
Violation Semirings in Optimality Theory

Jason Riggle

University of Chicago

Abstract

This paper provides a brief algebraic characterization of constraint violations in Optimality
Theory (OT). I show that if violations are taken to be multisets over a fixed basis set
Con then the merge operator on multisets and a ‘min’ operation expressed in terms of
harmonic inequality provide a semiring over violation profiles. This semiring allows standard
optimization algorithms to be used for OT grammars with weighted finite-state constraints in
which the weights are violation-multisets. Most usefully, because multisets are unordered, the
merge operation is commutative and thus it is possible to give a single graph representation
of the entire class of grammars (i.e. rankings) for a given constraint set. This allows a neat
factorization of the optimization problem that isolates the main source of complexity into a
single constant γ denoting the size of the graph representation of the whole constraint set.
I show that the computational cost of optimization is linear in the length of the underlying
form with the multiplicative constant γ. This perspective thus makes it straightforward to
evaluate the complexity of optimization for different constraint sets.

1 Introduction

The grammatical framework of Optimality Theory (Prince and Smolensky 1993/2004) has

been the subject of quite a bit of computational analysis. Ellison (1994) shows that optimal

forms can be computed for grammars with finite-state constraints using standard shortest-

path optimization techniques in weighted graphs. Eisner (1997, 2000) improves on the

efficiency of Ellison’s strategy for a several (realistic) cases by doing optimization over

cascades of weighted automata but also shows that in some (hypothetical) cases the cost of

optimization is an exponential function of the the number of constraints in the grammar.1

Karttunen (1998) shows that the computation of optimality can be done entirely with

finite-state means by adopting an upper bound on constraint violations suggested in Frank

and Satta’s (1998) characterization of the generative complexity of OT.2 Gerdemann and

VanNoord (2000) take this one step further by showing that if there is an upper bound

1Idsardi (2006) recasts Eisner’s results using attested long-distance agreement constraints.
2This violation bound is also used in Wareham’s (1998) analysis of the computational complexity of OT.

DRAFT – June 24, 2008 Violation Semirings in OT

on the disparity between the numbers of violations for any two competing candidates, the

whole process of optimization can be cashed out as a single finite-state transducer that

maps inputs to optimal outputs. Riggle (2004) also provides a transducer construction

scheme but returns to Ellison’s original characterization of the optimization problem with

a modification relevant to the analysis here that a single finite state representation of the

grammar is used for all rankings.3

In this work I improve upon Riggle’s (2004) characterization of OT optimization by

representing constraint violations as multisets and giving a more formal analysis of the

complexity of optimization. This makes concrete a suggestion in Heinz et al. (2008), that a

single function Eval can be used in optimization for all rankings of a known constraint set

and makes more precise the fact that the complexity of optimization is linear in the length

of the input form.

The use of multisets as weights also makes it straightforward to addapt to OT Mohri’s

(2002) general characterization of optimization problems in which the quantity optimized

is representable with a semiring. This connects with a large body of work on semirings

in optimization problems (mostly for weighted or probabilistic grammars) for which see

Klein & Manning (2004). Other relevant background for semiring-based optimization can

be found in Bistarelli et al. (1997) and a great deal of work in computational linguistics

has explored the use of semirings in a variety of contexts (c.f. Kempe et al. (2004), Eisner

(2003, 2001), Charniak & Johnson (2005)).

2 Violation profiles as multisets

Multisets are sets that are allowed to contain repeated elements; they are also sometimes

called ‘m-sets’, ‘heaps’, ‘samples’, ‘bags’ (especially in computer programming), or ‘firesets’

for finitely-repeated-element sets. Formally, a multiset M is a pair (C, m) where C is a

standard Cantorian set and m is a function from C to non-negative integers. The set C is

called the basis (in some work C is called the ‘underlying set’, the ‘root’, the ‘support’, or

the ‘carrier’), and for each c ∈ C the multiplicity of c, or m(c), is the number of times that

c occurs in C. For any given constraint set Con, the range of ways that candidates can

violate the constraints is precisely the set of all multisets that share Con as their basis.

3Riggle’s transducer construction is conceptually similar to Gerdemann and VanNoord’s but does not
require the disparity-bound. Riggle’s algorithm will, however, fail to terminate for rankings that describe
non-regular languages – a possibility even when all constraints are finite-state, cf. Frank & Satta (1998).

2

DRAFT – June 24, 2008 Violation Semirings in OT

I denote the set of multisets over Con as CCon (or just C when Con is clear from

context). In Optimality Theory, the elements of C are sometimes called ‘violation profiles.’

There are many ways to represent multisets but for our purposes the most transparent

is a listing of the elements of the basis in an arbitrary order with superscripts indicating

their multiplicity. For example, given a basis Con = {ons, noc, dep, max} the multiset

V ∈ C = {ons1, noc1, dep0, max2} represents any case where the constraints referred to by

ons and noc are each violated once, and the constraint referred to by max is violated twice.4

Multisets can be merged to combine their elements: A ⊎B = C where the basis of C is

the union of the basis sets for A and B and the multiplicity mC(x) = mA(x)+mB(x). The

operation of merger makes it possible to combine the violations associated with fragments of

parses when generating candidates. The ⊎ operator is commutative and associative because

the order in which groups of violations are combined does not matter (but not idempotent

because, in general, A ⊎ A 6= A). Multisets provide a ready system of arithmetic for

constraint violations and they are totally independent of any particular constraint ranking.

Given a constraint set Con, a ranking RCon (or simply R when Con is clear from

context) is a total ordering of the members of Con. For any ranking R the members of C

are totally ordered by the relation of harmonic inequality.

(1) Harmonic Inequality

Given a ranking RCon and two violation profiles V and W ∈ CCon,

V is more harmonic than W according to R, written V≻RW ,

iff mV (c) < mW (c) for the highest ranked c where mV (c) 6= mW (c).

Optimization in OT is just minimization according to harmonic inequality. For two violation

profiles V and W, the function minR(V, W) returns V if V≻RW and W otherwise. For

convenience, this function can be written as infix notation with the operator ‘R ’. Thus

minR(V, W) can be written as V R W .

3 Violation semirings

Representing violation profiles as multisets suggests a simple algebraic characterization of

the ‘violation’ semiring V over the set C and the operators R and ⊎ on C. For optimization

problems, commutative semirings are most useful. These are defined as in (2).

4When the basis set is finite it is possible, and more transparently similar to the rows of Optimality
Theoretic tableaux, to include elements with multiplicity of zero in the representation of the multiset.

3

DRAFT – June 24, 2008 Violation Semirings in OT

(2) Commutative semirings are 5-tuples (C,⊕,⊗, 0̄, 1̄) that obey the following conditions:

1. (C,⊕, 0̄) is a commutative monoid with 0̄ as the identity element,

E.g. ∀ a, b, c ∈ C ⊕ is associative: (a⊕ b)⊕ c = a⊕ (b⊕ c)

⊕ is commutative: (a⊕ b) = (b⊕ a)

0̄ is an identity element: a⊕ 0̄ = 0̄⊕ a = a

2. (C,⊗, 1̄) is a commutative monoid with 1̄ as the identity element,

E.g. ∀ a, b, c ∈ C ⊗ is associative: (a⊗ b)⊗ c = a⊗ (b⊗ c)

⊗ is commutative: (a⊗ b) = (b⊗ a)

1̄ is an identity element: a⊗ 1̄ = 1̄⊗ a = a

3. ⊗ distributes over ⊕,

E.g. ∀ a, b, c ∈ C (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) and

c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b)

4. 0̄ is an annihilator for ⊗,

E.g. ∀ a ∈ C a⊗ 0̄ = 0̄⊗ a = 0̄.

In general, semirings do not require that ⊗ be commutative, but when it is, the semiring

is commutative. For more complete introductions to the use of semirings in optimization

problems see Mohri (2002) or Fink (1992). Two of the most familiar semirings are the

‘counting’ semiring C = (N, +,×, 0, 1) and the boolean semiring B = ({0, 1},∨,∧, 0, 1).

(3) The C and B semirings: C = (N, +,×, 0, 1) B = ({0, 1},∨,∧, 0, 1)

1. ⊕ associativity (a + b) + c = a + (b + c) (a ∨ b) ∨ c = a ∨ (b ∨ c)

⊕ commutativity (a + b) = (b + a) (a ∨ b) = (b ∨ a)

0̄ identity for ⊕ a + 0 = 0 + a = a a ∨ 0 = 0 ∨ a = a

2. ⊗ associativity (a× b)× c = a× (b× c) (a ∧ b) ∧ c = a ∧ (b ∧ c)

⊗ commutativity (a× b) = (b× a) (a ∧ b) = (b ∧ a)

1̄ identity for ⊗ a× 1 = 1× a = a a ∧ 1 = 1 ∧ a = a

3. ⊗ distributivity (a+b)×c = (a×c)+(b×c) (a∨b)∧c = (a∧c)∨ (b∧c)

c×(a+b) = (c×a)+(c×b) c∧ (a∨b) = (c∧a)∨ (c∧b)

4. 0̄ annihilates for ⊗ a× 0 = 0× a = 0 a ∧ 0 = 0 ∧ a = 0

For the violation semiring V over (C, R ,⊎), the R operator takes the role of ⊕ and the ⊎

operator takes the role of ⊗. To complete the violation semiring it is necessary to identify

0̄ and 1̄ elements. The identity element for the V semiring is C0 = {c0 | c ∈ Con}, the

violation multiset in which every element of the basis set has a multiplicity of zero. An

4

DRAFT – June 24, 2008 Violation Semirings in OT

annihilator can be added to V with C∞ = {c∞ | c ∈ Con}, the violation multiset in which

every element of the basis set has infinite multiplicity. Note that, regardless of the constraint

ranking, C0 is the most harmonic element while C∞ is the least harmonic element of V. In

(4) I present the violation semiring V = ({C ∪ C∞}, R , ⊎, C∞, C0) alongside the tropical

semiring T = ({R+ ∪ ∞}, min, +,∞, 0), which is the most commonly used semiring for

optimization problems.5

(4) T = ({R+ ∪ ∞}, min, +,∞, 0) V = ({C ∪ C∞}, R , ⊎, C∞, C0)

1. (amin b)min c = amin (b min c) (a R b) R c = a R (b R c)

(amin b) = (b min a) (a R b) = (b R a)

amin∞ =∞min a = a a R C∞ = C∞
R a = a

2. (a + b) + c = a + (b + c) (a ⊎ b) ⊎ c = a ⊎ (b ⊎ c)

(a + b) = (b + a) (a ⊎ b) = (b ⊎ a)

a + 0 = 0 + a = a a ⊎ C∅ = C0 ⊎ a = a

3. (amin b) + c = (a + c)min (b + c) (a R b) ⊎ c = (a ⊎ c) R (b ⊎ c)

c + (amin b) = (c + a)min (c + b) c ⊎ (a R b) = (c ⊎ a) R (c ⊎ b)

4. a +∞ =∞+ a =∞ a ⊎ C∞ = C∞ ⊎ a = C∞

The violation semiring is actually quite similar to the tropical semiring. In both cases the

⊕ operator is minimization and the ⊗ operator is summation. In ‘weighted’ constraint-

based models like Harmonic Grammar (Legendre et al. 1990, Goldsmith 1993, Smolensky &

Legendre 2006, Pater et al. 2007a,b), instead of a ranking RCon, the grammar is a weighting

WCon consisting of (w, c) pairs for all c ∈Con where w is a (nonnegative) real number

indicating the weight of each violation of constraint c.6 Given a weighted-constraint model

over the same Con as a ranked-constraint model so that the constraints assign violations to

all the same structures but differ only how those violations are compared, then the sum of

the application of the weights to an element of C will be a nonnegative real number. In this

sense, the weighting functions maps the violation semiring onto the tropical semiring. This

is not to say that the systems are equivalent; there are many patterns that can be generated

by weightings that cannot be generated by rankings.7 Rather, the point of interest is that,

given the same constraint set, the task of optimization involves the same computation.

5 T is also sometimes called the (min, +) semiring, but is usually called the ‘tropical’ semiring in homage
to the pioneering research on T of Brazilian computer scientist Imre Simon (cf. Simon (1988)).

6The real-valued weights are nonnegative if optimization is characterized as minimizing violation weight
but non-positive if optimization is characterized as maximizing a harmony score over negative weights.

7See, for instance, the so-called ‘gang’ effects discussed in Pater et al. (2007a).

5

DRAFT – June 24, 2008 Violation Semirings in OT

The R operator is idempotent because for all a ∈ C, a R a = a. The idempotentency

of the ⊗ operator means that V is idempotent (as are the C, B, and T semirings). The

idempotency of R also provides an ordering �R (harmonic inequality) on C that is reflexive

(i.e. ∀a ∈ C a�R a) and antisymmetric (i.e. ∀a b ∈ C if a�R b then b �R a unless a = b).

Most critically for the task of optimization, idempotent semirings are monotonic, meaning

that the sum of two violation profiles is always worse (or just as bad) as either of the violation

profiles on its own. This is crucial because it allows optimization problems to be factored

into smaller sub-problems. The motonicity of the semirings encoding distances in shortest-

path problems is what underlies Dijkstra’s (1959) key observation that every sub-path of

a shortest path is itself a shortest path.8 For OT optimization, Dijkstra’s generalization

could be restated every sub-parse of an optimal parse is itself an optimal parse.

4 Representing the candidates

Following Ellison’s (1994) finite-state characterization of Optimality Theory, constraints

can be represented as finite state transducers that associate violations with (input, output)

mappings. Ellison represents constraint violations as sequences of marks attached to the

labels in the transducers and provides an operation he calls ‘augmented product’ (AP) that

extends the standard notion of automaton intersection (cf. Hopcroft & Ullman 1979:58) by

concatenating the marks associated with the individual constraints. AP is not commutative

because the order of operations encodes a ranking. For example, given constraints {A, B, C},

the product (((A×B)× C)) produces a transducer for the ranking A≫ B ≫ C.

Though this characterization of OT is perfectly sound it has the disadvantage that a

different transducer must be built for each ranking despite the fact that the transducers for

all rankings are isomorphic (they differ only in the order of violations on the arc labels).

It would, of course, be relatively straightforward to formalize an operation to rearrange

the violation sequences for different rankings, but it is even more straightforward to avoid

ordering the violations all together. This is where the multiset characterization of constraint

violations is most useful. Not only does C allow a simple algebraic characterization of

optimization with ranked constraints as a standard minimization problem, but the fact

that multisets have no order will allow a single transducer to be built for all rankings. In

(5) I define OT constraints as finite-state transducers.

8“[I]f R is a node on the minimal path from P to Q, knowledge of the latter implies the knowledge of the
minimal path from P to R.”(Dijkstra 1959:2)

6

DRAFT – June 24, 2008 Violation Semirings in OT

(5) Finite-state constraints are 7-tuples (Q, Σi, Σo, C, δ, s, f) where:

• Q is a finite set of states,

• Σi and Σo are alphabets of ‘input’ and ‘output’ symbols respectively,

• C is the set of multisets for a given constraint set Con,

• δ is a set of transitions drawn from (Q× 2Σi × 2Σo × C×Q),

• s and f are ‘start’ and ‘final’ states respectively s, f ∈ Q.

In this characterization of constraints, the labels on the edges in the transducer are (I, O, V)

triples where I ⊆ Σi and O ⊆ Σo stand for sets of segments and V is a multiset of violations

in C. This characterization is totally equivalent to schemes in which constraints are stated

over matrices of phonological features that pick out sets of segments.9

In general, constraints in OT are taken to be total relations from (Σi × Σo) to C. The

automata representing such relations are complete in the sense that they assign a weight

from C to every (input, output) mapping without blocking any of the possible candidates.

On the other hand, sometimes it is convenient to use ‘hard’ (i.e. inviolable) constraints to

set aside some some structures as outside the scope of a given analysis. Hard constraints

can be readily implemented as incomplete transducers.10 In cases where all the transducers

are complete the intersection (or product) operation only combines the weightings and has

no effect on the set of possible (input, output) mappings. The use of hard constraints will

filter out some of the possible candidates. Constraint intersection can be defined as in (6).

(6) For A = (QA, Σi, Σo, C, δA, sA, fA) and B = (QB, Σi, Σo, C, δB, sB, fB),

A×B = (QA ×QB, Σi, Σo, C, δ, 〈sA, sB〉, 〈fA, fB〉) where

for each (p, I, O, V, q), (p′, I ′, O′, V ′, q′) ∈ δA × δB,

if {I ∪ I ′} 6= ∅ and {O ∪O′} 6= ∅,

then (〈p, p′〉, I ∪ I ′, O ∪O′, V ⊎ V ′, 〈q, q′〉) is in δ.

The intersection operation in (6) provides a very general method of combining multiset-

weighted finite-state transducers. It can be used to combine individual constraints and it

can be used to combine groups of constraints that have already been combined into single

automata. Because the ∪ and ⊎ operators are commutative and associative, constraints can

9Of course, specific theories of the inventory of phonological features will make it possible to describe
some elements of the powersets of Σi and Σo more parsimoniously than others. Any restrictions on the sets
of segments that can be referred to are orthogonal to the characterization of constraints as transducers.

10Provided that the set of hard constraints leaves at least one possible candidate for every input, their
effects are precisely equivalent to holding a set of violable constraints undominated at the top of the ranking
hierarchy and considering only candidates that don’t violate them.

7

DRAFT – June 24, 2008 Violation Semirings in OT

be combined in any order. I have assumed, for convenience, that the automata are stated

over the same Σi, Σo, and C and that the machines have only a single ‘final’ state but none

of these conditions are essential to the results presented in this paper.

In the representations given here, aliases will be used for commonly referred to sets

of segments. In keeping with standard phonological conventions, the set of [+syllabic]

segments, the set of [–syllabic] segments, and the set of all segments will be denoted ‘C’,

‘V’, and ‘X’ respectively. Again following conventions (at the expense of some notational

perversity), the set containing just the empty string will be denoted ∅. To avoid confusion,

the empty set of symbols (which, by the definition in (6), can unify with any symbol-set) will

be represented as ⋆ and the empty violation-multiset will be represented {} (or sometimes

as C0 in discussion of violation multisets).

The transducer on the left in Figure 1 is a representation of the intersection of the

constraints Onset and NoCoda with a hard constraint that demands that all surface

strings consist of zero or more (C)V(C) syllables. The transducer on the right is the result

of combining the faithfulness constraints Max, Dep-v, and Dep-c with the markedness

constraints and the hard (C)V(C)-constraint into a single evaluation function Eval.

⋆ : (C:{}

∅ :) :{}

⋆ :C):{noc}

⋆ : (V:{ons}

⋆ :V:{}

A

B

C

∅ : (C:
{dep-c} ∅ : (C:{}

∅ :) :{}

C:C):{noc}

∅ :C):{noc, dep-c}

∅ : (V:
{ons, dep-v}

V:(V:{ons}

∅ :V:
{dep-v} V:V:{}

X:∅ :{max}

X:∅ :
{max}

X:∅ :
{max}

A

B

C

Figure 1: Transducers for σ = ((C)V(C)), Onset, NoCoda, Max, Dep-v, and Dep-c

The dotted arrow in Figure (1) corresponds to a sub-parse that is harmonically bounded.

Because there is an alternative path from C to A for exactly the same input string that

gets a strict subset of the violations, this arc cannot ever be traversed in an optimal parse

(cf. Prince and Smolensky 1993/2004:104); more on this in Section 5.

8

DRAFT – June 24, 2008 Violation Semirings in OT

In this characterization of OT I assume that the set of candidates for an input form

is simply the closure of the structural changes that are assigned violations by the faithful-

ness constraints. This is equivalent to assuming that all unfaithful mappings other than

those penalized by the explicitly mentioned faithfulness constraints are blocked by hard

constraints. Following this restriction, the presence of the constraint Max is what allows

the mapping X → ∅, while Dep-c and Dep-v allow ∅→C and ∅→V respectively.

The transducer that results from intersecting the entire constraint set can be called

‘Eval’. Once it has been constructed, the generation of optimal forms is carried out by

restricting Eval to (input, output) mappings that share a particular input string as in (7).

(7) Given Eval= (Q, Σi, Σo, C, δ, s, f) and an input string input = [i1, ..., in]:

Eval(input) = ({0, ..., n} ×Q, Σi, Σo, C, δ′, 〈0, sA〉, 〈n, f〉) where

for each (p, I, O, V, q) ∈ δ and each in:

if in ∈ I then (〈n− 1, p〉, in, O, V, 〈n, q〉) is in δ and

if I = ∅ then (〈n, p〉, ∅, O, V, 〈n, q〉) is in δ.

For an input form like ‘/ab/’, Eval(/ab/) would be as in Figure 2 (but I will use use the

labels ‘C’ and ‘V’ because the specific vowel and consonant are immaterial). To represent

violations in a manner more similar to the presentation in OT tableaux, I chose an arbitrary

order for the constraints 〈Ons, Noc, Max, Dep-c, Dep-v〉 and listed the violations as a

vector under each arc (i.e. I labeled the arcs with the multiplicties of the elements of C).

∅ : (C
00001

∅ : (C
00001

∅ : (C
00001

∅ : (V
10010

∅ : (V
10010

∅ : (V
10010

∅ :)
00000

∅ :)
00000 ∅ :)

00000

V:∅
00100

C:∅
00100

∅ : V
00010

∅ : V
00010

∅ :V
00010

V:∅
00100

V:∅
00100

V:V
00000

V:∅
00100

C:∅
00100

C:(C
00000

V:(V
10000

C:C)
00100

0A

0B

0C

1A

1B

1C

2A

2B

2C

Figure 2: Two ways to generate candidates with the surface form [CV] from the input /VC/

Because there are cycles in the graph in Figure 2, there are infinitely many distinct

paths and each one can be thought of as a competing (input, output) mapping for /VC/.

9

DRAFT – June 24, 2008 Violation Semirings in OT

UR: /VC/ Ons Noc Max DepV DepC

a. CV *! *

b. CV *! *

c. ∅ *!*

d. CVC *! *

e. ☞ CV.CV * *

∅ : (C
00001

∅ : (C
00001

∅ : (C
00001

∅ : C)
01001

∅ : (V
10010

∅ : (V
10010

∅ : (V
10010

∅ :)
00000

∅ :)
00000 ∅ :)

00000

V:∅
00100

C:∅
00100

∅ : V
00010

∅ : V
00010

∅ : V
00010

V:∅
00100

V:∅
00100

V:V
00000

V:∅
00100

C:∅
00100

C:(C
00000

V:(V
10000 C:C)

00100

0A

0B

0C

1A

1B

1C

2A

2B

2C

∅ : (C
00001

∅ : (C
00001

∅ : (C
00001

∅ : C)
01001

∅ : (V
10010

∅ : (V
10010

∅ : (V
10010

∅ :)
00000

∅ :)
00000 ∅ :)

00000

V:∅
00100

C:∅
00100

∅ : V
00010

∅ : V
00010

∅ : V
00010

V:∅
00100

V:∅
00100

V:V
00000

V:∅
00100

C:∅
00100

C:(C
00000

V:(V
10000 C:C)

00100

0A

0B

0C

1A

1B

1C

2A

2B

2C

∅ : (C
00001

∅ : (C
00001

∅ : (C
00001

∅ : C)
01001

∅ : (V
10010

∅ : (V
10010

∅ : (V
10010

∅ :)
00000

∅ :)
00000 ∅ :)

00000

V:∅
00100

C:∅
00100

∅ : V
00010

∅ : V
00010

∅ :V
00010

V:∅
00100

V:∅
00100

V:V
00000

V:∅
00100

C:∅
00100

C:(C
00000

V:(V
10000 C:C)

00100

0A

0B

0C

1A

1B

1C

2A

2B

2C

Figure 3: Five contenders for /VC/

The graph in Figure 2 encodes

an infinite OT tableau in which

each path represents a candidate.

This perspective is the core insight

of Ellison’s (1994) analysis of OT

optimization. The representation

of the candidate space in Figure 2

makes it clear that, even though

candidate set is infinite, it is highly

structured. It is this structure that

allows efficient optimization.

In Figure 3, I include the two

candidates from Figure 2 and three

more candidates to create some-

thing like a standard OT tableau.

Given this presentation, one could

imagine that ‘under the hood’ each

row in an OT tableau is really just

one of the paths through the graph

representation of the set of all the

candidates in the possibly infinite

candidate space.

Under the ranking Onset≫

NoCoda≫Max≫DepV≫DepC,

candidate (e) is optimal among the

five candidates given.

5 Optimization with violation multisets

Though candidate (e) is optimal among the five candidates given in Figure 3 under the

ranking R = Onset≫NoCoda≫Max≫DepV≫DepC, what is the role of the remainder

of the infinite range of candidates? What is needed is proof that (e) is optimal among all

candidates. To compute optimal candidates using graph-representations of the candidate

space, a version of Dijkstra’s (1959) Single-Source Shortest Paths (SSP) algorithm can

10

DRAFT – June 24, 2008 Violation Semirings in OT

be used. In this work I assume that the input to the optimization problem is the result

of restricting multiset-weighted Eval to an input string as defined in (7). I make this

assumption because specific properties of the construction in (7) have critical bearing on

the complexity of the optimization task. For an excellent general introduction to SSP

problems see (Cormen et al. 1990:ch25).

The graphs created in (7) are nearly acyclic in the sense defined by Takaoka (1996).

Unlike Takaoka’s cases, however, the near acyclicity of Eval(input) can be utilized without

needing to first factor out the cycles because the indices in the node names already serve to

identify the strongly connected components of the graph. I will call graphs in which groups

of nodes are associated with numeric indices and in which all arcs terminate at either the

same index or one index higher than their origin ‘linearly indexed’.

(8) A graph G = (Q, E) is linearly indexed if every node q ∈ Q has an integer index i[q]

and, for every edge (p, q) ∈ E, it is the case that i[p] = i[q] or i[p] = (i[q]− 1).

For linearly indexed graphs, Qi denotes the subset of Q with index i. The notation x[q]

will refer to the set of (cost, terminus) pairs on edges that originate at node q. Thus, in

Figure 2, x[1B] = {({max}, 2B), ({depV }, 1C)}. The notation d[q] will refer to the current

estimate of the shortest ‘distance’ from s to q (i.e. the cost of the most harmonic path from

the start state s to node q). Algorithm 1 characterizes Harmonic Optimization.

Algorithm 1: Harmonic Optimization (H-Opt)

input : RCon and a linearly indexed WFST = (Q, Σi, Σo, CCon, δ, s, f)
output: Optimal violations d[q] under RCon for parses that terminate at node q

for q ∈ Q do d[q]← C∞; /* set cost-estimates to ∞ */1

d[s]← C∅; /* set the ‘start’ cost to ∅ */2

Queues = [Q0, Q1, ..., Qn]; /* partition Q by input index */3

while Queues 6= [] do4

if Queue0 = ∅ then Pop(Queue0); /* remove empty Queue0 */5

q ← ExtractMin(Queue0); /* get best q in Queue0 */6

for (V, q′) ∈ x[q] do d[q′]← d[q′] R d[q] ⊎ V ; /* update cost-estimates */7

end8

The H-Opt algorithm only slightly modifies the standard Dijkstra-style SSP algorithm

in line 3 where the nodes Q of Eval(input) are partitioned into a sequence [Q0, Q1, ..., Qn]

of queues based on their indices. For general discussion and proofs of termination and

correctness of Dijkstra-style SSP algorithms, see (Cormen et al. 1990:ch25). Here I will be

11

DRAFT – June 24, 2008 Violation Semirings in OT

concerned mainly with the way that partitioning Q into a sequence of queues constrains

the computational complexity of optimization. This complexity will be measured in terms

of the number of calls to the R operation which is the dominant computational factor in

H-Opt. For rankings of k constraints, the R operation involves at most k comparisons of

pairs of integers and thus can be treated as one unit of computation.

Given an intersected constraint set Eval as defined in (6), γ = (|Q|, |E|) is the number

of nodes and edges in Eval’s graph representation. The definition in (7) guarantees that

Eval(input) contains at most n|Q| nodes and n|E| edges, where n is one more than the

length of input, and that each of the n queues in the sequence Queues contains at most |Q|

nodes. There will be at most n|Q| iterations of the while-loop over lines 4-7 because each

ExtractMin call in line 6 removes one node from one of the queues in Queues. The R

operations is also called once for each of the (at most) n|E| edges when the cost estimate

for the node at the terminus of the edge is updated in line 7.

The rest of the complexity of the problem is determined by the structure of the queues

and the implementation of the ExtractMin operation. If the queues are implemented as

lists and ExtractMin involves checking the d[q] values for the items in the list against

each other with the R operation, then there will be at most (|Q|2 −Q)/2 checks in each Qi

in Queues. Over the n queues the total number of calls of the R operation will be at most

n(|E|+ (|Q|2 −Q)/2) which is on the order of n|Q|2.

A more sophisticated queue like a binary heap (i.e. a priority queue) will keep the nodes

in each Qi organized according to their d[q] estimates and will thus reduce the cost of each

ExtractMin operation to lg |Q|. The need to keep each queue ordered will add (at most)

lg |Q| calls to R each time a new d[q] value is obtained for the terminus of an arc. This will

bound the total calls to R at n(|E| lg |Q|) in line 7 plus n(|Q| lg |Q|) in line 6. Because there

are more edges than nodes, the complexity will be dominated by the term n(|E| lg |Q|).

The main result of this analysis is thus that capitalizing on the linear-indexed structure

of Eval(input) by partitioning nodes into a sequence of queues provides a slight tightening

of Ellison’s (1994) log-linear complexity bound of O(n|E| lg n|Q|). This could be taken one

step further by implementing the queues as Fibonacci heaps, under which the n(|Q| lg |Q|)

calls to R in line 6 would dominate the computation.11

11For a review of Fibonacci heaps in SSP problems see Cormen et al. (1990:ch20). Optimization can also
be simplified by pruning arcs from Eval that are harmonically bounded (e.g. the dotted arc in Figure 1).
Taking this strategy to the extreme, Eval could be pre-optimized for a ranking R by running an all-pairs-
shortest-paths algorithm and leaving (at most) one arc between each pair of nodes for each input symbol
(cf. Riggle 2004:ch3). This would render Eval acyclic and would allow Viterbi-style optimization in OT.

12

DRAFT – June 24, 2008 Violation Semirings in OT

The computational complexity of Harmonic Optimization comes from n × f(γ) calls

to R . The use of sophisticated queue types can reduce the complexity of the function f ,

but even with the simplest list-based queues, f is a polynomial function of γ = (|Q|, |E|).

Assuming that Con and thus γ are fixed parameters of the analysis, this replaces Ellison’s

O(n log n) loglinear bound with the linear bound of O(n). Far more relevant than the minor

tightening of the complexity bound is the fact that this characterization of OT isolates the

role of Eval in the complexity of optimization. If the complexity of optimization is linear

in the length of the underlying form with a multiplicative constant that is determined by

the size and structure of the intersection of the constraint set (regardless of ranking) then

it is paramount that we understand just how large Eval is.

6 Conclusions

The characterization of constraint violations in OT as multisets provides a commutative

semiring for optimization. This has the advantage that there is only one machine Eval for

all rankings of a given constraint set. In illustrating OT optimization I showed that the

restriction of Eval to a given underlying form readily produces a linearly indexed graph

in which the indices demarcate the strongly connected components. Capitalizing on this

structure allows optimization whose complexity is linear in the length of the input with a

multiplicative constant provided by the size and structure of Eval. In this presentation of

OT optimization I assumed that Eval for a given (set of) grammar(s) is constructed from

a subset of the universal inventory of possible constraints and only adjudicates amongst

candidates whose structural deviation from the input form is evaluated by faithfulness

constraints explicitly included in the analysis. This highlights the need to understand the

structure of Eval for constraint sets that are attested in real-world grammars.

References

Bistarelli, Stefano, Ugo Montanari, & Francesca Rossi (1997) Semiring-based constraint satisfaction

and optimization. J. ACM 44(2): 201–236.

Charniak, Eugene & Mark Johnson (2005) Coarse-to-fine-grained n-best parsing and discriminative

reranking. In In Proceedings of the 43rd ACL.

Cormen, Leiserson, & Rivest (1990) Introduction to Algorithms. Cambridge Mass.: MIT Press.

13

DRAFT – June 24, 2008 Violation Semirings in OT

Dijkstra, Edsger. W. (1959) A note on two problems in connexion with graphs. Numerische Mathe-

matik 1: 269–271.

Eisner, Jason (1997) Efficient Generation in Primitive Optimality Theory. In Proceedings of the 35th

Annual Meeting of the Association for Computational Linguistics (ACL), Madrid, 313–320.

Eisner, Jason (2000) Easy and Hard Constraint Ranking in Optimality Theory: Algorithms and

Complexity. In Finite-State Phonology: Proceedings of the 5th Workshop of the ACL Special

Interest Group in Computational Phonology (SIGPHON), Jason Eisner, Lauri Karttunen, & Alain

Thériault, eds., Luxembourg, 22–33.

Eisner, Jason (2001) Expectation Semirings: Flexible EM for Finite-State Transducers. In Pro-

ceedings of the ESSLLI Workshop on Finite-State Methods in Natural Language Processing

(FSMNLP), Gertjan van Noord, ed., extended abstract (5 pages).

Eisner, Jason (2003) Simpler and More General Minimization for Weighted Finite-State Automata.

In Proceedings of the Joint Meeting of the Human Language Technology Conference and the North

American Chapter of the Association for Computational Linguistics (HLT-NAACL), Edmonton,

64–71.

Ellison, T. Mark (1994) Phonological derivation in optimality theory. In Proceedings of the 15th

conference on Computational linguistics, Morristown, NJ, USA: Association for Computational

Linguistics, 1007–1013.

Fink, E. (1992) A survey of sequential and systolic algorithms for the algebraic path problem.

Frank, Robert & Giorgio Satta (1998) Optimality Theory and the Generative Complexity of Con-

straint Violability. Computational Linguistics 24(2): 307–315.

Gerdemann, Dale & Gertjan van Noord (2000) Approximation and Exactness in Finite State Opti-

mality Theory. In Coling Workshop Finite State Phonology, Luxembourg.

Goldsmith, John (1993) Harmonic phonology. Chicago: University of Chicago Press, 221–269.

Heinz, Jeffrey, Gregory Kobele, & Jason Riggle (2008) Evaluating the complexity of Optimality

Theory. Linguistic Inquiry (forthcoming) ROA 968-0508.

Hopcroft, John E. & Jeffrey D. Ullman (1979) Introduction to automata theory, languages, and

computation. Reading, Mass.: Addison-Wesley, 78067950 John E. Hopcroft, Jeffrey D. Ullman.

Addison-Wesley series in computer science. Includes index. Bibliography: p. 396-410.

Idsardi, William J. (2006) A Simple Proof That Optimality Theory Is Computationally Intractable.

Linguistic Inquiry 37(2): 271–275.

14

DRAFT – June 24, 2008 Violation Semirings in OT

Karttunen, Lauri (1998) The Proper Treatment of Optimality in Computational Phonology. In Finite

State Methods in Natural Language Processing, Kemal Oflazer & Lauri Karttunen, eds., Bilkent

University, Ankara, Turkey, 1–12.

Kempe, André, Jean-Marc Champarnaud, & Jason Eisner (2004) A Note on Join and Auto-

Intersection of n-ary Rational Relations. In Proceedings of the Eindhoven FASTAR Days (Com-

puter Science Technical Report 04-40), Loek Cleophas & Bruce Watson, eds., Department of

Mathematics and Computer Science, Technische Universiteit Eindhoven, Netherlands, 64–78.

Klein, Dan & Christopher D. Manning (2004) Parsing and hypergraphs : 351–372.

Legendre, Geraldine, Yoshiro Miyata, & Paul Smolensky (1990) Harmonic Grammar – A Formal

Multi-Level Connectionist Theory of Linguistic Well-Formedness: Theoretical Foundations. Pro-

ceedings of the Twelfth Annual Conference of the Cognitive Science Society : 388–395.

Mohri, Mehryar (2002) Semiring Frameworks and Algorithms for Shortest-Distance Problems. Jour-

nal of Automata, Languages and Combinatorics 7(3): 321–350.

Pater, Joe, Rajesh Bhatt, & Christopher Potts (2007a) Linguistic Optimization. Ms., ms. UMASS

Amherst.

Pater, Joe, Christopher Potts, & Rajesh Bhatt (2007b) Harmonic Grammar with Linear Program-

ming.

Prince, Alan & Paul Smolensky (1993/2004) Optimality theory: Constraint interaction in generative

grammar.

Riggle, Jason (2004) Generation, Recognition, and Learning in Finite State Optimality Theory.

Ph.D. thesis, University of California, Los Angeles.

Simon, Imre (1988) Recognizable Sets with Multiplicities in the Tropical Semiring. In MFCS ’88:

Proceedings of the Mathematical Foundations of Computer Science 1988, London, UK: Springer-

Verlag, 107–120.

Smolensky, Paul & Géraldine Legendre (2006) The Harmonic Mind: From Neural Computation

to Optimality-Theoretic GrammarVolume I: Cognitive Architecture (Bradford Books). The MIT

Press.

Takaoka, Tadao (1996) Shortest Path Algorithms for Nearly Acyclic Directed Graphs. In Workshop

on Graph-Theoretic Concepts in Computer Science, 367–374.

Wareham, H.T. (1998) Systematic Parameterized Complexity Analysis in Computational Phonology.

Ph.D. thesis, University of Victoria.

15

