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Abstract—In this paper we presented a violence detector
built on the concept of visual codebooks using linear support
vector machines. It differs from the existing works of violence
detection in what concern the data representation, as none has
considered local spatio-temporal features with bags of visual
words. An evaluation of the importance of local spatio-temporal
features for characterizing the multimedia content is conducted
through the cross-validation method. The results obtained
confirm that motion patterns are crucial to distinguish violence
from regular activities in comparison with visual descriptors
that rely solely on the space domain.
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I. INTRODUCTION

A topic of increasing interest in video processing is the
characterization of multimedia content with regard to the
presence of certain human actions. The ability of detecting
different types of human actions has already been stated
as a prominent task for a wide range of computer vision
applications, namely, content-based video indexing, filtering
of unwanted content, rating of movies, aid to human oper-
ators in real-time surveillance systems, to name just a few.
Especially, detection of violent scenes receives considerable
attention in surveillance systems, and filtering or rating of
unwanted content. The former is justified by the need of
providing people with safer public spaces, and the latter is
aimed at situations where violence is considered inappropri-
ate for the audience (e.g., children).

A few difficulties arise in order to automatically char-
acterize violence in multimedia content. To start with, its
subjective nature imposes some barriers in defining what
should be pointed as violence. Also some human behaviours,
very similar to aggressive actions, might be misclassified.
Therefore, the question of solving those ambiguities is raised
to make the application feasible for efficient and robust
real system. Given that the existing approaches of violence
use an arbitrary notion, we also simplify the concept here
by labeling as violent only those scenes containing fights
(aggressive human actions), regardless of context and the
number of people involved.

In this paper, we put forward a violence detector based
upon local spatio-temporal features, using the “Bag of Visual
Words” (BoVW) [1] representation and supervised learning
with Support Vector Machine (SVM) [2]. Video elements
are then classified as violent or non-violent.

The remainder of this paper is set as follows. In Section II
we are concerned with the chosen type of data representa-
tion. In Section III, the proposed detector is approached in
details. Lastly, the experimental results and their analysis,
as well as the conclusion and future works are described in
Sections IV and V, respectively.

A. Related Work

Most of the works in the literature use audio features
as an additional resource to represent the video elements,
combining it with visual features that provide motion infor-
mation. None made use of local features such as the local
spatio-temporal descriptor [3]. In addition, to the best of our
knowledge, none has ever considered “visual codebooks”
to bridge the gab between the underlying and meaningful
coarse feature patterns and the high level semantic of inter-
est.

In [4], an in-depth hierarchical approach was proposed
for detecting distinct violent events involving two people,
namely: fist fighting, hitting with objects, kicking, among
others. They compute information (acceleration measure
vector and its jerk) regarding the motion trajectory of image
structures. However, this method presents some limitations,
e.g. it fails when the fighters fall down, or when it involves
more than two people.

Siebel and Maybank [5] developed a surveillance system
for aiding human operators in monitoring undesirable events
in a metro station. The system named as ADVISOR tracks
and analyses people and crowd behaviours from multiple
cameras. Once these data are processed the system flags a
notification to the operator about a suspicious situation.

In [6], the authors argued for audio features as a self-
sufficient resource for detecting violence in video. They
showed the potential audio signals that should appear in
violence scenes, such as screams, gunshots, explosions.



However, some sounds unrelated to violence (e.g., fireworks)
may lead to misclassification of scenes. Additionally, their
application is focused on rating movies with respect to
violent content, and the dataset is not specified.

In [7], a violence detector consisting of 4 modules is pro-
posed. The first module separates a video into scenes. The
second is assigned the task of retrieving the skin and blood
colored regions from the scene frames, which are further
filtered for obtaining the regions of interest (which might
correspond to violent content). Then, motion intensities of
these candidate regions are computed, and those with high
values are casted as pertaining to the violence class.

Finally, other works aggregate audio and visual fea-
tures [8]. For instance, in [9] this combination is done using
a multiview scheme, with co-training strategy for consulting
both evidences, being concerned with movie rating.

II. DATA REPRESENTATION

Which type of image descriptor to use and how to handle
the provided set of features are important decision makings
in the design of a computer vision application. Until recently,
there has not been a comprehensive method capable of
dealing with all possible contexts yet, and probably there
will not be. Therefore, a few considerations to raise are: i)
which particular information give reliable indications that
a specific event (or object) has occurred in a context of
interest?, ii) how could they be systematically obtained?,
iii) how could they be useful to find equivalents in unknown-
content data?, iv) which type of representation should they
be encoded in?, and v) which techniques are available to
manipulate those coded information?. Many other questions
are possible and in this section the reader is driven to
the particular set of choices to deal with the detection of
violence scenes.

A. On Visual Features

Violence is typically qualified by aggressive human be-
haviors, namely, fast movements of limbs, face punching,
kicking, and other similar actions. In this regard, it is
natural to think of descriptions of local motion patterns as
peculiar atifacts to the application, in the sense that they
correspond to movements of different parts of the object
that is responsible to perform the action. Those descriptions
are commonly known as local image features (or interest
points), which are expected to furnish abstract and compact
representation to visual data.

In the literature, many interest point detectors have
been proposed including detectors of spatio-temporal fea-
tures [10] [3], scale-invariant features [11], and features in-
variant to scale and affine transformations [12]. In particular,
this work was concerned with confirming that interest point
detectors of the spatio-temporal domain are more suitable
and superior in providing distinctive information to describe
actions characterizing violence demeanours than those only

working in the spatial domain. Then, a performance compar-
ison of the violence detector using SIFT [11] and STIP [3]
was carried out.

SIFT extracts distinctive local features by computing
oriented-gradient histograms. This process is accomplished
in four principal computation steps, namely, detection of
maximas in scale-space, selection of interest points, assign-
ment of orientations to the interest points, and description
of the interest points by measuring local gradients in their
neighborhoods. So as this descriptor is very sensitive to
borders, many noisy features are detected in images with
cluttered backgrounds. In this case, focusing on regions
belonging uniquely to the object of interest in the scene is an
advantage of considering temporal information on detection
of interest points.

Laptev [3] designed a differential operator for simulta-
neously considering extremas over the spatial and temporal
scales that refer to particular patterns of events in specific
locations. This method is built on the Harris [13] and
Förstner [14] interest point operators, but extended for the
temporal domain. Essentially, as a corner moves across an
image sequence, at the change of its direction an interest
point is identified. Other typical situations are established
when image structures are either split or unified. For being
one of the major elements in this work, a few details
and mathematical considerations on the detector design are
presented next.

1) Spatio-temporal interest point detector: Many interest
events in videos are characterized by motion variations of
image structures over time. In order to retain those important
information, the concept of spatial interest points is extended
to the spatio-temporal domain. This way, the local regions
around the interest points are described with respect to
derivatives in both directions (space and time).

At first, the selection of interest point in the spatial
domain is described. The linear scale-space representation
of an image can be mathematically defined as Lsp : R2 ×
R+ 7→ R, which is the convolution of fsp with gsp, where
fsp : R2 7→ R represents a simple model of an image and
gsp is the Gaussian kernel of variance σ2

l . Then,

Lsp(x, y;σ2
l ) = gsp(x, y;σ2

l ) ∗ fsp(x, y), (1)

and

gsp(x, y;σ2
l ) =

1
2πσ2

l

exp(−(x2 + y2)/2σ2
l ). (2)

Localizing interest points means to find strong variations
of image intensities along the two directions of the image.
To determine those local regions, the second moment matrix
is integrated over a Gaussian window having variance σ2

i ,
for different scales of observation σ2

l , which is written as
the equation:
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The descriptors of variations along the dimensions of fsp

are the eigenvalues of Eq. 3: λ1 and λ2, with λ1 ≤ λ2.
Higher values of those eigenvalues is a sign of interest point
and generally leads to positive local maxima of the Harris
corner function, provided that the ratio α = λ2/λ1 is high
and satisfies the constraint k ≤ α/(1 + α)2:

Hsp = det(µsp)− k.trace2(µsp)
= λ1λ2 − k(λ1 + λ2)2 (4)

.
Analogously, the procedure to detect interest points in the

scape-time domain is derived by rewriting the equations to
consider the temporal dimension. Thus, having an image se-
quence modeled as f : R2×R 7→ R, its linear representation
becomes L : R2 ×R×R2

+ 7→ R, but over two independent
variances σ2

l (spatial) and τ2
l (temporal) using an anisotropic

Gaussian kernel g(.;σ2
l , τ

2
l ). Therefore, the complete set of

equations for detecting interest points described in [3] is the
following.

L(.;σ2
l ) = g(.;σ2

l , τ
2
l ) ∗ f(.), (5)

g(x, y, t;σ2
l , τ

2
l ) =

1√
(2π)3σ4

l τ
2
l

× exp(−(x2 + y2)/2σ2
l − t2/τ2

l ), (6)

µ = g(.;σ2
i ) ∗

 L2
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 (7)

H = det(µ)− k.trace2(µ)
= λ1λ2λ3 − k(λ1 + λ2 + λ3)3, (8)

restricted to H ≥ 0, with α = λ2/λ1 and β = λ3/λ1, and
subject to k ≤ αβ/(1 + α+ β)3

B. Codebooks of Visual Features

The method proposed in this paper is built on “bag
of visual features” (or bag of visual words), a concept
borrowed from the field of textual information retrieval,
which has been successfully applied to a large range of
image processing applications [15][16]. In this approach, the
feature domain is sliced into discriminative subspaces. Each
subspace reflects an observed, enlightening pattern of the
visual content, e.g. parts of animate and inanimate entities.

Figure 1. First step: videos are split into shots. Video shots are served as
input to STIP, whereas the frame sample is input to SIFT.

Figure 2. Second step: the visual feature vectors are computed for each
video shot.

These patterns are believed to provide instructive clues to
portray a multimedia content under analysis. That is, the
presence of a few of such patterns (what are referred as
visual words) should indicate with certain confidence the
occurrence of specific events or objects in a scene or image.

In other words, “visual words” are distinctive feature vec-
tors, i.e. features considered informative enough to account
for the underlying patterns of a set of visual data. They
compose what is called the visual codebook. Depending
on the intrinsic characteristics of the interest point detector
and feature descriptor used to compute the feature vectors
(building a feature space), the distribution of patterns in the
formed feature space suffers considerable variation. Some
approaches combine different organization of feature space
to enhance the ability of interpretation of visual complex



Figure 3. Third step: a clustering algorithm is applied to the feature space
in order to discover the latent patterns.

Figure 4. Fourth step: visual histograms are assembled to represent the
video elements according to the occurrence of visual words in their feature
space.

scenarios.
The idea is that those latent patterns encountered should

be able to help narrow the gap between the seemingly
meaningless coarse data and the semantic of interest. In what
concerns how to represent the video elements, let the visual
words be the probable attributes that any video must hold.
Thus, the count of the different attribute occurrences in a
specific video element, i.e. a visual word histogram, gives its
description. A definite disposal of word frequency bestows
a guess about which information it is contains with a degree
of confidence.

Generally, discovering proper visual words to represent
the visual content follows a standard set of steps. Once
from a dataset sample the feature vectors are computed,

a clustering algorithm (usually the k-means) is delegated
to organize the feature vectors in groups (clusters). The
assigment of feature vectors to different clusters is dictated
by a similarity measure function, which is commonly the
Euclidean distance function. Each formed cluster stands for
a unique pattern from the multimedia dataset, and the cluster
center computed by the mean of the group elements rep-
resents a visual word. Therefore, to find the correspondent
visual word of new feature vector only depends on verifying
to which cluster center it is most similar.

Formally, visual codebooks are generated as follows.
Given a set of videos SV = {V1, V2, V3, V4, ..., Vn}, for
i ≤ n, low-level features of each video are computed by
using a feature descriptor (e.g. SIFT, STIP), as depicted
in Figure 2. Then, each video Vi consists of a set of
feature vectors, that is, Vi = {F1, F2, F3, F4, F5, F6, ..., Fk},
where the feature vector dimension d varies according to the
interest point descriptor (feature descriptor) and the number
of features extracted k depends on the amount of information
available in the video that the detector and descriptor are
able to snare. Those features are clustered according to their
level of similarity. Therefore, g groups are formed (Figure 3),
having each a d-dimensional representative ci, 1 ≤ i ≤ g. As
a result, a visual codebook consists of all feature vectors ci.
Such codebook is further used as a reference to compute the
visual word histograms (Figure 4) of new data. This way, a
new domain is created, where each visual word corresponds
to a dimension i, having histograms of visual words as
elements of this space.

For example, if there is a codebook constructed by ten
visual words, a visual word histogram has ten dimensions.
Suppose also that some visual words (the first six words)
correspond to patterns related to essential parts of a human
being to recognize a person and others (the last four words)
are unrelated to the description of a person. Then, if there
is a visual word histogram Bg

i representing an image Ii
consisting of twenty feature vectors, where sixteen are most
similar to the person-related visual words and four to the
unrelated-person ones, which in turn are distributed as Bi =
{B1

i = 7, B2
i = 2, B3

i = 1, B4
i = 3, B5

i = 1, B6
i = 2, B7

i =
2, B8

i = 1, B9
i = 0, B10

i = 1}, it is very likely that there is
a person in this image, but the classifier is the entity tasked
to give the “right” answer.

III. THE VIOLENCE DETECTOR DESIGN

In this section, the procedures involving the violence
detector are set out. The preliminary step is to segment1

the set of videos SV = {V1, V2, V3, V4, ..., Vn} into shots
(see Figure 1). This way, each video Vi is denoted by
Vi = {Si,1, Si,2, Si,3, Si,4, ..., Si,m}, where m is the total
number of shots that composes Vi. Next, the video shots are

1We have used an industry-standard software for segmentation, see at
http://www.stoik.com/products/svc/



submitted to the feature extraction process (see Figure 2)
using the spatio-temporal descriptor [3] (but for analysis of
performance we also applied SIFT [11]).

It is important to clarify here that, as we rely on supervised
learning with SVM, a mandatory step is to create a classi-
fication model. After that, the model can be updated or the
classification process can be performed. Both stages depend
that the features are extracted and available. Then, initially,
there is neither codebook nor classification model (this latter
used as input to SVM), therefore they must be created. Once
they are arranged, that is, the visual codebook is built and
there is one classification model at disposal, new data can
be processed. A classification model is a set of information
guiding the classifier to indicate to which data pattern the
unknown data pertain.

In the present work, the “visual codebooks” were con-
ceived by means of false clustering. This means that the
visual words were randomly selected from the whole set of
extracted visual features (using such approach allows us to
save computational time and experiments have demonstrated
plausible results for large amounts of data, which is the
particular case). However, notice that the discovery of visual
words could have been performed by using a clustering
algorithm, which in theory should produce a more consistent
organization of the feature space.

Thus, the system must first be provided with a sample
of data to learn a classifier based on the visual word
histograms of the sample. The accomplishment of this task
requires a predefined set of instructions. First, the bags of
visual words for each video shot Si,j are generated by
quatifying the their respective feature space. At this point,
each video Vi of the sample is represented by a set of bags
SBi = {Bi,1, Bi,2, Bi,3, ..., Bi,m}, where each bag refers
to a different shot Si,j , where m is total number of shots
and 1 ≤ j ≤ m. Secondly, the set of bags is annotated (each
bag is labeled with a class identification number) and served
as input to the linear-SVM algorithm (using libSVM [17])
in order to generate a prediction model. Experimentally, the
linear kernel provided us with the best performance for all
cases in comparison with the non-linear.

Once the visual codebook and prediction model are ac-
quired, incoming data are processed, that is, segmented into
shots, converted into bags of visual words, and passed to the
stage in which the classifier acts. In this step, the classifier is
fed with the prediction model and the not observed data in its
visual-word form. In the end of the classification process, the
analyzed data has a set of information associated regarding
the possible classes (for example, how much of the data
composition is likely connected to violent and non-violent
content).

Shot classification is the final step of the detector, which is
performed using support vector machines [2]. Its foundations
are derived from the statistical learning theory and such
methods are commonly used to either classification or re-

Figure 5. Working scheme of the violence detector.

gression. Technically, n−1 hyperplanes must be constructed
and ideally have the largest possible margins among the
n existing classes. The hyperplanes are responsible for
establishing the subspace bounds of each class. Therefore,
given a training sample of the dataset and having calculated
their hyperplanes, the classifier is capable of assigning a
new data to a specific class. In particular, we assume that
the classes can be reasonably defined by linear hyperplanes,
since especially the linear classifier sufficed to nicely cate-
gorize the testing dataset.

A thumbnail sketch of the violence detector design is
depicted in Figure 5.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section is committed to expose preliminary results
regarding the detection of violence in shots. Although a fine-



Figure 6. Content illustration of the violence video dataset.

grained analysis could be interesting, a rougher categoriza-
tion of the content under analysis was chosen, given the
inherently anarchic nature of social networks. In addition, a
clear-cut definition of what each “subclass” should contain,
considering fine-grained notation, has not been established
yet.

A. The Dataset

It is important to note that the literature lacks a shared
violence dataset, which limits our ability to fairly compare
our approach to the existing ones. Furthermore, most of
the works in violence detection do not describe the dataset
used in enough details to allow reproducing their results.
That way, we have assembled a violence database (available
under request). An illustration of the conceived database is
depicted by Figures 6 and 7.

Both violence and non-violence samples are very diverse
and representative, which can be found on social networks.
A compilation of daily life situations in schools, ghettos,
entering spaces of night clubs, matches from several sport
variations (e.g., soccer, hockey), traffic (and more), involv-
ing fights and professional fight scenes build the violence
dataset. Scenarios are depicted by aggressive behaviors
involving any number of people, in indoor and outdoor
environments, with or without presence of moving objects
(e.g., cars) in background. The non-violence dataset is
described by music clips, news broadcast videos, matches
that confuse with those containing violence, pornography
scenes, traffic, events with people hugging, running, among
others. In total, there are 400 videos, 200 composing each
category.

B. Setup

To validate the proposed violence detector, the experi-
ments were carried out using 108 videos for each category.
For extracting the set of features of the dataset, we made use

Figure 7. Content illustration of the non-violence video dataset.

of SIFT and STIP. Visual word histograms were computed
to give a middle-level representation of the visual data. To
construct the visual codebooks, k values ranging from 100
to 5000 were considered. The classification task performed
so great to 100 as to 1000 and 5000, apart from calling
for much less computational burden, leading us to naturally
chose 100 as a good number of visual words to describe the
dataset. To close the experimental protocol we conducted
a 5-fold cross-validation, where the visual histograms were
not normalized.

C. Results and Discussion

Tables I and II shows the classification performance of
the method with SIFT and STIP, respectively. They reveal
that although SIFT performs relatively well with 80.09% of
true positive and 85.35% of true negative, there is still a
considerable amount of error remaining for both sides of
the coin, 14.65% false positives and 19.91% false negatives.
Conversely, the STIP’s performance is much superior than
SIFT’s, scoring 100% in detecting non-violent shots and
having a minor error of 0.46% for assertion of the violent
content.

These evidences make us to conclude that spatio-temporal
features are decisive to better define what is in fact relevant
to separate the different categories, obviously, provided that
the difference among the classes strongly takes into account
motion patterns. The results somehow claim how relevant is
to work with the space-time domain for encountering unique
characteristics of the behaviour of the interest structures in
contrast to a visual descriptor that relies solely on the space
domain [11].

V. FINAL REMARKS

To sum up, we proposed and evaluated a method based
on data representation using local spatio-temporal feature
properties, which was abstracted with basis on the concept of



Table I
PERFORMANCE OF SHOT CLASSIFICATION USING ORIENTED-GRADIENT

FEATURES WITH 100-WORD CODEBOOK.

SIFT
(%) Violent Non-violent

Violent 80.09 19.91
Non-violent 14.65 85.35

Table II
PERFORMANCE OF SHOT CLASSIFICATION USING SPATIO-TEMPORAL

FEATURES WITH 100-WORD CODEBOOK.

STIP
(%) Violent Non-violent

Violent 99.54 0.46
Non-violent 0 100.0

visual words, applying support vector machines for learning
and detection of violent content in videos. The proposed
violence detector can be acceptably applied to offline pro-
cessing of surveillance videos and movie rating.

As for the result analysis, it was attested that the spatio-
temporal descriptor looks carefully into the dynamic aspects
of the interest objects over a sequence of frames. Therefore,
selecting significant patterns, which turns out to finely
distinguish violence from regular scenes.

From now on, we intend to select videos having ex-
plicitly more ambiguous content in order to evaluate how
the proposed detector deals with a more complex scenario.
Changing the current problem to a multiclass viewpoint,
with a clear-cut definition, is a point to be considered;
by specializing the different types of violent behaviors and
aggregating cases where violence is doubtful.
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