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Violation of local uncertainty relations as a signature of entanglement
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Entangled states represent correlations between two separate systems that are too precise to be represented
by products of local quantum states. We show that this limit of precision for the local quantum states of a pair
of N-level systems can be defined by an appropriate class of uncertainty relations. The violation of such local
uncertainty relations may be used as an experimental test of entanglement generation.
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[. INTRODUCTION proach to entanglement verification based on the observation
that entanglement seems to overcome the uncertainty limit
As more and more experimental realizations of entangleby allowing correlations between sets of noncommuting
ment sources become available, it is necessary to develgiyoperties of two systems to be more precise than any local
efficient methods of testing the entanglement produced bgiefinition of these properties could ever be. Since this preci-
such sourcefl—6). In particular, the output of entanglement Sion in the correlations between two spatially separated sys-
sources is usually in a mixed state due to various decohetems is the property that originally leads to the discovery and
ence effects. For such mixed states, it can be a difficult tasRefinition of entanglemerjti2,13, a quantitative evaluation
to distinguish whether the output is really entangled, orof local uncertainty violations may provide one of the most
whether it is separable into some mixture of nonorthogonaPrecise experimental measures of entanglement. A general-
product states. Although there are simple formal criteria ifized characterization of entanglement as a suppression of
the complete density matrix is known, the experimental denoise below the local quantum limit may also be useful in the
termination of all matrix elements of an output state requirestudy of teleportation errors and related problems of quan-
considerable experimental effoftg. It is therefore desirable tum communicatiof14-16 and in the evaluation of the
to simplify the verification of entanglement by reducing it to increased precision achieved by applications of entanglement
the observation of only a few characteristic statistical prop-Such as quantum lithograpli7] or atomic clock synchro-
erties. One well-known statistical property of entanglemenflization[18,19.
is the violation of Bell's inequalities, and previous experi- In the following, we first reformulate the uncertainty prin-
ments often relied on this property as proof of entanglemengiple, adapting it to arbitrary properties bFlevel systems.
[4,8] However, the requirements for Bell's inequa"ty viola- This reformulation of uncertainty provides unconditional
tions are usua”y more restrictive than the conditions for en]imitations for the predictabilities of measurement outcomes
tanglemen{9], and the experiments still require a compari- for any selection of noncommuting physical properties. We
son of at least four different correlation measurements. Theséan then derive local uncertainty limits valid for all nonen-
complications arise from the fact that Bell's inequalities testtangled states. Since no separable quantum state can over-
the possibility of local hidden variable models. For entangle-come these limits, any violation of such local uncertainty
ment verification, it is not necessary to exclude hidden varirelations is an unambiguous proof of entanglement. Some
able models, since entanglement can be defined entirefypical examples are provided and the possibility of obtain-
within the context of conventional quantum theory, withouting a quantitative measure of entanglement from local uncer-
any reverence to alternative models. A more efficient methodginties is discussed.
may therefore be the definition of a boundary between en-
tangled states and nonentangled states in terms of expecta-
tion values of special operators called entanglement wit-
nesseq10,11. Each witness operator defines a statistical
limitation for separable states derived directly from the to- The use of uncertainty arguments to study entanglement is
pology of Hilbert space. However, the construction of wit- well known from continuous variable systeri$2,20,21.
nesses that can be tested with only a few local von NeumanHowever, these arguments are based on the conventional
measurements is still a highly nontrivial tagk]. Since the product uncertainty of position and momentum. This product
experimental verification of optical entanglement typically uncertainty is based on the observation that an eigenstate of
uses local von Neumann measurements, it may be desirab@sition must have infinite momentum uncertainty and vice
to express the criteria for entanglement directly in terms ofversa. InN-level systems, all physical properties have upper
the measurement statistics obtained in such experiments. and lower bounds, making infinite uncertainties impossible.
In this paper, we therefore propose an alternative ap€onsequently, the products bFlevel uncertainties will al-
ways be zero if the system is in an eigenstate of one of the
properties concerned. This means that the product uncertain-
*Electronic address: h.hofmann@osa.org ties derived from the commutation relations of operators do
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not provide a generally valid uncertainty limit fod-level 802+ 05+ 805=2. (5)
systems. In order to obtain a quantitative definition of uncer-
tainty limits, it is therefore necessary to reformulate andThis uncertainty relation provides a quantitative description
adapt the uncertainty principle té-level systems. of the fact that only a single-spin component of a two-level
In its most general form, the uncertainty principle statessystem can have a well-defined value. It is also possible to
that it is never possible to simultaneously predict the meaformulate an uncertainty relation for only two spin compo-
surement outcomes for all observables of the system. Inents by noting thafo?<1. This simplified uncertainty re-
terms of quantum theory, the relevant observables of the sy$ation reads

tem are represented by a set of Hermitian operaférs.
The uncertainty ofAi for any given quantum state is then
defined as the statistical variance of the randomly fluctuatingrjs is indeed the correct uncertainty minimum. For general
measurement outcomes, spin| systems, such a simple derivation of lfhxeﬁy uncer-
SAZ= (A — (A (1)  tainty is not possible, since the maximal uncc_artairyty;pis
equal tol? and therefore exceeds the uncertainty limit for all
This positive property of the quantum state can only be zer¢hree spin components. Nevertheless, there exists an uncer-
if the quantum state is an eigenstatefpf representing per- tainty limit of L andIA_y for any value ofl, sincel, and |:y
fect predictability of the measurement outcome. We cardo not have any common eigenstates. Ferl, we have
therefore conclude that a quantum state with zero uncertaintgetermined this limit by optimizing the spin squeezing prop-
in all the propertieh; must be a simultaneous eigenstate oferties of states with average spins in #g plane. The result

802+ s03=1. (6)

all the operators if{A;}. If there is no such simultaneous reads
eigenstate, there must be a nontrivial lower litdit-0 for 7
the sum of the uncertainties, SLi+oL= 16 (7)
> SAZ=U. (2 IntheL, basis, the minimum uncertainty state of this relation
' is given by
The limit U is defined as the absolute minimum of the un- J5 /6 J5
certainty sum for any quantum state. It therefore represents a |p)= TEfi<i>| —1)+ T|0>+ Te+ir/z| +1). (8

universally valid limitation of the measurement statistics of
guantum systems.
SinceU represents a global minimum, it may be difficult

to determine its value in cases where the operadotsave a
complicated form. However, there are a number of signifi
cant cases where this limit is fairly easy to determine. Fo
N-level systems, one such fundamental limit can be obtaine
using the spin algebra of the corresponding sp#(N
—1)/2 system with

It may be interesting to note that this minimum uncertainty

state has atﬁz uncertainty of5L§=5/8, so that the total of
all three spin uncertainties exceeds the limit set in relation
I(4) by 1/16. Relation(7) is therefore more than just a trun-
aated version of Eq4).

Ill. LOCAL UNCERTAINTY LIMITS

np an A It is now possible to apply the sum uncertainty relations to
(Li+Ly+ Loy =10+ 1)) (3)  define the correlation limit for separable states. In general, a
pair of quantum system& andB can be characterized by the

for any state ). The expectation values f define a vec- operator properties; andB; with the sum uncertainty rela-

tor with a maximal length equal to the extremal eigenvalues; ;
- . .~ Yions given
of =1 along any axis. We therefore obtain the uncertamt;to s given by
limit
o i i > SAZ=U,,
SL;+OL 4+ SL2=(Li+ L3+ L2 —(L ) +(L,)*+(L.)*=1. '
=1(I+1) <2 ,
> oBf=Ug. 9
I

4)
This uncertainty relation defines an absolute limit to the pre—It may be worth noting that the two Hilbert spaces of systems

cision of spin variables in ani-level system. For the com- A and B do not need to have the same dimension. In prin-

monly studied case of two-level systems, the spin variableg'pslfér:]ocsyrjr.]sc.etrtr?g;gsls'?r'tstﬁ:? tﬁgrgeenyzti f;)rr] a':y:(\:/!f.c re-
are often expressed in terms of the normalized Pauli matrice‘csy_ ' IS .yA A X y specil
&, which have eigenvalues of 1 instead of+1/2. The lation between the propertids andB; other than that there

sum uncertainty relation for the Pauli matrices is then giverlS €xactly one propert, in A for every propertyB; in B.
by The operator propertied;+ B; then define a set of joint
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properties of the two systems that can determined by local 1
measurements @, andB; , respectively. For product states, |Emax>A;B:\/_N > ninyag. (14)
the measurement values are uncorrelated and the uncertain- "

ties of A, + B; are equal to the sum of the local uncertainties, . .
Such maximally entangled states appear to violate the uncer-

S(A+B;)2= A%+ 5B? tainty principle because any property of systéncan be
' ' determined by a corresponding measurement on sy&em
for p=p(A)®p(B). (10) That is, a measurement of an eigenvaluedpfn A projects

the quantum state iB into the eigenstate of B; with the
Therefore, the measurement statistics of product states aggame eigenvalue as the one obtainedﬁfp’m A. This means
limited by the uncertainty relation that, for any set of operato; in A, there is a set of corre-
sponding operators B; in B such that the measurement re-
Ei S(Ai+B)*=Up+Ug. (1) sult of A; is always equal to the measurement result of
—B;. In more formal terms)E a0 IS @ simultaneous
Moreover, this uncertainty limit also applies to all mixtures eigenstate of ali; + B; with eigenvalues of zerf22]. Maxi-
of product states, since the uncertainties of a mixture arenally entangled states can thus have a total uncertainty of
always equal to or greater than the a\feraged lfncertainties 9Ero in all propertied; + B; , maximally violating the uncer-
the components. For the general case ofZ,,pmpm and an  tainty relation(13), with
arbitrary propertyé, this relation between the uncertainties
of a mixture and the uncertainty of its components can be

obtained from (Ai+B)|Enadag=0 and 2 &(A+By)?=0
382=2 pytr{p,(S—($)% . .
" for (n|Bi[n")=—(n'[Ai[n). (15)

=> pul (t{p,$—te{p,.S}) + (te{p,.S}—(5))? Experimentally, it is then possible to evaluate how close a

'" given mixed state output is to an intended maximally en-

—as2, =0 tangled state by measuring the remaining uncertainty due to

imperfections in the entanglement generation process. To ob-

= p, 552 tain a gquantitative estimate of the quality of entanglement
o (12)  generation, the measured uncertainty can be compared with

the uncertainty limit ofU,+Ug=2U for separable states.

It follows from this result that the uncertainty relatiohl)  gpecifically, the relative violation of local uncertainty may
for product states also applies to a mixture of product state$e defined as

Ei S(A+B;)?=U,+Ug S (A +B)?

Clur=1- (16)

2U
forany p=2, Prpm(A)®prm(B). (13
Since some amount of entanglement is necessary to over-

Any violation of this uncertainty limit therefore proves that come the uncertainty limitC, gz provides a quantitative es-
the quantum state cannot be separated into a mixture of proimate of the amount of entanglement verified by the viola-
uct states. However, entangled states can overcome this limfion of local uncertainty. In particular, it may be interesting
tation, since entanglement describes correlations that at@ determine the minimal amount of entanglement necessary
more precise than the ones represented by mixtures of prod obtain a given value of local uncertainty violati@h yg

the form(13) is therefore a sufficient condition for the exis- aré known, it will be possible to obtain reliable estimates of
tence of entanglement. entanglement from local uncertainty violations without addi-

tional assumptions about the quantum state.

IV. VIOLATION OF LOCAL UNCERTAINTY RELATIONS
V. APPLICATION TO ENTANGLEMENT BETWEEN TWO

To illustrate how entanglement can overcome the local SPIN-1 SYSTEMS

uncertainty limit defined by Eq(13), it may be useful to

consider the properties of maximally entangled states. Using In general, any uncertainty relation of the type given by
the Schmidt basd® ), and|n)g for A andB, these states can Eq. (2) can be used to define an uncertainty limit for nonen-
be written as tangled states according to relati@h3). However, in most
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cases it will be convenient to define the limit in a highly 4
symmetric way. This can be achieved for ayevel system S[Ly(A)+ Ly(B)]2=§(1— Ps),
by using the spin uncertainiy). The local uncertainty rela-

tion for separable states of two sgis (N+1)/2 systems is

: 4
given by SILAA)+Ly(B)P=5(1-py). (21
SILy(A) +L(B)]?+ 8[Ly(A)+Ly(B)]? . o .
) For this model, the relative violation of the local uncertainty
+OLAA)+L,(B)]*=2l. (170 relation(19) is equal to
Any state that violates this uncertainty relation must be en- 32p,—11
tangled. The optimal result of zero total uncertainty is ob- Chr=—%7 (22)

tained for the singlet state, defined by

. . Using the value ops=0.69 reported in Ref4], the relative
[Li(A)+Li(B)]|singledaz=0. (18 violation of relation(19) achieved in this experiment should
be equal toC, ,g=0.53. It might be interesting to compare
Experimental methods of generating such singlet states fahis value with direct measurements of local uncertainty vio-
three-level systemsl €£1) have been realized using optical lations in future experiments.
parametric down-conversion to create photons entangled in
their spatial degrees of freeddrh,2], or to create entangle-
ment between the polarization properties of a pair of two
photon state§3,4]. The relative violation of local uncertain-
ties defined by Eq(16) may serve as an easily accessible For two-level systems, the uncertainty relatiq®s and
quantitative measure of the achievements represented [§8) define two different criteria for entanglement verification.
these experiments. The local uncertainty relation based on EB). reads
In order to minimize the experimental effort involved in
characterizing the entanglement of three-level systems, it is S o1(A)+01(B)]2+ 8 op(A) + 05(B)]?

also possible to use the local uncertainty limit based on re- )
lation (7), +dlas(A)+o3(B)]*=4. (23

VI. UNCERTAINTY VIOLATION AND CONCURRENCE
IN 2X2 SYSTEMS

This uncertainty relation is useful in order to identify the
(19 level of singlet-state entanglement in a noisy mixture. It in-
cludes all three Pauli matrices and is therefore not sensitive

This | lit . vt  setti to any anisotropy in the noise distribution. The local uncer-
is inequality requires only two measurement settings Corfainty relation based on E@6) reads

responding to 18 measurement probabilities for its verifica-
tion. For comparison, the experimental verification of a
Bell's inequality violation reported in Ref4] required four

settings and 36 measurement probabilities. Moreover, the o
timization of the Bell's inequality violations required mea-
surements at additional settings, while the measurement s
tings for the local uncertainty relatidd9) are defined by the

ool N

SLx(A)+Ly(B)]?+ 8[Ly(A) +Ly(B)]*=

SLoy(A)+a1(B)]*+ doy(A) +aa(B)]P=2.  (24)

pI:his local uncertainty relation can be tested with only two
dpeasurement settings. It may therefore be useful in cases
where it is necessary to test for entanglement with only a

symmetry of the experimental setup and do not have to b mlte_d nu_mber_ of measurements. Smce_c_)ne of the three
varied. Unfortunately, the measurement data given in Ref. aL."' matrices Is not .con5|d.ered, t.h's condlthn for sgparabﬂ-
[4] are not sufficient to allow an analysis of the local uncer-y is sensitive to noise anisotropies. Irl par'uquar, it corre-
tainties of this entanglement source. However, the measur§Ponds to Eq(23) if the uncertainty ino3(A)+o3(B) is

ment result was interpreted using a simplified noise mode$lose to 2, and is more difficult to violate otherwise.
given in thel , basis by While a precise characterization of experimentally gener-

ated quantum states is very difficult, a measurement of the
uncertainties can provide a comparatively simple test of an

p=ps(|singled(singlet) + (1P (|+1;-1) essential entanglement property. A complete illustration of
3 the many kinds of errors in entanglement generation, which
X (+1;—1|+]0;0)(0:0[+ |~ 1;+1)(—1:+1]), can increase the uncertainty levels and thus degrade the en-

tanglement, is beyond the scope of this paper. In fact, the

(200 uncertainty limits presented above are useful precisely be-

cause they do not require a full characterization of the statis-

that is, the correlation along theaxis of the spin is assumed tics given by the complete density matrix. Nevertheless, it
to be perfect, while the other two correlations fluctuate withmay be useful to look at one specific example to illustrate the
relationship between the uncertainty boundaries and the ac-

S L(A)+L(B)]?=0, tual entanglement of the density matrix. The most simple
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case is given by a mixture of a maximally noisy state and the VIl. FURTHER POSSIBILITIES AND OPEN QUESTIONS
intended maximally entangled state often referred to as a
Werner statg9], As explained in Sec. Il, uncertainty relations can be for-

mulated for any operator sé&;}. It is therefore possible to
~ 1. . . optimize the choice of operators in the local uncertainty re-
p=(1- p5)4_11+ P/ singled(singlef. (25 lation with respect to a given physical situation. In particular,
it may be possible to classify entangled states according to

Here, the parametay, represents the fraction by which the the types of local uncertainty relations they violate. In any
intended entangled state exceeds the background noise. F&#Se. it should be kept in mind that the examples given here
pairs of two-level systems, the amount of entanglement ofire far from complete.
any quantum state can be expressed in terms of the concur- As mentioned in Sec. lll, local uncertainty relations can
rence C [23,24. For Werner states, the concurrenceds also be formulated foNX M entanglement, where the di-
=max(3ps—1)/2,0}. It is interesting to compare this pre- mensionality of the two Hilbert spaces is different. One ap-
cise measure of the total entanglement of the two systemglication of this possibility may be the investigation of mul-
with the relative violations of local uncertainty defined by tipartite entanglement, where it allows the formulation of
relation (23). Since the Werner state is completely isotropic, bipartite uncertainty limits for various partitions of the mul-
the uncertainties of each componen(A) + o;(B) are given tipartite systen{25].
by As noted in the Introduction, local uncertainties may also
be useful as a characterization of the increased precision ob-
N oi(A)+0i(B)]?=2(1—ps). (26)  tained from entanglement in applications such as teleporta-
tion, lithography, and clock synchronizatiph6—19,22. On

Therefore, relatior(23), which gives equal weight to each the other hand, quantum information protocols usually define

component, appears to be optimally suited as a measure gptanglement with resp_ect_to distil_labili_ty by local ope_rations
entanglement for this class of states. This expectation is ir@nd classical communication. This raises the question how
deed confirmed by the relative violation of local uncertainty,the two concepts are related to each other. Does the distilla-
which is in this case precise|y equa| to the concurrence, tion of entanglement actuaIIy decrease the Uncertainty in the
nonlocal correlation, or does it merely redistribute the quan-
tum fluctuationd26]?

Clur=1—-——=C. (27 These are just a few of the questions raised by the possi-
bility of quantifying the violation of local uncertainty rela-

i tions by entangled states. A systematic classification of local
This result shows that for some class of states, the CONCUlincertainty relations may thus provide many new insights

rence Is gxactly equal fo th? amount of ngise su_ppressiomto the physical properties of entangled states.
achieved in the total spin variables. It is an interesting ques-

tion how large this class of states is. At present, we would
like to note that it is straightforward to extend the result to
arbitrary mixtures of Bell states. In general, it seems to be
quite significant that the relative violation of uncertainty can ] ) ) .
be used as an estimate of the concurrence, even though the!n conclusion, we have generalized the uncertainty prin-
experimental effort involved in any precise determination ofCiple to uncertainty sums of arbitrary sets of physical prop-
the concurrence greatly exceeds the effort required to merties and derived local uncertainty relations valid for all
sure the relative violation of local uncertainty. separable states of a pair Nflevel quantum systems. Any
In this context, it may also be interesting to consider un-violation of these local uncertainty relations indicates that
certainty relation(24), which requires only two measurement the two systems are entangled. The relative violation of a
settings. Clearly, this uncertainty limit is more difficult to local uncertainty provides a quantitative measure of this en-
overcome because it does not include the correlations in theanglement property and may be used to evaluate experimen-
third component&g(A)+<}3(B). As a result, the relative tal entanglement generation processes. It should also be pos-
violation of this uncertainty for Werner states is lower thansible to obtain valid estimates of the total entanglement from
the concurrenc€ by uncertainty measurements. Specifically, the relative violation
of local uncertainty is actually equal to the concurrence for
1-p, 1-C some 2>.<2 case.s.lln more general cases, it may be possible
Clur=1- 5 =C— 5 (28)  to identify the minimal amount of entanglement necessary to
obtain the observed level of local uncertainty violation, thus
establishing a more precise relation between the local uncer-
However, since the relative violation of E(R4) is always tainty violation and the total entanglement of the system.
lower than the relative violation of E423), C| ;s may pro-  Local uncertainty relations may thus provide an interesting
vide a useful lower bound for an experimental estimate oftarting point for further investigations into the physical
the concurrence using only two measurement settings. properties of entanglement.

VIIl. CONCLUSIONS
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