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We investigate a statistical anisotropy on the Cosmic Microwave Background (CMB) bis-
pectrum, which can be generated from the primordial non-Gaussianity induced by quantum
fluctuations of a vector field. We find new configurations in the multipole space of the CMB
bispectrum given by �1 = �2 + �3 + 2, |�2 − �3| − 2 and their permutations, which violate
the rotational invariance, such as an off-diagonal configuration in the CMB power spectrum.
We also find that in a model presented by Yokoyama and Soda (2008), the amplitude of
the statistically anisotropic bispectrum in the above configurations becomes as large as that
in other configurations such as �1 = �2 + �3. As a result, it might be possible to detect
these contributions in future experiments, which would give us novel information about the
physics of the early Universe.

Subject Index: 400, 435, 440, 442

§1. Introduction

The current cosmological observations, particularly Cosmic Microwave Back-
ground (CMB), tell us that the Universe is almost isotropic, and primordial den-
sity fluctuations are almost Gaussian random fields. However, in keeping with the
progress of the experiments, there have been many works that verify the possibility
of the small deviation of the statistical isotropy, e.g., the so-called “Axis of Evil”.
The analyses of the power spectrum by employing the current CMB data suggest
that the deviation of the statistical isotropy is about 10% at most (e.g., Refs. 1)–6)).
Toward more precise measurements in future experiments, there are a lot of theo-
retical discussions about the effects of the statistical anisotropy on the CMB power
spectrum,7)–11) e.g., the presence of the off-diagonal configuration of the multipoles
in the CMB power spectrum, which vanishes in the isotropic spectrum.

As is well known, it might be difficult to explain such statistical anisotropy in
the standard inflationary scenario. However, recently, there have been several works
about the possibility of generating the statistically anisotropic primordial density
fluctuations in order to introduce nontrivial dynamics of the vector field.12)–24) In
Ref. 14), the authors considered a modified hybrid inflation model where a waterfall
field couples not only with an inflaton field but also with a massless vector field.
They have shown that, owing to the effect of fluctuations of the vector field, the pri-
mordial density fluctuations may have a small deviation from the statistical isotropy
and also the deviation from the Gaussian statistics. If the primordial density fluctu-
ations deviate from the Gaussian statistics, they produces the non-zero higher order
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924 M. Shiraishi and S. Yokoyama

spectra (corresponding to higher order correlation functions), e.g., the bispectrum
(3-point function), the trispectrum (4-point function) and so on. Hence, in the model
presented in Ref. 14), we can expect that there are characteristic signals not only in
the CMB power spectrum but also in the CMB bispectrum.

With these motivations, in this work, we calculate the CMB statistically
anisotropic bispectrum sourced from the curvature perturbations generated in the
modified hybrid inflation scenario proposed in Ref. 14), on the basis of the useful
formula presented in Ref. 25). Then, we find the peculiar configurations of the mul-
tipoles which never appear in the isotropic bispectrum, like off-diagonal components
in the CMB power spectrum.

This paper is organized as follows. In the next section, we briefly review the
inflation model where the scalar waterfall field couples with the vector field and
calculate the bispectrum of curvature perturbations based on Ref. 14). In §3, we
give an exact form of the CMB statistically anisotropic bispectrum and analyze
its behavior by numerical computation. Finally, we devote the final section to the
summary and discussion.

Throughout this paper, we obey the definition of the Fourier transformation as

f(x) ≡
∫

d3k

(2π)3
f̃(k)eik·x , (1.1)

and a normalization as Mpl ≡ (8πG)−1/2 = 1.

§2. Statistically anisotropic non-Gaussianity in curvature perturbations

In this section, we briefly review the mechanism of generating the statistically
anisotropic bispectrum induced by primordial curvature perturbations proposed in
Ref. 14), where the authors set the system like the hybrid inflation wherein there
are two scalar fields: inflaton φ and waterfall field χ, and a vector field Aμ coupled
with a waterfall field. The action is given by

S =
∫

dx4√−g

[
1
2
R − 1

2
gμν(∂μφ∂νφ + ∂μχ∂νχ) − V (φ, χ, Aν)

−1
4
gμνgρσf2(φ)FμρFνσ

]
. (2.1)

Here, Fμν ≡ ∂μAν − ∂νAμ is the field strength of the vector field Aμ, V (φ, χ, Aμ) is
the potential of fields and f(φ) denotes a gauge coupling. To guarantee the isotropy
of the background Universe, we need the condition that the energy density of the
vector field is negligible in the total energy of the Universe and we assume a small
expectation value of the vector field. Therefore, we neglect the effect of the vector
field on the background dynamics and also the evolution of the fluctuations of the
inflaton. In the standard hybrid inflation (only with the inflaton and the waterfall
field), the inflation suddenly ends owing to the tachyonic instability of the waterfall
field, which is triggered when the inflaton reaches a critical value φe. In the system
described using Eq. (2.1), however, φe may fluctuate owing to the fluctuation of the
vector field and it generates additional curvature perturbations.
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Violation of the Rotational Invariance in the CMB Bispectrum 925

Using the δN formalism,26)–31) the total curvature perturbation on the uniform-
energy-density hypersurface at the end of inflation t = te can be estimated in terms
of the perturbation of the e-folding number as

ζ(te) = δN(te, t∗)

=
∂N

∂φ∗
δφ∗ +

1
2

∂2N

∂φ2∗
δφ2

∗ +
∂N

∂φe

dφe(A)
dAμ

δAμ
e

+
1
2

[
∂N

∂φe

d2φe(A)
dAμdAν

+
∂2N

∂φ2
e

dφe(A)
dAμ

dφe(A)
dAν

]
δAμ

e δAν
e . (2.2)

Here, t∗ is the time when the scale of interest crosses the horizon during the slow-
roll inflation. Assuming the sudden decay of all fields into radiations just after the
inflation, the curvature perturbations on the uniform-energy-density hypersurface
become constant after the inflation ends. Hence, at the leading order, the power
spectrum and the bispectrum of curvature perturbations are respectively derived as〈

2∏
n=1

ζ(kn)

〉
= (2π)3N2

∗Pφ(k1)δ

(
2∑

n=1

kn

)

+N2
e

dφe(A)
dAμ

dφe(A)
dAν

〈δAμ
e (k1)δAν

e (k2)〉 , (2.3)〈
3∏

n=1

ζ(kn)

〉
= (2π)3N2

∗N∗∗[Pφ(k1)Pφ(k2) + 2 perms]δ

(
3∑

n=1

kn

)

+N3
e

dφe(A)
dAμ

dφe(A)
dAν

dφe(A)
dAρ

〈δAμ
e (k1)δAν

e (k2)δAρ
e(k3)〉

+N4
e

dφe(A)
dAμ

dφe(A)
dAν

(
1

Ne

d2φe(A)
dAρdAσ

+
Nee

N2
e

dφe(A)
dAρ

dφe(A)
dAσ

)
× [〈δAμ

e (k1)δAν
e (k2)(δAρ � δAσ)e(k3)〉 + 2 perms] , (2.4)

where Pφ(k) = H2∗/(2k3) is the power spectrum of the fluctuations of the inflaton,
N∗ ≡ ∂N/∂φ∗, N∗∗ ≡ ∂2N/∂φ2∗, Ne ≡ ∂N/∂φe, Nee ≡ ∂2N/∂φ2

e , and � denotes the
convolution. Here, we assume that δφ∗ is a Gaussian random field and 〈δφAμ〉 = 0.

For simplicity, we estimate the fluctuation of the vector fields in the Coulomb
gauge: δA0 = 0 and kiA

i = 0. Then, the evolution equation of the fluctuations of
the vector field is given by

A′′
i − f ′′

f
Ai − a2∂j∂

jAi = 0 , (2.5)

where Ai ≡ fδAi, ′ denotes the derivative with respect to the conformal time,
and we neglect the contribution from the potential term. When f ∝ a, a−2 with
appropriate quantization of the fluctuations of the vector field, we have the scale-
invariant power spectrum of δAi on superhorizon scale as14),18),32)

〈
δAi

e(k1)δAj
e(k2)

〉
= (2π)3Pφ(k)f−2

e P ij(k̂1)δ

(
2∑

n=1

kn

)
, (2.6)
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926 M. Shiraishi and S. Yokoyama

where a is the scale factor, P ij(k̂) = δij − k̂ik̂j, ˆ denotes the unit vector, and
fe ≡ f(te). Therefore, substituting this expression into Eq. (2.3), we can rewrite the
power spectrum of the primordial curvature perturbations, ζ, as〈

2∏
n=1

ζ(kn)

〉
≡ (2π)3Pζ(k1)δ

(
2∑

n=1

kn

)
, (2.7)

Pζ(k) = Pφ(k)

[
N2

∗ +
(

Ne

fe

)2

qiqjPij(k̂)

]
, (2.8)

where qi ≡ dφe/dAi, qij ≡ d2φe/(dAidAj). We can divide this expression into the
isotropic part and the anisotropic part as7)

Pζ(k) ≡ P iso
ζ (k)

[
1 + gβ

(
q̂ · k̂

)2
]

, (2.9)

with

P iso
ζ (k) = N2

∗Pφ(k)(1 + β) , gβ = − β

1 + β
, (2.10)

where β = (Ne/N∗/fe)
2 |q|2. The bispectrum of the primordial curvature perturba-

tion given by Eq. (2.4) can be written as〈
3∏

n=1

ζ(kn)

〉
≡ (2π)3Fζ(k1, k2, k3)δ

(
3∑

n=1

kn

)
, (2.11)

Fζ(k1, k2, k3) =
(

gβ

β

)2

P iso
ζ (k1)P iso

ζ (k2)

×
[
N∗∗
N2∗

+ β2q̂aq̂b

(
1

Ne
q̂cd +

Nee

N2
e

q̂cq̂d

)
Pac(k̂1)Pbd(k̂2)

]
+2 perms . (2.12)

Here, q̂cd ≡ qcd/|q|2 and we have assumed that the fluctuation of the vector field δAi

almost obeys Gaussian statistics; hence, 〈δAμ
e (k1)δAν

e (k2)δA
ρ
e(k3)〉 = 0.

Hereinafter, for calculating the CMB bispectrum explicitly, we adopt a simple
model whose potential looks like an Abelian Higgs model in the unitary gauge as14)

V (φ, χ, Ai) =
λ

4
(χ2 − v2)2 +

1
2
g2φ2χ2 +

1
2
m2φ2 +

1
2
h2AμAμχ2 , (2.13)

where λ, g, and h are the coupling constants, m is the inflaton mass, and v is the
vacuum expectation value of χ. Since the effective mass squared of the waterfall field
is given by

m2
χ ≡ ∂2V

∂χ2
= −λv2 + g2φ2

e + h2AiAi = 0 , (2.14)

and the critical value of the inflaton φe can be obtained as

g2φ2
e = λv2 − h2AiAi , (2.15)
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Violation of the Rotational Invariance in the CMB Bispectrum 927

we can express β, qi, and qij in Eq. (2.12) in terms of the model parameters as

q̂i = −Âi , q̂ij = − 1
φe

[(
gφe

hA

)2

δij + ÂiÂj

]
, β � 1

f2
e

(
h2A

g2φe

)2

, (2.16)

where we have used N∗ � −Ne � 1/
√

2ε with ε ≡ (∂V/∂φ/V )2/2 being a slow-roll
parameter and |A| ≡ A. Substituting these quantities into Eq. (2.12), the bispectrum
of primordial curvature perturbations is obtained as

Fζ(k1, k2, k3) = CP iso
ζ (k1)P iso

ζ (k2)ÂaÂbδcdPac(k̂1)Pbd(k̂2) + 2 perms , (2.17)

C ≡ −g2
β

φe

Ne

( g

hA

)2
. (2.18)

Note that in the above expression, we have neglected the effect of the longitudinal
polarization in the vector field for simplicity∗) and the terms that are suppressed by a
slow-roll parameter η ≡ ∂2V/∂φ2/V because −N∗∗/N2∗ � Nee/N

2
e � −(Neφe)−1 � η.

Since the current CMB observations suggest gβ < O(0.1) (e.g., Refs. 1) and 2)) and
N−1

e � −
√

2ε, the overall amplitude of the bispectrum in this model, C, does not
seem to be sufficiently large to be detected. However, even if gβ � 1 and ε � 1,
C can become greater than unity for (g/hA)2φe 	 1. Thus, we expect meaningful
signals also in the CMB bispectrum. Then, in the next section, we closely investigate
the CMB bispectrum generated from the primordial bispectrum given by Eq. (2.17)
and discuss a new characteristic feature of the CMB bispectrum induced by the
statistical anisotropy of the primordial bispectrum.

§3. CMB statistically anisotropic bispectrum

In this section, we give a formula of the CMB bispectrum generated from the
primordial bispectrum, which has statistical anisotropy owing to the fluctuations of
the vector field, given by Eq. (2.17). We also discuss the special signals of this CMB
bispectrum, which vanish in the statistically isotropic bispectrum.

3.1. Formulation

The CMB fluctuation can be expanded in terms of the spherical harmonic func-
tion as

ΔX

X
=
∑
	m

aX,	mY	m(n̂) , (3.1)

where n̂ is a unit vector pointing toward a line-of-sight direction, and X denotes
the intensity (≡ I) and polarizations (≡ E, B). The coefficient, a	m, generated from
primordial curvature perturbations, ζ, is expressed as25),33)

aX,	m = 4π(−i)	

∫ ∞

0

k2dk

(2π)3
ζ	m(k)TX,	(k) , (for X = I, E) (3.2)

∗) Owing to this treatment, we can use the quantities estimated in the Coulomb gauge as

Eq. (2.12). In a more precise discussion, we should take into account the contribution of the

longitudinal mode in the unitary gauge.
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928 M. Shiraishi and S. Yokoyama

ζ	m(k) ≡
∫

d2k̂ζ(k)Y ∗
	m(k̂) , (3.3)

where TX,	 is the time-integrated transfer function of scalar modes as calculated in
Refs. 34) and 35). Using these equations, the CMB bispectrum generated from the
bispectrum of the primordial curvature perturbations is given by〈

3∏
n=1

aXn,	nmn

〉
=

[
3∏

n=1

4π(−i)	n

∫ ∞

0

k2
ndkn

(2π)3
TXn,	n(kn)

]〈
3∏

n=1

ζ	nmn(kn)

〉
, (3.4)

with 〈
3∏

n=1

ζ	nmn(kn)

〉
=

[
3∏

n=1

∫
d2k̂nY ∗

	nmn
(k̂n)

]

×(2π)3δ

(
3∑

n=1

kn

)
Fζ(k1, k2, k3) . (3.5)

We expand the angular dependences that appear in the Dirac delta function, δ(k1 +
k2 + k3), and the function, Fζ(k1, k2, k3), given by Eq. (2.17) with respect to the
spin spherical harmonics as

δ

(
3∑

n=1

kn

)
= 8

∫ ∞

0
y2dy

[
3∏

n=1

∑
LnMn

(−1)Ln/2jLn(kny)Y ∗
LnMn

(k̂n)

]

×I0 0 0
L1L2L3

(
L1 L2 L3

M1 M2 M3

)
, (3.6)

ÂaÂbδcdPac(k̂1)Pbd(k̂2) = −4
(

4π

3

)3 ∑
L,L′,LA=0,2

I01−1
L11 I01−1

L′11 I000
11LA

{
L L′ LA

1 1 1

}

×
∑

MM ′MA

Y ∗
LM (k̂1)Y ∗

L′M ′(k̂2)Y ∗
LAMA

(Â)

×
(

L L′ LA

M M ′ MA

)
, (3.7)

where the 2× 3 matrices of a bracket and a curly bracket denote the Wigner-3j and
6j symbols, respectively, and

Is1s2s3
l1l2l3

≡
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)
4π

(
l1 l2 l3
s1 s2 s3

)
. (3.8)

Here, we have used the expressions of an arbitrary unit vector and a projection tensor
as

r̂a =

⎛
⎝ sin θr cos φr

sin θr sinφr

cos θr

⎞
⎠ =

∑
m

αm
a Y1m(r̂) , (3.9)

Pab(r̂) = δab − r̂ar̂b

= −2
∑

L=0,2

I01−1
L11

∑
Mmamb

Y ∗
LM (r̂)αma

a αmb
b

(
L 1 1
M ma mb

)
, (3.10)
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Violation of the Rotational Invariance in the CMB Bispectrum 929

with

αm
a ≡

√
2π

3

⎛
⎝ −m(δm,1 + δm,−1)

i (δm,1 + δm,−1)√
2δm,0

⎞
⎠ , (3.11)

and summation rules of the Wigner symbols as discussed in the Appendix of
Ref. 25).∗) Note that for Y ∗

00(Â) = 1/
√

4π, the contribution of LA = 0 in Eq. (3.7) is
independent of the direction of the vector field. Therefore, the statistical anisotropy
is generated from the signals of LA = 2. By integrating these spherical harmonics
over each unit vector, the angular dependences on k1, k2, k3 can be reduced to the
Wigner-3j symbols as∫

d2k̂1Y ∗
	1m1

Y ∗
L1M1

Y ∗
LM = I0 0 0

	1L1L

(
�1 L1 L
m1 M1 M

)
, (3.13)∫

d2k̂2Y
∗
	2m2

Y ∗
L2M2

Y ∗
L′M ′ = I0 0 0

	2L2L′

(
�2 L2 L′

m2 M2 M ′

)
, (3.14)∫

d2k̂3Y
∗
	3m3

Y ∗
L3M3

= (−1)m3δL3,	3δM3,−m3 . (3.15)

From these equations, we obtain an alternative explicit form of the bispectrum of
ζ	m as〈

3∏
n=1

ζ	nmn(kn)

〉
= −(2π)38

∫ ∞

0
y2dy

∑
L1L2

(−1)
L1+L2+�3

2 I0 0 0
L1L2	3

×P iso
ζ (k1)jL1(k1y)P iso

ζ (k2)jL2(k2y)Cj	3(k3y)

×4
(

4π

3

)3

(−1)m3
∑

L,L′,LA=0,2

I01−1
L11 I01−1

L′11

×I0 0 0
	1L1LI0 0 0

	2L2L′I000
11LA

{
L L′ LA

1 1 1

}

×
∑

M1M2MM ′MA

Y ∗
LAMA

(Â)
(

L1 L2 �3

M1 M2 −m3

)

×
(

�1 L1 L
m1 M1 M

)(
�2 L2 L′

m2 M2 M ′

)(
L L′ LA

M M ′ MA

)
+2 perms . (3.16)

This equation implies that, owing to the vector field A, the CMB bispectrum has a
direction dependence, and hence, the dependence on m1, m2, m3 cannot be confined

∗) Equation (3.10) is easily derived by using the expression with a divergenceless vector described

in Ref. 36). Equation (3.11) leads to the orthogonality relation as

αa
mαm′

a =
4π

3
(−1)mδm,−m′ . (3.12)
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930 M. Shiraishi and S. Yokoyama

only to a Wigner-3j symbol, namely,〈
3∏

n=1

ζ	nmn(kn)

〉

= (2π)3F	1	2	3(k1, k2, k3)

(
�1 �2 �3

m1 m2 m3

)
. (3.17)

This fact truly indicates the violation of the rotational invariance in the bispectrum
of the primordial curvature perturbations and leads to the statistical anisotropy on
the CMB bispectrum.

Let us consider the explicit form of the CMB bispectrum. Here, we set the
coordinate as Â = ẑ. Then, by substituting Eq. (3.16) into Eq. (3.4) and using the
relation Y ∗

LAMA
(ẑ) =

√
(2LA + 1)/(4π)δMA,0, the CMB bispectrum is expressed as〈

3∏
n=1

aXn,	nmn

〉
= −

∫ ∞

0
y2dy

[
3∏

n=1

2
π

∫ ∞

0
k2

ndknTXn,	n(kn)

]

×
∑
L1L2

(−1)
�1+�2+L1+L2

2
+	3I0 0 0

L1L2	3

×P iso
ζ (k1)jL1(k1y)P iso

ζ (k2)jL2(k2y)Cj	3(k3y)

×4
(

4π

3

)3

(−1)m3
∑

L,L′,LA=0,2

I01−1
L11 I01−1

L′11

×I0 0 0
	1L1LI0 0 0

	2L2L′I000
11LA

{
L L′ LA

1 1 1

}

×
√

2LA + 1
4π

2∑
M=−2

(
L1 L2 �3

−m1 − M −m2 + M −m3

)

×
(

�1 L1 L
m1 −m1 − M M

)(
�2 L2 L′

m2 −m2 + M −M

)

×
(

L L′ LA

M −M 0

)
+ 2 perms . (3.18)

By taking into account the selection rules of the Wigner symbols,25) the multipoles
and azimuthal quantum numbers are limited as

3∑
n=1

�n = even ,
3∑

n=1

mn = 0 ,

L1 = |�1 − 2|, �1, �1 + 2 , L2 = |�2 − 2|, �2, �2 + 2 ,

|L2 − �3| ≤ L1 ≤ L2 + �3 , (3.19)

and the two permutations of �1, �2, �3.

3.2. Behavior of the CMB statistically anisotropic bispectrum

On the basis of Eq. (3.18), we compute the CMB bispectra for the several �’s
and m’s. Then, we modify the Boltzmann Code for Anisotropies in the Microwave
Background (CAMB)37),38) and use the Common Mathematical Library SLATEC.39)
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Violation of the Rotational Invariance in the CMB Bispectrum 931

Fig. 1. (color online) Absolute values of the CMB statistically anisotropic bispectrum of the inten-

sity mode given by Eq. (3.18) with C = 1 (red solid line) and the statistically isotropic one given

by Eq. (3.20) with fNL = 5 (green dashed line) for �1 = �2 = �3. The left and right figures are

plotted in the configurations (m1, m2, m3) = (0, 0, 0), (10, 20,−30), respectively. The parameters

are fixed to the mean values limited from the WMAP-7yr data as reported in Ref. 42).

In Fig. 1, the red solid lines are the CMB statistically anisotropic bispectra of
the intensity mode given by Eq. (3.18) with C = 1, and the green dashed lines are the
statistically isotropic one sourced from the local-type non-Gaussianity of curvature
perturbations given by40)

〈
3∏

n=1

aXn,	nmn

〉
= I0 0 0

	1	2	3

(
�1 �2 �3

m1 m2 m3

)

×
∫ ∞

0
y2dy

[
3∏

n=1

2
π

∫ ∞

0
k2

ndknTXn,	n(kn)j	n(kny)

]

×
(

P iso
ζ (k1)P iso

ζ (k2)
6
5
fNL + 2 perms

)
, (3.20)

with fNL = 5 for �1 = �2 = �3 and two sets of m1, m2, m3. From this figure, we can
see that the red solid lines are in good agreement with the green dashed line in the
dependence on � for both configurations of m1, m2, m3. This seems to be because
the bispectrum of primordial curvature perturbations affected by the fluctuations of
vector field given by Eq. (2.17) has not only the anisotropic part but also the isotropic
part and both parts have the same amplitude. In this sense, it is expected that the
angular dependence on the vector field Â does not contribute much to a change in
the shape of the CMB bispectrum. We also find that the anisotropic bispectrum
for C ∼ 0.3 is comparable in magnitude to the case with fNL = 5 for the standard
local type, which corresponds to the upper bound on the local-type non-Gaussianity
expected from the PLANCK experiment.41)

In the discussion of the CMB power spectrum, if the rotational invariance is
violated in the primordial power spectrum given by Eq. (2.9), the signals in the
off-diagonal configurations of � also have nonzero values.7),8),10) Likewise, there are
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special configurations in the CMB bispectrum induced from the statistical anisotropy
on the primordial bispectrum as Eq. (2.17). The selection rule (3.19) suggests that
the statistically anisotropic bispectrum (3.18) could be nonzero in the multipole
configurations given by

�1 = |�2 − �3| − 4, |�2 − �3| − 2, �2 + �3 + 2, �2 + �3 + 4 , (3.21)

and two permutations of �1, �2, �3. In contrast, in these configurations, the isotropic
bispectrum (e.g., Eq. (3.20)) vanishes owing to the triangle condition of the Wigner-

3j symbol
„

�1 �2 �3
m1 m2 m3

«
and the nonzero components arise only from

|�2 − �3| ≤ �1 ≤ �2 + �3 . (3.22)

Therefore, the signals of the configurations (3.21) have the pure information of the
statistical anisotropy on the CMB bispectrum.

Figure 2 shows the CMB anisotropic bispectra of the intensity mode given by
Eq. (3.18) with C = 1 for the several configurations of �’s and m’s as a function of �3.
The red solid line and green dashed line satisfy the special relation (3.21), namely,
�1 = �2 + �3 + 2, |�2 − �3| − 2, and the blue dotted line obeys a configuration of
Eq. (3.22), namely, �1 = �2 + �3. From this figure, we confirm that the signals in the
special configuration (3.21) are comparable in magnitude to those for �1 = �2 + �3.
Therefore, if the rotational invariance is violated on the primordial bispectrum of
curvature perturbations, the signals for �1 = �2 + �3 +2, |�2− �3|−2 can also become
beneficial observables. Here, note that the anisotropic bispectra in the other special
configurations: �1 = �2 + �3 + 4, |�2 − �3| − 4 are zero. It is because these signals
arise from only the contribution of L = L′ = LA = 2, L1 = �1 ± 2, L2 = �2 ± 2 in
Eq. (3.18) owing to the selection rules of the Wigner symbols, and the summation
of the four Wigner-3j symbols over M vanishes for all �’s and m’s. Hence, in this
anisotropic bispectrum, the additional signals arise from only two configurations
�1 = �2 + �3 + 2, |�2 − �3| − 2 and these two permutations.

§4. Summary and discussion

In this paper, we investigated the statistical anisotropy in the CMB bispectrum
by considering the modified hybrid inflation model where the waterfall field also
couples with the vector field.14) We calculated the CMB bispectrum sourced from
the non-Gaussianity of curvature perturbations affected by the vector field. In this
inflation model, owing to the dependence on the direction of the vector field, the
correlations of the curvature perturbations violate the rotational invariance. Then,
interestingly, even if the magnitude of the parameter gβ characterizing the statistical
anisotropy of the CMB power spectrum is too small, the amplitude of the non-
Gaussianity can become large depending on several coupling constants of the fields.

Following the procedure of Ref. 25), we formulated the statistically anisotropic
CMB bispectrum and confirm that three azimuthal quantum numbers m1, m2, m3

are not confined only to the Wigner symbol
„

�1 �2 �3
m1 m2 m3

«
. This is evidence
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Fig. 2. (color online) Absolute values of the CMB statistically anisotropic bispectra of the intensity

mode given by Eq. (3.18) for (m1, m2, m3) = (0, 0, 0) (left figure) and (10, 20,−30) (right one) as

the function with respect to �3. The lines correspond to the spectra for (�1, �2) = (102+ �3, 100)

(red solid line), (|100 − �3| − 2, 100) (green dashed line) and (100 + �3, 100) (blue dotted line).

The parameters are identical to the values defined in Fig. 1.

that the rotational invariance is violated in the CMB bispectrum and implies the
existence of the signals not obeying the triangle condition of the above Wigner symbol
as |�2−�3| ≤ �1 ≤ �2 +�3. We demonstrated that the signals of the CMB bispectrum
for �1 = �2 + �3 + 2, |�2 − �3| − 2 and these two permutations do not vanish. In fact,
the statistically isotropic bispectra are exactly zero for these configurations; hence,
these signals have the pure information of the statistical anisotropy. Because the
amplitudes of these intensity bispectra are comparable to those for �1 = �2 + �3,
it might be possible to detect these contributions of the statistical anisotropy in
future experiments, which would give us novel information about the physics of the
early Universe. Of course, also for the E-mode polarization, we can give the same
discussions and results.

Although we assume a specific potential of inflation to show the statistical
anisotropy on the CMB bispectrum explicitly, the above calculation and discussion
will be applicable to other inflation models where the rotational invariance violates.

Acknowledgements

We would like to thank Mindaugas Karciauskas for notifying us of a mistake
and Jiro Soda for his useful comments. This work is supported in part by the
Grant-in-Aid for JSPS Research under Grant No. 22-7477 (M. S.), JSPS Grant-
in-Aid for Scientific Research under Grant No. 22340056 (S. Y.), Grant-in-Aid for
Scientific Research on Priority Areas No. 467 “Probing the Dark Energy through
an Extremely Wide and Deep Survey with Subaru Telescope”, and Grant-in-Aid
for Nagoya University Global COE Program “Quest for Fundamental Principles
in the Universe: from Particles to the Solar System and the Cosmos”, from the
Ministry of Education, Culture, Sports, Science and Technology of Japan. We also

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/126/5/923/2938828 by U

.S. D
epartm

ent of Justice user on 17 August 2022



934 M. Shiraishi and S. Yokoyama

acknowledge the Kobayashi-Maskawa Institute for the Origin of Particles and the
Universe, Nagoya University for providing computing resources useful in conducting
the research reported in this paper.

References

1) N. E. Groeneboom and H. K. Eriksen, Astrophys. J. 690 (2009), 1807, arXiv:0807.2242.
2) N. E. Groeneboom, L. Ackerman, I. K. Wehus and H. K. Eriksen, Astrophys. J. 722

(2010), 452, arXiv:0911.0150.
3) M. Frommert and T. A. Ensslin, arXiv:0908.0453.
4) D. Hanson and A. Lewis, Phys. Rev. D 80 (2009), 063004, arXiv:0908.0963.
5) C. L. Bennett et al., Astrophys. J. Suppl. 192 (2011), 17, arXiv:1001.4758.
6) D. Hanson, A. Lewis and A. Challinor, Phys. Rev. D 81 (2010), 103003, arXiv:1003.0198.
7) L. Ackerman, S. M. Carroll and M. B. Wise, Phys. Rev. D 75 (2007), 083502 [Errata; 80

(2009), 069901], astro-ph/0701357.
8) C. G. Boehmer and D. F. Mota, Phys. Lett. B 663 (2008), 168, arXiv:0710.2003.
9) Y. Shtanov and H. Pyatkovska, Phys. Rev. D 80 (2009), 023521 [Errata; 83 (2011),

069904], arXiv:0904.1887.
10) M. A. Watanabe, S. Kanno and J. Soda, Mon. Not. R. Astron. Soc. 412 (2011), L83,

arXiv:1011.3604.
11) A. E. Gumrukcuoglu, B. Himmetoglu and M. Peloso, Phys. Rev. D 81 (2010), 063528,

arXiv:1001.4088.
12) K. Dimopoulos, Phys. Rev. D 74 (2006), 083502, hep-ph/0607229.
13) T. S. Koivisto and D. F. Mota, J. Cosmol. Astropart. Phys. 08 (2008), 021,

arXiv:0805.4229.
14) S. Yokoyama and J. Soda, J. Cosmol. Astropart. Phys. 08 (2008), 005, arXiv:0805.4265.
15) K. Dimopoulos, M. Karciauskas, D. H. Lyth and Y. Rodriguez, J. Cosmol. Astropart.

Phys. 05 (2009), 013, arXiv:0809.1055.
16) M. Karciauskas, K. Dimopoulos and D. H. Lyth, Phys. Rev. D 80 (2009), 023509,

arXiv:0812.0264.
17) N. Bartolo, E. Dimastrogiovanni, S. Matarrese and A. Riotto, J. Cosmol. Astropart. Phys.

10 (2009), 015, arXiv:0906.4944.
18) K. Dimopoulos, M. Karciauskas and J. M. Wagstaff, Phys. Rev. D 81 (2010), 023522,

arXiv:0907.1838.
19) K. Dimopoulos, M. Karciauskas and J. M. Wagstaff, Phys. Lett. B 683 (2010), 298,

arXiv:0909.0475.
20) C. A. Valenzuela-Toledo and Y. Rodriguez, Phys. Lett. B 685 (2010), 120,

arXiv:0910.4208.
21) C. A. Valenzuela-Toledo, arXiv:1004.5363.
22) E. Dimastrogiovanni, N. Bartolo, S. Matarrese and A. Riotto, Adv. Astron. 10 (2010),

752670, arXiv:1001.4049.
23) K. Dimopoulos and J. M. Wagstaff, Phys. Rev. D 83 (2011), 023523, arXiv:1011.2517.
24) M. Karciauskas, arXiv:1104.3629.
25) M. Shiraishi, D. Nitta, S. Yokoyama, K. Ichiki and K. Takahashi, Prog. Theor. Phys. 125

(2011), 795, arXiv:1012.1079.
26) A. A. Starobinsky, Phys. Lett. B 117 (1982), 175.
27) A. A. Starobinsky, JETP Lett. 42 (1985), 152.
28) M. Sasaki and E. D. Stewart, Prog. Theor. Phys. 95 (1996), 71, astro-ph/9507001.
29) M. Sasaki and T. Tanaka, Prog. Theor. Phys. 99 (1998), 763, gr-qc/9801017.
30) D. H. Lyth, K. A. Malik and M. Sasaki, J. Cosmol. Astropart. Phys. 05 (2005), 004,

astro-ph/0411220.
31) D. H. Lyth and Y. Rodriguez, Phys. Rev. Lett. 95 (2005), 121302, astro-ph/0504045.
32) J. Martin and J. Yokoyama, J. Cosmol. Astropart. Phys. 01 (2008), 025, arXiv:0711.4307.
33) M. Shiraishi, S. Yokoyama, D. Nitta, K. Ichiki and K. Takahashi, Phys. Rev. D 82 (2010),

103505, arXiv:1003.2096.
34) W. Hu and M. J. White, Phys. Rev. D 56 (1997), 596, astro-ph/9702170.
35) M. Zaldarriaga and U. Seljak, Phys. Rev. D 55 (1997), 1830, astro-ph/9609170.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/126/5/923/2938828 by U

.S. D
epartm

ent of Justice user on 17 August 2022



Violation of the Rotational Invariance in the CMB Bispectrum 935

36) M. Shiraishi, D. Nitta, S. Yokoyama, K. Ichiki and K. Takahashi, Phys. Rev. D 83 (2011),
123523, arXiv:1101.5287.

37) A. Lewis, A. Challinor and A. Lasenby, Astrophys. J. 538 (2000), 473, astro-ph/9911177.
38) A. Lewis, Phys. Rev. D 70 (2004), 043011, astro-ph/0406096.
39) Slatec common mathematical library, http://www.netlib.org/slatec/
40) E. Komatsu and D. N. Spergel, Phys. Rev. D 63 (2001), 063002, astro-ph/0005036.
41) Planck Collaboration, astro-ph/0604069.
42) E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. 192 (2011), 18,

arXiv:1001.4538.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/126/5/923/2938828 by U

.S. D
epartm

ent of Justice user on 17 August 2022


