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Violation of local uncertainty relations as a signature of entanglement
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Entangled states represent correlations between two separate systems that are too precise to be represented
by products of local quantum states. We show that this limit of precision for the local quantum states of a pair
of N-level systems can be defined by an appropriate class of uncertainty relations. The violation of such local
uncertainty relations may be used as an experimental test of entanglement generation.
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I. INTRODUCTION

As more and more experimental realizations of entang
ment sources become available, it is necessary to dev
efficient methods of testing the entanglement produced
such sources@1–6#. In particular, the output of entangleme
sources is usually in a mixed state due to various deco
ence effects. For such mixed states, it can be a difficult t
to distinguish whether the output is really entangled,
whether it is separable into some mixture of nonorthogo
product states. Although there are simple formal criteria
the complete density matrix is known, the experimental
termination of all matrix elements of an output state requi
considerable experimental efforts@7#. It is therefore desirable
to simplify the verification of entanglement by reducing it
the observation of only a few characteristic statistical pr
erties. One well-known statistical property of entanglem
is the violation of Bell’s inequalities, and previous expe
ments often relied on this property as proof of entanglem
@4,8#. However, the requirements for Bell’s inequality viol
tions are usually more restrictive than the conditions for
tanglement@9#, and the experiments still require a compa
son of at least four different correlation measurements. Th
complications arise from the fact that Bell’s inequalities t
the possibility of local hidden variable models. For entang
ment verification, it is not necessary to exclude hidden v
able models, since entanglement can be defined ent
within the context of conventional quantum theory, witho
any reverence to alternative models. A more efficient met
may therefore be the definition of a boundary between
tangled states and nonentangled states in terms of exp
tion values of special operators called entanglement
nesses@10,11#. Each witness operator defines a statisti
limitation for separable states derived directly from the
pology of Hilbert space. However, the construction of w
nesses that can be tested with only a few local von Neum
measurements is still a highly nontrivial task@6#. Since the
experimental verification of optical entanglement typica
uses local von Neumann measurements, it may be desir
to express the criteria for entanglement directly in terms
the measurement statistics obtained in such experiments

In this paper, we therefore propose an alternative
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proach to entanglement verification based on the observa
that entanglement seems to overcome the uncertainty l
by allowing correlations between sets of noncommut
properties of two systems to be more precise than any lo
definition of these properties could ever be. Since this pre
sion in the correlations between two spatially separated
tems is the property that originally leads to the discovery a
definition of entanglement@12,13#, a quantitative evaluation
of local uncertainty violations may provide one of the mo
precise experimental measures of entanglement. A gen
ized characterization of entanglement as a suppressio
noise below the local quantum limit may also be useful in
study of teleportation errors and related problems of qu
tum communication@14–16# and in the evaluation of the
increased precision achieved by applications of entanglem
such as quantum lithography@17# or atomic clock synchro-
nization @18,19#.

In the following, we first reformulate the uncertainty prin
ciple, adapting it to arbitrary properties ofN-level systems.
This reformulation of uncertainty provides uncondition
limitations for the predictabilities of measurement outcom
for any selection of noncommuting physical properties. W
can then derive local uncertainty limits valid for all none
tangled states. Since no separable quantum state can
come these limits, any violation of such local uncertain
relations is an unambiguous proof of entanglement. So
typical examples are provided and the possibility of obta
ing a quantitative measure of entanglement from local unc
tainties is discussed.

II. SUM UNCERTAINTY RELATIONS FOR N-LEVEL
SYSTEMS

The use of uncertainty arguments to study entangleme
well known from continuous variable systems@12,20,21#.
However, these arguments are based on the conventi
product uncertainty of position and momentum. This prod
uncertainty is based on the observation that an eigensta
position must have infinite momentum uncertainty and v
versa. InN-level systems, all physical properties have upp
and lower bounds, making infinite uncertainties impossib
Consequently, the products ofN-level uncertainties will al-
ways be zero if the system is in an eigenstate of one of
properties concerned. This means that the product uncer
ties derived from the commutation relations of operators
©2003 The American Physical Society03-1



e
n

te
ea
.
sy

n
tin

er

a
in
o
s

n
ts
o

lt

ifi
o

ne

e
nt

re
-
le

ic

e

ion
el
to

o-

ral

all
cer-

p-

on

ty

ion
-

to
l, a
e
-

ms
in-

re-

t
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not provide a generally valid uncertainty limit forN-level
systems. In order to obtain a quantitative definition of unc
tainty limits, it is therefore necessary to reformulate a
adapt the uncertainty principle toN-level systems.

In its most general form, the uncertainty principle sta
that it is never possible to simultaneously predict the m
surement outcomes for all observables of the system
terms of quantum theory, the relevant observables of the
tem are represented by a set of Hermitian operators$Âi%.
The uncertainty ofÂi for any given quantum state is the
defined as the statistical variance of the randomly fluctua
measurement outcomes,

dAi
25^Âi

2&2^Âi&
2. ~1!

This positive property of the quantum state can only be z
if the quantum state is an eigenstate ofÂi , representing per-
fect predictability of the measurement outcome. We c
therefore conclude that a quantum state with zero uncerta
in all the propertiesÂi must be a simultaneous eigenstate
all the operators in$Âi%. If there is no such simultaneou
eigenstate, there must be a nontrivial lower limitU.0 for
the sum of the uncertainties,

(
i

dAi
2>U. ~2!

The limit U is defined as the absolute minimum of the u
certainty sum for any quantum state. It therefore represen
universally valid limitation of the measurement statistics
quantum systems.

SinceU represents a global minimum, it may be difficu
to determine its value in cases where the operatorsÂi have a
complicated form. However, there are a number of sign
cant cases where this limit is fairly easy to determine. F
N-level systems, one such fundamental limit can be obtai
using the spin algebra of the corresponding spinl 5(N
21)/2 system with

~ L̂x
21L̂y

21L̂z
2!uc&5 l ~ l 11!uc& ~3!

for any stateuc&. The expectation values ofL̂ i define a vec-
tor with a maximal length equal to the extremal eigenvalu
of 6 l along any axis. We therefore obtain the uncertai
limit

~4!

This uncertainty relation defines an absolute limit to the p
cision of spin variables in anyN-level system. For the com
monly studied case of two-level systems, the spin variab
are often expressed in terms of the normalized Pauli matr
ŝ i , which have eigenvalues of61 instead of61/2. The
sum uncertainty relation for the Pauli matrices is then giv
by
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ds1
21ds2

21ds3
2>2. ~5!

This uncertainty relation provides a quantitative descript
of the fact that only a single-spin component of a two-lev
system can have a well-defined value. It is also possible
formulate an uncertainty relation for only two spin comp
nents by noting thatds i

2<1. This simplified uncertainty re-
lation reads

ds1
21ds2

2>1. ~6!

This is indeed the correct uncertainty minimum. For gene
spin l systems, such a simple derivation of theL̂x-L̂y uncer-
tainty is not possible, since the maximal uncertainty ofL̂z is
equal tol 2 and therefore exceeds the uncertainty limit for
three spin components. Nevertheless, there exists an un
tainty limit of L̂x and L̂y for any value ofl, sinceL̂x and L̂y
do not have any common eigenstates. Forl 51, we have
determined this limit by optimizing the spin squeezing pro
erties of states with average spins in thex-y plane. The result
reads

dLx
21dLy

2>
7

16
. ~7!

In the L̂z basis, the minimum uncertainty state of this relati
is given by

uf&5
A5

4
e2 ifu21&1

A6

4
u0&1

A5

4
e1 ifu11&. ~8!

It may be interesting to note that this minimum uncertain
state has anL̂z uncertainty ofdLz

255/8, so that the total of
all three spin uncertainties exceeds the limit set in relat
~4! by 1/16. Relation~7! is therefore more than just a trun
cated version of Eq.~4!.

III. LOCAL UNCERTAINTY LIMITS

It is now possible to apply the sum uncertainty relations
define the correlation limit for separable states. In genera
pair of quantum systemsA andB can be characterized by th
operator propertiesÂi and B̂i with the sum uncertainty rela
tions given by

(
i

dAi
2>UA ,

(
i

dBi
2>UB . ~9!

It may be worth noting that the two Hilbert spaces of syste
A and B do not need to have the same dimension. In pr
ciple, local uncertainty limits can be derived for anyN3M
system. Nor is it necessary that there exists any specific
lation between the propertiesÂi andB̂i other than that there
is exactly one propertyÂi in A for every propertyB̂i in B.
The operator propertiesÂi1B̂i then define a set of join
3-2
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VIOLATION OF LOCAL UNCERTAINTY RELATIONS AS . . . PHYSICAL REVIEW A 68, 032103 ~2003!
properties of the two systems that can determined by lo
measurements ofÂi andB̂i , respectively. For product state
the measurement values are uncorrelated and the unce
ties of Âi1B̂i are equal to the sum of the local uncertaintie

d~Ai1Bi !
25dAi

21dBi
2

for r̂5r~A! ^ r~B!. ~10!

Therefore, the measurement statistics of product states
limited by the uncertainty relation

(
i

d~Ai1Bi !
2>UA1UB . ~11!

Moreover, this uncertainty limit also applies to all mixtur
of product states, since the uncertainties of a mixture
always equal to or greater than the averaged uncertaintie
the components. For the general case ofr̂5(mpmr̂m and an
arbitrary propertyŜ, this relation between the uncertaintie
of a mixture and the uncertainty of its components can
obtained from

~12!

It follows from this result that the uncertainty relation~11!
for product states also applies to a mixture of product sta

(
i

d~Ai1Bi !
2>UA1UB

for any r̂5(
m

pmr̂m~A! ^ r̂m~B!. ~13!

Any violation of this uncertainty limit therefore proves th
the quantum state cannot be separated into a mixture of p
uct states. However, entangled states can overcome this
tation, since entanglement describes correlations that
more precise than the ones represented by mixtures of p
uct states. The violation of any local uncertainty relation
the form~13! is therefore a sufficient condition for the exi
tence of entanglement.

IV. VIOLATION OF LOCAL UNCERTAINTY RELATIONS

To illustrate how entanglement can overcome the lo
uncertainty limit defined by Eq.~13!, it may be useful to
consider the properties of maximally entangled states. Us
the Schmidt basesun&A andun&B for A andB, these states ca
be written as
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n
un;n&A;B . ~14!

Such maximally entangled states appear to violate the un
tainty principle because any property of systemA can be
determined by a corresponding measurement on systemB.
That is, a measurement of an eigenvalue ofÂi in A projects
the quantum state inB into the eigenstate of2B̂i with the
same eigenvalue as the one obtained forÂi in A. This means
that, for any set of operatorsÂi in A, there is a set of corre
sponding operators2B̂i in B such that the measurement r
sult of Âi is always equal to the measurement result
2B̂i . In more formal terms,uEmax&A;B is a simultaneous
eigenstate of allÂi1B̂i with eigenvalues of zero@22#. Maxi-
mally entangled states can thus have a total uncertaint
zero in all propertiesÂi1B̂i , maximally violating the uncer-
tainty relation~13!, with

~Âi1B̂i !uEmax&A;B50 and (
i

d~Ai1Bi !
250

for ^nuB̂i un8&52^n8uÂi un&. ~15!

Experimentally, it is then possible to evaluate how close
given mixed state output is to an intended maximally e
tangled state by measuring the remaining uncertainty du
imperfections in the entanglement generation process. To
tain a quantitative estimate of the quality of entanglem
generation, the measured uncertainty can be compared
the uncertainty limit ofUA1UB52U for separable states
Specifically, the relative violation of local uncertainty ma
be defined as

CLUR512

(
i

d~Ai1Bi !
2

2U
. ~16!

Since some amount of entanglement is necessary to o
come the uncertainty limit,CLUR provides a quantitative es
timate of the amount of entanglement verified by the vio
tion of local uncertainty. In particular, it may be interestin
to determine the minimal amount of entanglement neces
to obtain a given value of local uncertainty violationCLUR
for various local uncertainty relations. Once such relatio
are known, it will be possible to obtain reliable estimates
entanglement from local uncertainty violations without ad
tional assumptions about the quantum state.

V. APPLICATION TO ENTANGLEMENT BETWEEN TWO
SPIN-1 SYSTEMS

In general, any uncertainty relation of the type given
Eq. ~2! can be used to define an uncertainty limit for none
tangled states according to relation~13!. However, in most
3-3
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H. F. HOFMANN AND S. TAKEUCHI PHYSICAL REVIEW A68, 032103 ~2003!
cases it will be convenient to define the limit in a high
symmetric way. This can be achieved for anyN-level system
by using the spin uncertainty~4!. The local uncertainty rela
tion for separable states of two spinl 5(N11)/2 systems is
given by

d@Lx~A!1Lx~B!#21d@Ly~A!1Ly~B!#2

1d@Lz~A!1Lz~B!#2>2l . ~17!

Any state that violates this uncertainty relation must be
tangled. The optimal result of zero total uncertainty is o
tained for the singlet state, defined by

@ L̂ i~A!1L̂ i~B!#usinglet&A;B50. ~18!

Experimental methods of generating such singlet states
three-level systems (l 51) have been realized using optic
parametric down-conversion to create photons entangle
their spatial degrees of freedom@1,2#, or to create entangle
ment between the polarization properties of a pair of t
photon states@3,4#. The relative violation of local uncertain
ties defined by Eq.~16! may serve as an easily accessib
quantitative measure of the achievements represented
these experiments.

In order to minimize the experimental effort involved
characterizing the entanglement of three-level systems,
also possible to use the local uncertainty limit based on
lation ~7!,

d@Lx~A!1Lx~B!#21d@Ly~A!1Ly~B!#2>
7

8
. ~19!

This inequality requires only two measurement settings c
responding to 18 measurement probabilities for its verifi
tion. For comparison, the experimental verification of
Bell’s inequality violation reported in Ref.@4# required four
settings and 36 measurement probabilities. Moreover, the
timization of the Bell’s inequality violations required me
surements at additional settings, while the measurement
tings for the local uncertainty relation~19! are defined by the
symmetry of the experimental setup and do not have to
varied. Unfortunately, the measurement data given in R
@4# are not sufficient to allow an analysis of the local unc
tainties of this entanglement source. However, the meas
ment result was interpreted using a simplified noise mo
given in theL̂x basis by

r̂5ps~ usinglet&^singletu!1
~12ps!

3
~ u11;21&

3^11;21u1u0;0&^0;0u1u21;11&^21;11u!,

~20!

that is, the correlation along thex axis of the spin is assume
to be perfect, while the other two correlations fluctuate w

d@Lx~A!1Lx~B!#250,
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4

3
~12ps!,

d@Lz~A!1Lz~B!#25
4

3
~12ps!. ~21!

For this model, the relative violation of the local uncertain
relation ~19! is equal to

CLUR5
32ps211

21
. ~22!

Using the value ofps50.69 reported in Ref.@4#, the relative
violation of relation~19! achieved in this experiment shoul
be equal toCLUR50.53. It might be interesting to compar
this value with direct measurements of local uncertainty v
lations in future experiments.

VI. UNCERTAINTY VIOLATION AND CONCURRENCE
IN 2Ã2 SYSTEMS

For two-level systems, the uncertainty relations~5! and
~6! define two different criteria for entanglement verificatio
The local uncertainty relation based on Eq.~5! reads

d@s1~A!1s1~B!#21d@s2~A!1s2~B!#2

1d@s3~A!1s3~B!#2>4. ~23!

This uncertainty relation is useful in order to identify th
level of singlet-state entanglement in a noisy mixture. It
cludes all three Pauli matrices and is therefore not sens
to any anisotropy in the noise distribution. The local unc
tainty relation based on Eq.~6! reads

d@s1~A!1s1~B!#21d@s2~A!1s2~B!#2>2. ~24!

This local uncertainty relation can be tested with only tw
measurement settings. It may therefore be useful in ca
where it is necessary to test for entanglement with onl
limited number of measurements. Since one of the th
Pauli matrices is not considered, this condition for separa
ity is sensitive to noise anisotropies. In particular, it cor
sponds to Eq.~23! if the uncertainty inŝ3(A)1ŝ3(B) is
close to 2, and is more difficult to violate otherwise.

While a precise characterization of experimentally gen
ated quantum states is very difficult, a measurement of
uncertainties can provide a comparatively simple test of
essential entanglement property. A complete illustration
the many kinds of errors in entanglement generation, wh
can increase the uncertainty levels and thus degrade the
tanglement, is beyond the scope of this paper. In fact,
uncertainty limits presented above are useful precisely
cause they do not require a full characterization of the sta
tics given by the complete density matrix. Nevertheless
may be useful to look at one specific example to illustrate
relationship between the uncertainty boundaries and the
tual entanglement of the density matrix. The most sim
3-4
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VIOLATION OF LOCAL UNCERTAINTY RELATIONS AS . . . PHYSICAL REVIEW A 68, 032103 ~2003!
case is given by a mixture of a maximally noisy state and
intended maximally entangled state often referred to a
Werner state@9#,

r̂5~12ps!
1

4
1̂1psusinglet&^singletu. ~25!

Here, the parameterps represents the fraction by which th
intended entangled state exceeds the background noise
pairs of two-level systems, the amount of entanglemen
any quantum state can be expressed in terms of the con
rence C @23,24#. For Werner states, the concurrence isC
5max$(3ps21)/2,0%. It is interesting to compare this pre
cise measure of the total entanglement of the two syst
with the relative violations of local uncertainty defined b
relation~23!. Since the Werner state is completely isotrop
the uncertainties of each componentŝ i(A)1ŝ i(B) are given
by

d@s i~A!1s i~B!#252~12ps!. ~26!

Therefore, relation~23!, which gives equal weight to eac
component, appears to be optimally suited as a measur
entanglement for this class of states. This expectation is
deed confirmed by the relative violation of local uncertain
which is in this case precisely equal to the concurrence,

CLUR512
12ps

3
5C. ~27!

This result shows that for some class of states, the con
rence is exactly equal to the amount of noise suppres
achieved in the total spin variables. It is an interesting qu
tion how large this class of states is. At present, we wo
like to note that it is straightforward to extend the result
arbitrary mixtures of Bell states. In general, it seems to
quite significant that the relative violation of uncertainty c
be used as an estimate of the concurrence, even thoug
experimental effort involved in any precise determination
the concurrence greatly exceeds the effort required to m
sure the relative violation of local uncertainty.

In this context, it may also be interesting to consider u
certainty relation~24!, which requires only two measureme
settings. Clearly, this uncertainty limit is more difficult t
overcome because it does not include the correlations in
third componentŝ3(A)1ŝ3(B). As a result, the relative
violation of this uncertainty for Werner states is lower th
the concurrenceC by

CLUR8 512
12ps

2
5C2

12C

2
. ~28!

However, since the relative violation of Eq.~24! is always
lower than the relative violation of Eq.~23!, CLUR8 may pro-
vide a useful lower bound for an experimental estimate
the concurrence using only two measurement settings.
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VII. FURTHER POSSIBILITIES AND OPEN QUESTIONS

As explained in Sec. II, uncertainty relations can be f

mulated for any operator set$Âi%. It is therefore possible to
optimize the choice of operators in the local uncertainty
lation with respect to a given physical situation. In particul
it may be possible to classify entangled states accordin
the types of local uncertainty relations they violate. In a
case, it should be kept in mind that the examples given h
are far from complete.

As mentioned in Sec. III, local uncertainty relations c
also be formulated forN3M entanglement, where the d
mensionality of the two Hilbert spaces is different. One a
plication of this possibility may be the investigation of mu
tipartite entanglement, where it allows the formulation
bipartite uncertainty limits for various partitions of the mu
tipartite system@25#.

As noted in the Introduction, local uncertainties may a
be useful as a characterization of the increased precision
tained from entanglement in applications such as telepo
tion, lithography, and clock synchronization@16–19,22#. On
the other hand, quantum information protocols usually defi
entanglement with respect to distillability by local operatio
and classical communication. This raises the question h
the two concepts are related to each other. Does the dis
tion of entanglement actually decrease the uncertainty in
nonlocal correlation, or does it merely redistribute the qu
tum fluctuations@26#?

These are just a few of the questions raised by the po
bility of quantifying the violation of local uncertainty rela
tions by entangled states. A systematic classification of lo
uncertainty relations may thus provide many new insig
into the physical properties of entangled states.

VIII. CONCLUSIONS

In conclusion, we have generalized the uncertainty pr
ciple to uncertainty sums of arbitrary sets of physical pro
erties and derived local uncertainty relations valid for
separable states of a pair ofN-level quantum systems. Any
violation of these local uncertainty relations indicates th
the two systems are entangled. The relative violation o
local uncertainty provides a quantitative measure of this
tanglement property and may be used to evaluate experim
tal entanglement generation processes. It should also be
sible to obtain valid estimates of the total entanglement fr
uncertainty measurements. Specifically, the relative violat
of local uncertainty is actually equal to the concurrence
some 232 cases. In more general cases, it may be poss
to identify the minimal amount of entanglement necessary
obtain the observed level of local uncertainty violation, th
establishing a more precise relation between the local un
tainty violation and the total entanglement of the syste
Local uncertainty relations may thus provide an interest
starting point for further investigations into the physic
properties of entanglement.
3-5
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