexander [7], who decompose the director gradient tensor into four different
types of mathematical objects as

∂inj = −niBj +
1

2
S(δij − ninj) +

1

2
Tεijknk + ∆ij . (2)

Here, the scalar S, pseudoscalar T , and vector B are the splay, twist, and bend
modes defined above. The fourth mode ∆ is a symmetric, traceless tensor in the
plane perpendicular to n̂. It indicates how the director splays outward in one
direction and inward in the orthogonal direction in that plane. All four modes
are visualized in Ref. [6]. In this theoretical approach, pure splay is double
splay, and pure twist is double twist. Planar single splay is a combination of
pure splay and ∆ mode, while cholesteric single twist is a combination of pure
twist and ∆ mode.
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Using the four bulk elastic modes, the free energy can be written as

F =
1

2
(K11 −K24)S2 +

1

2
(K22 −K24)T 2 +

1

2
K33|B|2 +K24 Tr(∆2). (3)

We emphasize that Eq. (3) is mathematically equivalent to Eq. (1), so these
expressions for the free energy can be used interchangeably. However, Eq. (3)
has the special feature that it is a sum of squares of elastic modes. In the sum
of squares, the elastic constant for splay is (K11 −K24), the elastic constant
for twist is (K22 −K24), the elastic constant for bend is K33, and the elastic
constant for the ∆ mode is 2K24. In this perspective, those four elastic con-
stants are the fundamental parameters of the theory, while K11 and K22 are
less fundamental: K11 = (K11 −K24) +K24 applies to a combination of splay
and ∆, and K22 = (K22−K24)+K24 applies to a combination of twist and ∆.

Ericksen [5] looked for conditions on the elastic constants such that the
free energy would be positive definite. Translated into our current notation,
his inequalities were

K11 > |2K24 −K11|, K22 > |2K24 −K22|, K33 > 0. (4)

These inequalities can be rewritten as

K11 > K24, K22 > K24, K33 > 0, K24 > 0. (5)

Because Ericksen worked with the Oseen-Frank free energy in a form similar to
Eq. (1), the inequalities were not obvious; they required a significant derivation.
However, with the reformulated free energy of Eq. (3), the inequalities are
almost trivial. They simply state that the free energy is a sum of squares with
positive coefficients.

Clearly the Ericksen inequalities are sufficient for the free energy to be
thermodynamically stable. If the inequalities are satisfied, then any director
deformation has a positive free energy. The ground state is a uniform director
field, with F = 0. However, it is not clear whether the Ericksen inequalities
are necessary for the free energy to be thermodynamically stable.

The main subtlety here is that the four director deformation modes S, T ,
B, and ∆ are not independent of each other. Rather, they must all be derived
from the same director field n̂(r). Only certain combinations of S, T , B, and
∆ can be derived from the same director field, and these combinations are
called compatible, while other combinations are incompatible.

One way to see this issue is by counting degrees of freedom: S has one
degree of freedom (as a scalar), T has one (as a pseudoscalar), B has two (as
a vector perpendicular to n̂), and ∆ has two (as a traceless, symmetric tensor
in the plane perpendicular to n̂), for a total of six degrees of freedom in the
deformation modes. By comparison, the director field has only two degrees of
freedom (as a unit vector). Hence, we would expect four constraints among
the director deformation modes.
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An analogous issue occurs in the elastic theory of solids. The strain tensor
is derived from the displacement vector field, but the strain tensor has more
degrees of freedom than the displacement vector field. Hence, there must be
compatibility constraints on the strain tensor. Here, the director field of a liquid
crystal is analogous to the displacement field of a solid, and the deformation
modes S, T , B, and ∆ are analogous to the strain tensor of a solid.

In recent years, several groups have investigated how the compatibility
constraints for the director deformation modes are related to the geometry
of space. Virga [8] found there are only two ways to fill three-dimensional
(3D) Euclidean space with constant director deformations: twist and ∆, or
bend, twist, and ∆. Sadoc et al. [9] found that 3D non-Euclidean curved
space can be filled with a single director deformation mode, with the right
correspondence between the type of curvature and the type of deformation.
Pollard and Alexander [10] and da Silva and Efrati [11] developed general
compatibility conditions for an arbitrary combination of deformation modes
and an arbitrary Euclidean or non-Euclidean geometry.

The compatibility conditions derived in Refs. [10, 11] are mathematically
complex, and we will not attempt to use them directly. Instead, we will con-
struct director fields in 3D Euclidean geometry, and determine what happens
to these director fields if the Ericksen inequalities are violated.

3 Necessary inequalities

For a first step, consider a director field with the cholesteric helical structure

n̂ = (cos qz, sin qz, 0). (6)

As shown in Ref. [6], this structure does not have pure twist; rather, it is a
combination of the twist and ∆ deformation modes. It is one of the allowed
constant combinations found by Virga [8]. Inserting this director field into the
free energy density of Eq. (1) or (3) gives F = 1

2K22q
2. It involves K22, which

is a combination of the elastic constant (K22 − K24) for pure twist and the
elastic constant K24 for the ∆ mode. Hypothetically, suppose that K22 < 0.
In that case, minimizing the free energy would drive q → ±∞, and hence
F → −∞. That situation would be thermodynamically unstable. Hence, a
necessary inequality is K22 > 0. Note that this inequality is weaker than the
Ericksen inequality on K22.

Next, consider a director field with the twist-bend heliconical structure

n̂ = (sinβ cos qz, sinβ sin qz, cosβ). (7)

This structure is a combination of the bend, twist, and ∆ deformation modes;
it is the second allowed constant combination. Inserting this director field into
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Eq. (1) or (3) gives the free energy density

F =
1

2
sin2 β(K22 sin2 β +K33 cos2 β)q2. (8)

Hypothetically, suppose that K33 < 0. In that case, we can choose a cone angle
β such that the coefficient of q2 is negative. Minimizing the free energy then
drives q → ±∞, and hence F → −∞, which is thermodynamically unstable.
Hence, another necessary inequality is K33 > 0. That inequality is the same
as one of the Ericksen inequalities.

When we construct director fields, we are not limited to constant combina-
tions of deformation modes; we can also investigate non-uniform combinations.
For example, consider the director wave

n̂ = (sin θ(r), 0, cos θ(r)), with θ(r) = θ0 cos(q · r), (9)

for small θ0. By putting that wave into the free energy density of Eq. (1) or (3)
and integrating over r, we obtain the average free energy density

Faverage =
1

4
(K11q

2
x +K22q

2
y +K33q

2
z)θ20 +O(θ40). (10)

If any of the three coefficients K11, K22, or K33 were negative, then mini-
mization of the free energy would drive the corresponding component of q to
±∞, and hence drive F → −∞, which would be thermodynamically unstable.
Hence, all three of those coefficients must be positive, and the set of necessary
inequalities becomes

K11 > 0, K22 > 0, K33 > 0. (11)

At this point, some readers might object that there is actually an exten-
sive literature on liquid crystals with K33 < 0, beginning with the work of
Dozov [17]. However, that situation is different because Dozov uses a free
energy with higher-order terms, involving either second derivatives or higher
powers of first derivatives of the director field. These higher-order terms pre-
vent the thermodynamic instability, and give a twist-bend nematic phase with
finite values of wavevector q and cone angle θ. Likewise, in recent work by our
group [18–21], an effective renormalized elastic constant (KR

33, KR
11, or KR

22)
is driven negative by interactions with another order parameter, and the free
energy would be unstable, but it is stabilized by some higher-order couplings.

In elasticity theory, it is always possible to add higher-order terms to stabi-
lize a free energy. When we search for stability conditions, the issue is whether
the free energy is stable without higher-order terms. For a free energy with the
form of Eq. (1) or (3), without higher-order terms, the conditions of Eq. (11)
are necessary.

Summarizing the results of this section, we have derived a set of necessary
inequalities (11), which are weaker than the Ericksen inequalities (5). If the
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(a) (b)

(c) (d)
Fig. 1 Possible regimes of the elastic constants. (a,b) Expressed in terms of the funda-
mental elastic constants (K11 − K24), (K22 − K24), and K24. (c,d) Expressed in terms
of the conventional elastic constants K11, K22, and K24. In parts (a,c), we vary K22 and
K24, assuming that the splay and bend Ericksen inequalities are satisfied (K11 > K24 and
K33 > 0). In parts (b,d), we vary K11 and K24, assuming that the twist and bend Ericksen
inequalities are satisfied (K22 > K24 and K33 > 0).

necessary inequalities are violated, then the Ericksen inequalities are severely
violated, and the free energy may go to negative infinity. This severe violation
is forbidden (unless there are higher-order terms to stabilize the free energy).
However, there are intermediate regimes in which the Ericksen inequalities are
violated but the necessary inequalities are satisfied. In the following section,
we consider what happens in those intermediate regimes.

4 Intermediate regimes

Figure 1 shows schematic diagrams of possible regimes for the elastic con-
stants. The first row is expressed in terms of the fundamental elastic constants
(K11 −K24), (K22 −K24), and K24. The second row provides the same infor-
mation expressed in terms of the conventional elastic constants K11, K22, and
K24. In each case, we can see that there is a blue regime where the Ericksen and
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the necessary inequalities are both satisfied, and a red regime where the Erick-
sen and necessary inequalities are both violated. Between these regimes, there
are intermediate regimes where the Ericksen inequalities are violated but the
necessary inequalities are satisfied. In particular, there are three intermediate
regimes, which we label as:

• Twist intermediate regime: 0 < K22 < K24

• Splay intermediate regime: 0 < K11 < K24

• ∆ intermediate regime: K24 < 0, K11 > 0, K22 > 0

In this section, we concentrate on the twist intermediate regime, because it
occurs experimentally in lyotropic chromonic liquid crystals. At the end of
the section, we briefly discuss the other two intermediate regimes, which have
not yet been reported experimentally to our knowledge. (We do not con-
sider regimes in which more than one of the Ericksen inequalities are violated
simultaneously.)

4.1 Twist intermediate regime

Suppose we are in the twist intermediate regime, where 0 < K22 < K24, as
has been reported in lyotropic chromonic liquid crystals. In the free energy of
Eq. (3), the coefficient of twist T 2 is negative, while all the other coefficients
are positive. Hence, the liquid crystal has a natural tendency toward twist; a
twisted state should have a lower free energy than the uniform state. However,
the amount of twist is limited by the compatibility conditions. If the director
field has twist, it must have some of the other deformation modes, which have
positive free energy. Those other modes may stabilize the system, and prevent
the free energy from going to negative infinity.

To see these free energy considerations, suppose that the liquid crystal is
in a cylindrical capillary with radius Rmax, and suppose the boundary condi-
tions on the surface are totally free. Suppose the director field has the twisted
structure shown in Fig. 2. As a simple ansatz, it can be described in cylindrical
coordinates (ρ, φ, z) by the equation

n̂ = ẑ cos θ(ρ) + φ̂ sin θ(ρ), (12)

with θ(ρ) = αρ, for small α. This director field has twist of order α, bend of
order α2ρ, ∆ mode of order α3ρ2, and zero splay. If we put this ansatz into
the free energy density and average over the cylindrical geometry, we obtain

Faverage = 2(K22−K24)α2+
1

12
[3K33 − 8(K22 −K24)]R2

maxα
4+O(α6). (13)

This free energy has the usual form of a series expansion in powers of the twist
order parameter α. When (K22 − K24) > 0, the coefficient of the quadratic
term is positive, and hence the minimum occurs at α = 0, which corresponds
to an untwisted state. When (K22 −K24) = 0 there is a critical point, where
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Fig. 2 Twisted director field for a liquid crystal in a cylindrical capillary. This structure is
favored in the twist intermediate regime 0 < K22 < K24.

the untwisted state has a symmetry-breaking transition to right- or left-handed
twist. Just below the critical point, the order parameter and free energy density
scale as

α = ± 2

Rmax

[
K24 −K22

K33

]1/2
, Faverage = −4(K24 −K22)2

K33R2
max

. (14)

The twist order parameter does not diverge, and the free energy does not
go to negative infinity. Rather, the system is stabilized by the compatibility
requirement: In order to have the favorable twist, the director field must also
have some unfavorable bend (and a smaller amount of unfavorable ∆ mode).
These unfavorable deformation modes lead to a well-defined ground state,
which has a free energy lower than the uniform state.

As a check on this simple variational calculation, we consider a director field
with the form of Eq. (12), but with an arbitrary function θ(ρ). To minimize
the free energy, we solve the Euler-Lagrange equation

4K22ρ
2θ′′(ρ) + 4K22ρθ

′(ρ)−K22 sin 4θ(ρ) = 8K33 sin3 θ(ρ) cos θ(ρ), (15)

with θ(0) = 0 and the free boundary condition

2K22Rmaxθ
′(Rmax) = (2K24 −K22) sin 2θ(Rmax). (16)

Note thatK24 does not enter the Euler-Lagrange equation, but it does enter the
boundary condition. We find numerical solutions with varying ratio K22/K24

from 1 down to 0.2, for fixed K33/K24 = 2. The results are plotted in Fig. 3.
When K22 is just below K24, the function is approximately linear, with the
slope α as predicted in Eq. (14). When K22 is substantially less than K24, the
shape of the function deviates from linearity, but still it has the same general
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Fig. 3 Numerical calculations of the director orientation θ(ρ) for a liquid crystal in a
cylindrical capillary of radius Rmax. The ratio K33/K24 = 2 is fixed, and the ratio K22/K24

varies as indicated in the legend.

form. We can see that there is a well-defined ground state, with a twist that
does not diverge, even deep in the twist intermediate regime.

From Eq. (14), we see that the free energy depends on the system radius
Rmax in a surprising way. The average free energy density of the twisted state
scales as −1/R2

max, and it approaches the free energy density of the uniform
state F = 0 in the limit of Rmax → ∞. Hence, the free energy per volume
increases as the system size increases in the (x, y) plane. (By contrast, the free
energy per volume is constant as the system size increases in the z direction.)

This dependence on system size is quite unusual in liquid-crystal physics.
In typical liquid crystals, if we neglect surface effects, the free energy is exten-
sive, meaning that the free energy per volume is constant as the system size
increases. In typical liquid crystals, if we include surface tension and surface-
induced director distortions, the free energy per volume decreases as the system
size increases; this behavior can be called sub-extensive. By contrast, we now
see that the free energy in the twist intermediate regime is super-extensive.
Meiri and Efrati [22] have recently argued that super-extensive scaling of
the free energy is a general characteristic of geometrically frustrated systems.
Our results for lyotropic chromonic liquid crystals provide an example of that
phenomenon.

Whenever a system has super-extensive scaling of the free energy, one might
ask whether it can reduce its total free energy by breaking into many smaller
systems. Specifically, for a lyotropic chromonic liquid crystal in a cylindrical
capillary, one might ask whether it can break into a lattice of parallel tubes,
with twist from the center to the edge of each tube. In principle, this breakup
would provide a large negative free energy for each tube, and hence reduce the
total free energy. However, the problem is how to connect the director field
between neighboring tubes. If we just put the tubes next to each other, and
each tube has the structure shown in Fig. 2, then there would be discontinuities
in the director field from tube to tube, and these discontinuities would cost a
prohibitive amount of free energy.

Figure 4 shows two possible structures for the director field in a lat-
tice of parallel tubes. Both of these structures can be regarded as arrays of
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(a) (b)
Fig. 4 Possible structures for the director field in a liquid crystal where the disclination
energy is low compared with (K24−K22), so that the free-energy benefit of the twist regions
exceeds the free-energy cost of the disclinations between those regions. (a) Hexagonal lattice
of twist tubes with uniform handedness. (b) Square lattice of twist tubes with alternating
handedness.

half-skyrmions or merons, separated by disclinations. They are essentially two-
dimensional versions of blue phases. In Fig. 4(a), all of the tubes have the same
handedness and form a hexagonal lattice. In Fig. 4(b), the tubes have alternat-
ing handedness and are arranged in a square lattice. Half-skyrmion structures
like Fig. 4(a) have been studied in the context of chiral liquid crystals, where
they are stabilized by the favored twist arising from chirality [23, 24]. Here,
we suggest that they might also form in achiral liquid crystals in the twist
intermediate regime. In that case, the free energy would become extensive,
proportional to the number of tubes in the system.

For a chiral liquid crystal in the twist intermediate regime, the lattice of
half-skyrmions would only be stable if the disclination energy is low compared
with (K24−K22), so that the free-energy benefit from the twist regions exceeds
the free-energy cost of the disclinations. We have not seen any experimental
evidence that this phenomenon actually occurs in lyotropic chromonic liquid
crystals. Rather, these materials appear to be in the regime of higher discli-
nation energy, so that any cylindrical capillary has one twist region from the
center to the edge, as in Fig. 2, and the free energy is super-extensive.

4.2 Other intermediate regimes

So far, we have considered liquid crystals in the twist intermediate regime,
because that regime corresponds to experiments on lyotropic chromonic liquid
crystals. Two other theoretical possibilities are the splay intermediate regime
and the ∆ intermediate regime. We do not know of any liquid-crystal materials
in those regimes. However, we would like to make theoretical predictions for
the director configurations, in case such materials should be discovered in the
future.
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(a) (b)
Fig. 5 (a) Director field in the splay intermediate regime 0 < K11 < K24. (b) Director field
in the ∆ intermediate regime K24 < 0. (This example is drawn with the parameter φ0 = 0.)

First, consider the splay intermediate regime 0 < K22 < K24. In the free
energy of Eq. (3), the coefficient of splay S2 is negative, while all other coef-
ficients are positive. Hence, the liquid crystal has a tendency toward splay;
a splayed state has a lower free energy than the uniform state. However, as
with the twist case, the amount of splay is limited by compatibility conditions,
which may stabilize the system.

As an example, suppose again that the liquid crystal is in a cylindrical
capillary with radius Rmax, with free boundary conditions, and suppose the
director field has the splayed structure of Fig. 5(a). It can be represented in
cylindrical coordinates by the ansatz

n̂ = ẑ cos θ(ρ) + ρ̂ sin θ(ρ), (17)

with θ(ρ) = αρ, for small α. This director field has splay of order α, bend of
order α2ρ, ∆ mode of order α3ρ2, and zero twist. By putting this ansatz into
the free energy density and averaging over position in the cylinder, we obtain

Faverage = 2(K11−K24)α2+
1

12
[3K33 − 8(K11 −K24)]R2

maxα
4+O(α6). (18)

This free energy is a series expansion in powers of the splay order parameter
α. When (K11 −K24) > 0, the quadratic coefficient is positive, and hence the
minimum occurs at α = 0, which is the uniform state. When (K11−K24) = 0,
there is a critical point, where the uniform state has a symmetry-breaking
transition to inward or outward splay, or equivalently, to splay up or down
along the cylindrical axis. Just below the critical point, the order parameter
and free energy density scale as

α = ± 2

Rmax

[
K24 −K11

K33

]1/2
, Faverage = −4(K24 −K11)2

K33R2
max

. (19)
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All of these predictions for splay are exactly analogous to the predictions for
twist in the previous section.

The same considerations apply in the ∆ intermediate regime K24 < 0.
In the free energy of Eq. (3), the coefficient of Tr(∆2) is negative, and all
other coefficients are positive. In this case, the liquid crystal has a tendency
toward the ∆ mode, so that a state with ∆ 6= 0 has a lower free energy than
the uniform state. Because the favorable ∆ deformation must be accompa-
nied by other deformations, which are unfavorable, the system may still be
thermodynamically stable.

To model the behavior in this regime, we again consider a liquid crystal
in a cylindrical capillary with free boundary conditions, and now assume the
director field

n̂ = ẑ cos θ(ρ) + ρ̂ sin θ(ρ) cos 2(φ− φ0)− φ̂ sin θ(ρ) sin 2(φ− φ0), (20)

with θ(ρ) = αρ, for small α. This structure is illustrated in Fig. 5(b); note
that the outward tilt is at orientations of 2φ0 and 2φ0 + π with respect to the
x-axis. It has ∆ mode of order α, bend of order α2ρ, and splay and twist of
order α3ρ2. We put this ansatz into the free energy density, and average over
position, to obtain

Faverage = 2K24α
2 +

1

12
(3K33 − 8K24)R2

maxα
4 +O(α6). (21)

This free energy is a power series in α, which can now be regarded as an
order parameter for the ∆ deformation. When K24 > 0, the minimum occurs
at the uniform state α = 0. When K24 = 0, there is a critical point, where
the uniform state has a symmetry-breaking transition to some non-zero ∆
deformation, with an arbitrary orientation φ0. Just below the critical point,
the order parameter and free energy density scale as

α = ± 2

Rmax

[
−K24

K33

]1/2
, Faverage = − 4K2

24

K33R2
max

. (22)

These predictions are quite analogous to the twist and splay cases.
All of our discussion about system-size dependence and geometric frus-

tration in the twist intermediate regime applies also to the splay and ∆
intermediate regimes. In particular, if the disclination energy is very low, the
liquid crystal might break up into domains of the favored mode separated by
disclinations. For the splay case, we expect that the domain structure might
resemble Fig. 4(a) or 4(b), but with the entire director field rotated by π/2
about the z-axis, so that twist is transformed into splay. For the ∆ case, we
have not yet investigated the possible domain structures.
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5 Discussion

In this article, we have identified three distinct regimes of elastic constants
in nematic liquid crystals, which are indicated schematically in Fig. 1. In the
regime where the Ericksen inequalities (5) are satisfied, all four director defor-
mation modes cost some positive free energy. For that reason, the ground state
of a bulk liquid crystal has a uniform director field. By contrast, in the forbid-
den regime where the necessary inequalities (11) are violated, some physically
realizable director field has a negative free energy, and hence the free energy (1)
or (3) is thermodynamically unstable. It can only be stabilized by extra terms
with higher powers of the director gradients, or higher-order derivatives of
the director field, or couplings with other order parameters. In this forbidden
regime, the liquid crystal may form a modulated structure with no singulari-
ties in nematic order, such as a twist-bend nematic phase or a splay nematic
phase, as studied in much recent research [17–21].

Between the Ericksen regime and the forbidden regime, there is an inter-
mediate regime where the Ericksen inequalities are violated but the necessary
inequalities are satisfied. In this intermediate regime, one of the director defor-
mation modes—twist, splay, or ∆—has a negative free energy. However, the
total free energy is stabilized by geometric compatibility constraints, which
require that any physically realizable director field must have a combination
of the favored mode with other, unfavorable modes. The intermediate regime
has surprising properties. In a finite cylindrical geometry, the liquid crystal
minimizes its free energy by forming a nonuniform director field, as shown in
Fig. 2, 5(a), or 5(b). As the cylinder radius increases, the total free energy
increases super-extensively. The super-extensive growth can only be avoided
if the system adds disclinations, as in Fig. 4, provided that the disclination
energy is low enough.

Remarkably, the twist intermediate regime actually occurs in lyotropic
chromonic liquid crystals, according to experimental measurements of the
elastic constants [12–15]. Hence, the behavior discussed here is not just a
theoretical speculation, but can be studied in the laboratory. In particular,
we emphasize three consequences of this theory for experiments on lyotropic
chromonic liquid crystals.

First, these materials should be sensitive to the geometry of their container.
In this article, we have seen the effects of changing the radius Rmax of a
cylindrical capillary. We would expect equally important effects of changing
the shape of the container. The favorable twist deformation naturally fills up
a region that is roughly circular in the plane perpendicular to the director. If
the cross section of the cell is not circular, then the director field must adapt
in a complex way, perhaps by forming circular domains of twist separated by
untwisted regions. As an example, the experiments of Ref. [14] put lyotropic
chromonic liquid crystals into capillaries of rectangular cross section and find
complex director configurations.

Second, these materials have an unusual relationship between the free ener-
gies of double twist, cholesteric single twist, and a uniform state. In typical
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chiral liquid crystals, double twist is preferred over single twist, and single
twist is preferred over a uniform state. By contrast, in lyotropic chromonic liq-
uid crystals, double twist is preferred over a uniform state, and a uniform state
is preferred over single twist. Hence, the materials should particularly avoid
cholesteric single twist. Indeed, the structures in Ref. [14] include double-twist
regions and monodomain uniform regions.

Third, we anticipate that these materials should be particularly compatible
with impurities, such as dust or other colloidal particles. Any particles will
break up the liquid crystals into smaller volumes, and will allow the director
field to break into more regions of double twist. Effectively, the particles could
play the same role as the disclinations in the structures of Fig. 4. Hence, the
negative free energy of the twist domains could offset the positive free energy
of contact between the particles and the liquid crystal. Distortions induced
by such particles could make these materials difficult to align. A recent study
suspends rod-like particles in a lyotropic chromonic liquid crystal, and finds an
anomalous twisted alignment of the rods with respect to the director field [25].
We speculate that the spontaneous twist discussed here may be involved in
that experiment.

Acknowledgments. This work was supported by National Science Founda-
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