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Violet and blue light blocking intraocular lenses:
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Aim: To analyse how intraocular lens (IOL) chromophores affect retinal photoprotection and the sensitivity
of scotopic vision, melanopsin photoreception, and melatonin suppression.
Methods: Transmittance spectra of IOLs, high pass spectral filters, human crystalline lenses, and sunglasses
are used with spectral data for acute ultraviolet (UV)-blue photic retinopathy (‘‘blue light hazard’’
phototoxicity), aphakic scotopic luminous efficiency, melanopsin sensitivity, and melatonin suppression to
compute the effect of spectral filters on retinal photoprotection, scotopic sensitivity, and circadian
photoentrainment.
Results: Retinal photoprotection increases and photoreception decreases as high pass filters progressively
attenuate additional short wavelength light. Violet blocking IOLs reduce retinal exposure to UV (200–
400 nm) radiation and violet (400–440 nm) light. Blue blocking IOLs attenuate blue (440–500 nm) and
shorter wavelength optical radiation. Blue blocking IOLs theoretically provide better photoprotection but
worse photoreception than conventional UV only blocking IOLs. Violet blocking IOLs offer similar UV-blue
photoprotection but better scotopic and melanopsin photoreception than blue blocking IOLs. Sunglasses
provide roughly 50% more UV-blue photoprotection than either violet or blue blocking IOLs.
Conclusions: Action spectra for most retinal photosensitisers increase or peak in the violet part of the
spectrum. Melanopsin, melatonin suppression, and rhodopsin sensitivities are all maximal in the blue part
of the spectrum. Scotopic sensitivity and circadian photoentrainment decline with ageing. UV blocking
IOLs provide older adults with the best possible rhodopsin and melanopsin sensitivity. Blue and violet
blocking IOLs provide less photoprotection than middle aged crystalline lenses, which do not prevent age
related macular degeneration (AMD). Thus, pseudophakes should wear sunglasses in bright environments
if the unproved phototoxicity-AMD hypothesis is valid.

O
ptical radiation includes ultraviolet (UV) radiation
(200–400 nm) and visible light (400–700 nm).1 Violet
(400–440 nm) and blue (440–500 nm) light comprise

the shorter wavelength part of the visible spectrum.2 3 The
cornea prevents UV radiation shorter than 300 nm from
reaching the retina.4 The crystalline lens blocks most UV
between 300 nm and 400 nm.4–6 Light transmission by the
crystalline lens decreases with ageing, particularly at shorter
wavelengths.4–8 The first poly(methylmethacrylate) intraocu-
lar lenses (IOLs) transmitted UV in addition to visible light.9

UV does not provide useful vision but it can harm the retina
in acute intense exposures.9–13 Most IOLs incorporated UV
blocking chromophores by 1986.14

Interest in blocking visible light as well as UV is motivated
by the unproved hypothesis that phototoxicity from environ-
mental light exposure can cause or accelerate age related
macular degeneration (AMD).11 13 15–25 This phototoxicity-
AMD hypothesis is popular in part because lipofuscin
accumulates with ageing in the retinal pigment epithelium
(RPE), perhaps increasing the retinal phototoxicity risks of
older adults.26–28 None the less, six of the eight major
epidemiological studies found no correlation between AMD
and lifelong light exposure,29–37 caused by (1) its absence, (2)
difficulty in accurately estimating a subject’s cumulative light
exposure retrospectively, (3) variability in genetic suscept-
ibility, or (4) other potentially obfuscating factors such as
differences in the age at which subjects experience bright
environmental light exposure.

Light can damage the retina by photomechanical, photo-
thermal, or photochemical mechanisms.1 11 20 38 The two
classic types of acute retinal photochemical injuries
(‘‘photic retinopathies’’ or ‘‘retinal phototoxicities’’) can be

distinguished by their action spectra, as shown in
figure 1.1 3 20 39–42 An action spectrum characterises the
variation in potential phototoxicity with wavelength.

The first type of phototoxicity is blue-green (‘‘Noell-type,’’
‘‘class 1,’’ or ‘‘white light’’) photic retinopathy. Its action
spectrum is similar to aphakic scotopic sensitivity because
rhodopsin mediates both processes. Thus, blue-green photo-
toxicity hazardousness actually decreases in the blue and
violet part of the spectrum below rhodopsin’s peak sensitivity
around 500 nm (cf, fig 1).43–46 Furthermore, any spectral filter
that reduces blue-green phototoxicity causes an equivalent
percentage decrease in scotopic sensitivity.

The second type of phototoxicity is UV-blue (‘‘Ham-type,’’
‘‘class 2,’’ or ‘‘blue light hazard’’) photic retinopa-
thy.10 12 20 25 40 47 As shown in figure 1, its severity increases
with decreasing wavelength, similar to that of lipofuscin
which is one of its primary mediators.23 25 48 Figure 2
illustrates that macular xanthophyll protection declines
rapidly in the violet part of the spectrum,49–52 where porphyrin
and cytochrome oxidase phototoxicity peak.23 43 53–58 The
weakly phototoxic25 pyridinium bisretinoid A2E component
of lipofuscin also has peak phototoxicity around 430 nm in
the violet part of the spectrum.59 60 Separating acute photic
retinopathy into the two preceding categories is useful
heuristically, but it may oversimplify phototoxic interactions
currently used to study retinal degeneration and cell
biology.22 57 61–63

There are three types of retinal photopigments: (1) cone
photoreceptor photopigments that provide photopic (bright

Abbreviations: AMD, age related macular degeneration; IOL,
intraocular lens; RPE, retinal pigment epithelium; UV, ultraviolet
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light) and mesopic (intermediate light) vision,64 65 (2) rhodopsin
in rod photoreceptors responsible for mesopic and scotopic (dim
light) vision,45 46 and (3) melanopsin in blue light sensitive
retinal ganglion cells that modulate circadian photoentrain-
ment, pupillary function, and possibly conscious vision.66–69 IOLs
that block UV and visible light potentially reduce the risk of
acute UV-blue phototoxicity.3 11 14 42 They also decrease the light

reaching S-cones, light sensitive retinal ganglions, and rod
photoreceptors,3 42 which have peak spectral sensitivities around
426 nm (violet),64 65 480 nm (blue),69–71 and 500 nm (blue-
green),45 46 respectively. Melanopsin containing light sensitive
retinal ganglion cells control circadian photoentrainment
through melatonin suppression. Melatonin suppression has a
peak sensitivity in human subjects of roughly 460 nm (blue),

Figure 1 Acute aphakic UV-blue
phototoxicity (Al),

10 12 73 aphakic
scotopic luminous efficiency (V’l),

46

melanopsin spectral sensitivity (Ml,
peak sensitivity, 479–483 nm),68–71 188

and melatonin suppression sensitivity
(M’l, peak sensitivity, 459–
464 nm).66 67 72 Original rather than
smoothed aphakic scotopic luminous
efficiency (V’l) data are shown.46 The
potential hazardousness of acute UV-
blue type phototoxicity increases with
decreasing wavelength. Acute blue-
green retinal phototoxicity has an
action spectrum similar to aphakic
scotopic sensitivity because rhodopsin
mediates both processes.43 44 Melatonin
suppression and melanopsin sensitivity
are more heavily dependent on blue
light than rod (rhodopsin) mediated
visual functions.

Figure 2 Acute UV-blue10 12 73 and
lipofuscin23 25 phototoxicity rise rapidly
in the violet part of the spectrum, where
porphyrin23 56 and cytochrome
oxidase23 58 phototoxicities peak and
macular xanthophyll protection
declines.75 Conversely, as shown in
figure 1, violet light is much less
important than blue light for circadian
photoentrainment and vision in dim
environments.
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approximately 20 nm shorter than the peak sensitivity mea-
sured experimentally for the photopigment melanopsin.66–72

The action spectra for acute experimental blue-green and
UV-blue phototoxicities are well characterised, but if there is
chronic light damage in humans, its action spectrum is
unknown. If the phototoxicity-AMD hypothesis is valid and
chronic retinal damage arising from lifelong repetitive acute
phototoxic injury does have a significant role in AMD, then
action spectra for the two classic types of photic retinopathy
can be used to estimate the relative protection afforded by
different IOL spectral filters. UV-blue phototoxicity is
characterised by the international standard aphakic retinal
hazard function (Al, fig 1),73 based on Ham’s studies of light
damage in young primates.10 12 Blue-green phototoxicity may
be specified by the aphakic scotopic sensitivity function
governed by rhodopsin light absorption (fig 1).46

Retinal photoprotection, scotopic sensitivity, and circadian
photoentrainment relative to a conventional UV only block-
ing IOL were computed for: (1) hypothetical UV + violet
blocking high pass filters that have different cut-off
wavelengths, (2) UV + violet and UV + violet + blue blocking
IOLs, and (3) crystalline lenses of different ages,4 using (1)
spectral data for acute UV-blue retinal phototoxicity,73

aphakic scotopic luminous efficiency,46 melanopsin sensitiv-
ity,69 and melatonin suppression,67 (2) transmittance spectra
measured for each IOL, and (3) published data on the
spectral transmittance of crystalline lenses4 and sunglasses.74

The terms ‘‘violet blocking’’ and ‘‘blue blocking’’ will be used
for IOLs that attenuate UV + violet and UV + violet + blue
light, respectively.

MATERIALS AND METHODS
A Beckman-Coulter DU 800 UV/visible microcomputer con-
trolled spectrophotometer (Beckman-Coulter, Fullerton, CA,
USA) was used to measure the spectral transmittance of UV

transmitting (eyeonics Crystalens AT-45), UV only blocking
(AMO Clariflex), violet blocking (AMO OptiBlue), and blue
blocking (Alcon AcrySof SN60AT and Hoya AF-1) IOLs. Each
IOL was aligned in a saline filled cuvette. Transmittance
spectra were recorded from 350 nm to 700 nm. Three
independent spectral transmittance measurements were
performed for three IOLs of each type. Differences in the
spectral transmittances of IOLs of the same type were less
than 0.2% (spectral bandwidth (1.8 nm; wavelength repeat-
ability +/2 0.1 nm).

Acute aphakic UV-blue phototoxicity (Al),73 aphakic
scotopic luminous efficiency (V’l),46 melanopsin spectral
sensitivity (Ml),69 and melatonin suppression sensitivity
(M’l)

67 72 were used to estimate the effect of each IOL,
crystalline lens, or hypothetical violet blocking filter on
phototoxicity or photoreception. Hypothetical high pass
filters were used to study how photoprotection and photo-
reception are affected by blocking optical radiation below
400, 410, 420, 430, and 440 nm. Each hypothetical violet
filter blocks all optical radiation below but transmits 99% of
the optical radiation above the specified cut-off wavelength.

Areas under the Al, V’l, Ml, and M’l curves in figure 1
represent total UV-blue phototoxicity, aphakic scotopic
sensitivity, melanopsin sensitivity, and melatonin suppres-
sion sensitivity, respectively. Al, V’l, Ml, and M’l were
multiplied wavelength by wavelength with the transmittance
of each spectral filter to determine how much the filter
decreased phototoxicity, scotopic sensitivity, melanopsin
photoreception, or melatonin suppression, respectively.
Calculations were performed from 350–700 nm for Al and
V’l using an isoquantal spectrum42 and from 400–600 nm for
Ml and M’l using daylight illumination.72 Results are
expressed in terms of the percentage difference between the
performance of a particular filter and a conventional UV only
blocking filter (AMO ClariFlex).

Figure 3 The spectral transmittance of
UV transmitting (Eyeonics Crystalens
AT-45: EC20), UV only blocking (AMO
Clariflex: AC20), violet blocking (AMO
OptiBlue: AV20 and AV30), and blue
blocking (Alcon AcrySof SN60AT:
AN20 and AN30; Hoya AF-1: HA20)
IOLs. The number 20 or 30 in each IOL
label is the power in dioptres of the IOL
tested. Also shown are the spectral
transmittance of (1) neutral grey
sunglasses (Sunglasses)74 and (2) 4.5,
53, and 75 year old crystalline lenses.4
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RESULTS
Spectral transmittances measured for IOLs are shown in
figure 3, along with classic human crystalline lens transmit-
tance data.4 Table 1 presents the computed photoprotection
and photoreception of IOLs, crystalline lenses, and hypothe-
tical high pass violet blocking filters, relative to a conven-
tional UV only blocking IOL. Results generally agree with
previous calculations,42 which used (1) the international
standard CIE phakic scotopic sensitivity curve75 rather than
the aphakic scotopic luminous efficiency data of Griswold
and Stark,46 and (2) blue blocking IOL spectral transmittance
data for measurements made in air rather than saline. Table 1
also presents the percentage of UV, violet, blue, or green light
that each filter blocks.

High pass filter calculations in table 1 show that blocking
an increasing amount of violet light from 400 nm to 440 nm
increases UV-blue and blue-green photoprotection but
decreases scotopic, melanopsin, and melatonin suppression
sensitivity.

Table 1 also shows that the UV transmitting Crystalens
provides 150% less UV-blue photoprotection than a conven-
tional UV only blocking IOL. Violet and blue blocking 20D
IOLs offer approximately 40% more UV-blue photoprotection
than a UV only blocking IOL. They also provide roughly 50%
less UV-blue photoprotection than sunglasses and 20% less
protection than a 53 year old crystalline lens.

Blue blocking IOLs offer about 20% better scotopic
sensitivity and thus 20% less blue-green phototoxicity
protection than a 53 year old crystalline lens. The UV
transmitting Crystalens provides 10% more scotopic sensitiv-
ity than conventional UV only blocking IOLs. Blue blocking
20D IOLs offer 15% less scotopic sensitivity than a standard
IOL. Violet blocking IOLs reduce scotopic sensitivity loss to
7% but provide roughly the same acute UV-blue phototoxicity
protection as blue blocking IOLs.

Blue blocking IOLs provide 23% more melanopsin photo-
reception than a 53 year old lens but 18% less sensitivity than
a conventional UV only blocking IOL. Violet blocking IOLs
decrease melanopsin photoreception loss to 7% relative to a

UV only blocking IOL. Blue blocking 20D and 30D IOLs
provide 27% and 38% less melatonin suppression than a UV
only blocking IOL, respectively, whereas violet blocking IOLs
decrease melatonin suppression by only 15%–16%.

DISCUSSION
Acute phototoxicity, IOLs, and AMD
The retina balances the production and removal of harmful
reactive oxygen species in a hazardous oxidising environment
that has high light levels and oxygen concentrations.20 21 76 77

Age related increasing accumulation of the photosensitiser
lipofuscin may impair free radical control mechanisms and
mechanically compromise cellular functions.21 23 60 78 AMD,
blue-green phototoxicity, and UV-blue phototoxicity all
probably involve direct or indirect oxidative damage,23 25 76 77

but this shared pathogenesis mechanism does not mean that
phototoxicity causes AMD any more than it means that AMD
causes phototoxicity. Additionally, both classic phototoxici-
ties involve intense acute rather than lifelong normal light
exposures.10 12 43 44 These acute exposures can injure the retina
but they cannot simulate a lifetime of normal light exposure,
just as scalding water can scar skin but it cannot simulate a
lifetime of normal bathing.

AMD is a complex multifactorial process involving nutri-
tion, smoking, genetics, and numerous influences other than
light exposure.18 33 79 80 The relation between chronic light
exposure and AMD is difficult to prove because of shared
pathogenesis mechanisms, the size and duration of required
epidemiological studies, and the difficulty of accurately
estimating an individual’s cumulative light exposure retro-
spectively. Two large population based studies did find a
weak association.29 36 Four other large studies did not,31 33 34 37

including a later study by Taylor33 who first identified a
potential association between light exposure and AMD in the
Waterman study.29 Additionally, two large case-control
studies failed to show a correlation between AMD and
environmental light exposure,30 32 one of which actually
found that sunlight exposure was higher in the control group
than in subjects with AMD.32

Table 1 Photoprotection and photoreception relative to a UV only blocking IOL (AMO ClariFlex 20D): positive and negative
percentages indicate better and worse performance, respectively. Percentage of optical radiation blocked in a particular
wavelength band

UV-blue
photoprotection

Aphakic
scotopic
sensitivity*

Melanopsin
sensitivity

Melatonin
suppression

UV
blocked�

Violet
blocked�

Blue
blocked�

Green
blocked�

Eyeonics Crystalens
AT-45

2150% +10% +4% +14% 39% 7% 3% 2%

AMO Clariflex 20D – – – – 100% 34% 5% 3%
Violet 400 nm` 233% +6% +6% +11 95% 1% 1% 1%
Violet 410 nm` 212% +4% +5% +7 100% 19% 1% 1%
Violet 420 nm` +6% +2% +3% +1 100% 44% 1% 1%
Violet 430 nm` +23% 21% 0% 25% 100% 69% 1% 1%
Violet 440 nm` +39% 25% 25% 213% 100% 94% 1% 1%
AMO OptiBlue 20D +40% 26% 27% 215% 100% 90% 6% 1%
AMO OptiBlue 30D +42% 26% 27% 216% 100% 92% 6% 1%
Hoya AF-1 +43% 215% 218% 227% 98% 78% 27% 4%
Alcon AcrySof
Natural 20D

+40% 214% 218% 227% 99% 67% 27% 3%

Alcon AcrySof
Natural 30D

+57% 221% 227% 238% 100% 83% 40% 5%

4.5 year old� +35% 224% 226% 230% 97% 69% 30% 21%
53 year old� +61% 237% 241% 248% 100% 86% 48% 28%
75 year old� +82% 276% 278% 280% 99% 91% 81% 73%
Sunglasses1 +89% 286% 286% 287% 100% 93% 88% 85%

*The percentage loss in aphakic scotopic sensitivity is the same as the percentage gain in blue-green phototoxicity protection (rhodopsin mediates both processes).
�The percentage of optical radiation in a particular wavelength range that is blocked: UV (350–400 nm), violet (400–440 nm), blue (440–500 nm), and green
(500–570 nm).
`Hypothetical violet blocking high pass filters that block all optical radiation below but transmit 99% of radiation above the specified cut-off wavelength.
�Human crystalline lens spectral transmittance data from Boettner and Wolter.4

1Sunglasses spectral transmittance data from Marmor.74
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The risk of severe AMD has been reported to increase after
cataract surgery,81–83 but this correlation is confounded by the
possibility that cataract surgery may have been performed for
decreased vision caused by AMD.82 84 Indeed, the AREDS
study found no correlation between cataract surgery and
AMD after specifically monitoring subjects for their AMD
status before cataract surgery.84 85 If a correlation between
AMD and cataract surgery does exist, it may be the result of
the trauma and inflammation of operating microscope
procedures and illumination on aged susceptible maculas.81–83

Despite 25 years of use, the evidence documenting the
clinical advantage of UV only blocking versus UV transmit-
ting IOLs remains limited. UV only blocking IOLs have been
reported to reduce pseudophakic erythropsia, the transient
reddish discoloration of vision that can occur after exposure
to a bright outdoor environment.86 87 Short wave cone
sensitivity was found to be lower in the UV transmitting
IOL eye of seven bilateral pseudophakes who had a UV only
blocking IOL in their other eye (no retinal abnormalities were
observed).88 Vitreous fluorophotometry demonstrated less
blood-retinal barrier disruption in eyes with UV only or blue
blocking IOLs than in those with UV transmitting IOLs.89

Early studies suggested that UV only blocking IOLs were
associated with a lower risk of postoperative cystoid macular
oedema than UV transmitting IOLs.90 Later studies failed to
confirm that association.91 No significant difference in the
incidence of exudative AMD was found in pseudophakic eyes
with or without UV protection.92 IOL chromophores have
been shown to decrease acute retinal phototoxic damage
from intense violet light in cell culture and experimental
animal studies.93 94

Table 1 summarises theoretical pseudophakic photoprotec-
tion. It shows that violet and blue blocking 20D IOLs provide
similar acute UV-blue photoprotection. Photoprotection
varies with dioptric power for blue blocking AcrySof
Natural IOLs but not violet blocking AMO OptiBlue IOLs.
Blue-green photoprotection and scotopic sensitivity are
inversely proportional, so violet blocking IOLs offer 8–9%
less blue-green photoprotection than 20D blue blocking IOLs,
although no IOL provides significant blue-green phototoxi-
city protection.

Table 1 also shows that sunglasses provide roughly 50%
more photoprotection than 20D violet or blue blocking IOLs.
Sunglasses have the additional advantage of removability for
optimal vision in dim environments. Visible light blocking
IOLs provide roughly 20% less UV-blue or blue-green
phototoxicity protection than a 53 year old crystalline lens.4

Most AMD occurs in people over 60 years of age,95 so 53 year
old crystalline lenses do not prevent it. Thus, if acute UV-blue
phototoxicity (the ‘‘blue light hazard’’) is a significant risk
factor for AMD, then the Boettner and Wolter data4 used to
design blue blocking IOLs96 show that they do not reduce an
older adult’s risks, and pseudophakes regardless of IOL type
should wear sunglasses in bright environments.

Scotopic sensit ivity and IOLs
The human retina contains approximately five million cone
and 90 million rod photoreceptors.97 98 Rod and cone
photoreceptors are responsible primarily for scotopic and
photopic vision, respectively. They both provide mesopic
vision.75 Rod photoreceptors influence cone mediated visual
functions even at photopic luminances.99–104 Rod photorecep-
tor populations and sensitivity decrease with ageing, dimin-
ishing scotopic sensitivity and other rod mediated visual
functions.105–108 Pupil diameter also decreases with age-
ing,72 109–111 further reducing available light.

Rod photoreceptor mediated vision is important in modern
society. Cone photoreceptors provide information on head-
light illuminated roads during night driving, but rod

photoreceptors process the remaining visual field.112 113

When you arise at night and lighting is too dim to appreciate
colour, you are using rod mediated vision. Aarnisalo
demonstrated that filtering blue, in addition to violet, light
can reduce scotopic sensitivity.114 Blue light provides 7% of
photopic sensitivity and 35% of aphakic scotopic sensitivity.
In comparison, violet light provides only 1% of photopic and
10% of aphakic scotopic sensitivity.

Table 1 shows that a UV transmitting Crystalens provides
10% better theoretical scotopic sensitivity than a UV only
blocking IOL. Blue blocking 20D and 30D IOLs provide 14%
and 21% less scotopic sensitivity than a UV only blocking IOL,
respectively, in contrast with the 6% difference with violet
blocking IOLs.

Is a 14–21% loss of scotopic sensitivity significant? This loss
is difficult to measure clinically and is small in comparison
with the broad range of visual sensitivity.115 116 None the less,
(1) it is a loss, (2) standard static perimetric tests are poor
surrogates for night vision tasks such as ambulation and
driving, (3) scotopic vision loss is worse in people with AMD
and diabetic retinopathy,117–121 (4) decreased night vision is
well known to be a significant problem for older adults,
prompting many to curtail night-time driving and other
activities,122–127 and (5) impaired dark adaptation increases
the risk of falling in older adults.128 Forty per cent of people
over 65 years of age fall each year,129 increasing their risk of
debilitating injury, long term hospitalisation, and death.130

Additionally, a study by Jackson showed that AcrySof
Natural IOL pseudophakes have decreased scotopic vision at
violet and blue wavelengths,131 a type of vision loss correlated
with night driving difficulties.132

Circadian rhythmicity and IOLs
Spectral filters also affect circadian rhythmicity. The impor-
tance of the predominantly blue light sensitive retinal
photopigment melanopsin was not widely recognised until
2002, well after the design of current blue blocking
IOLs.66 67 133–136 Melanopsin is contained in photosensitive
retinal ganglion cells.66 67 133–136 These ganglion cells control
pineal secretion and suppression of melatonin using signals
sent through the retinohypothalamic tract to the master
biological clock in the suprachiasmatic nucleus.66–69 134 135 137

Blue light is critical in controlling circadian photoentrain-
ment, pupillary response, and the broad range of beneficial
systemic effects of endogenous melatonin.69 71 134 136 138–143

Melatonin is a small, lipophilic indoleamine neurohor-
mone that has a pivotal role in circadian rhythmicity. In
response to twilight or darkness, the pineal gland secrets
melatonin, core body temperatures fall, and sleep
ensues.134 135 144 In response to bright light, melatonin secre-
tion is suppressed, core body temperatures rise, and there is
improved cognition and alertness.145–148

Endogenous melatonin is an important factor in systemic
homeostasis. It is a potent free radical scavenger149 that
modulates other antioxidants such as superoxide dismutase,
catalase, and glutathione peroxidase.150 151 It may help protect
the RPE against the oxidative stress implicated in AMD.152–154

It has numerous anti-cancer effects155 and limits tumour cell
proliferation by inhibiting telomerase.156 157 It has anti-
inflammatory actions.158 159 Stimulation of electron transport
and ATP production in the inner mitochondrial membranes
by melatonin may affect ageing.160

Disorganisation of circadian rhythmicity is more common
in older adults and people with insomnia,161 depression,162 163

coronary artery disease,164 acute myocardial infarction,165

bronchial asthma,166 many cancer types,167–169 Alzheimer’s
disease,170–172 and dementia.173 Numerous clinical studies have
shown the risks of disturbed circadian photoentrain-
ment174 175 and the benefits of optimal rhythmicity.176 177
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Age related pupillary miosis and crystalline lens yellowing
limit the blue light reaching melanopsin for circadian
rhythmicity, reducing older adults’ effective retinal light
exposure to one tenth that of younger people.72 This reduction
is probably responsible for the decreased blue light melatonin
suppression observed in older adults.178 Additionally, elderly
lifestyles may average half the total daily luminance of young
adults.179 All these factors conspire to weaken the photo-
entrainment of older adults’ circadian clock. None the less,
bright environmental light exposure can restore melatonin
levels in older insomniacs to 21 year old control levels, with
resolution of their insomnia.179 Furthermore, insomnia and
depression have been shown to decrease after cataract
surgery.180 181

Blue light is responsible for 35% of scotopic sensitivity and
53% of melanopsin photoreception. Blue blocking 20D IOLs
provide 18% less melanopsin photoreception than a conven-
tional UV only blocking IOL. Mishima found that older adults
with insomnia averaged 19% less total daily environmental
illuminance than age matched control subjects.179 Blue
blocking IOLs provide 27–38% less melatonin suppression
than a UV only blocking IOL, whereas the reduction is 15–
16% for a violet blocking IOL.

Colour vision
Scotopic vision depends on a single photoreceptor, but three
types of cone photoreceptors mediate normal photopic
sensitivity.2 182 Normal cone photoreceptor reception and
subsequent neural processing provide remarkable constancy
of perceived colour, despite illumination changes.2 182–184 For
example, a red apple appears red both in incandescent and
outdoor illumination and the sky appears blue when viewed
through different sunglass tints.

The spectral sensitivity of photopic vision is similar in
aphakic and phakic patients, despite crystalline lens blockage
of shorter wavelength light.185 Additionally, colour appear-
ance returns largely to normal within a few months of
implantation of a UV only blocking IOL, despite the IOL’s
increased transmittance of shorter wavelength light.186 Colour
disparity problems that required explantation of a blue
blocking AcrySof Natural IOL have been reported, however,
in an individual with a UV only blocking IOL in their other
eye.187 In general, most individuals readily adjust to vision
with visible light blocking IOLs.

CONCLUSION
There is no conclusive clinical or experimental proof that (1)
normal light exposure causes AMD, (2) pseudophakes are at
increased risk for AMD, or (3) repetitive acute phototoxicity
causes AMD. None the less, if IOLs can increase retinal
protection without significantly compromising photorecep-
tion, people and society should benefit. The phototoxicity-
AMD hypothesis remains attractive because RPE lipofuscin
concentration increases with ageing, perhaps compromising
cellular function and increasing an older adults’ risk of photic
retinopathy.

UV, violet, and blue light are responsible for 67%, 18%, and
14% of acute UV-blue phototoxicity, respectively, in the
spectral region from 350–700 nm where optical radiation can
potentially reach the retina of a pseudophakic eye. Lipofuscin
phototoxicity increases rapidly and porphyrin, cytochrome
oxidase and A2E phototoxicity all peak in the violet part of
the spectrum. UV is potentially hazardous and provides no
useful vision so it is logical to block it with IOL chromo-
phores. Violet light causes an additional 18% of UV-blue
phototoxicity but provides only 10% of aphakic scotopic
sensitivity. Thus, if the phototoxicity-AMD hypothesis is valid
and UV blue photoxicity (the ‘‘blue-light hazard’’) does have
a significant role in macular ageing, violet blocking IOLs

protect the retina from most potentially phototoxic violet
light while transmitting light in the blue part of the spectrum
where rhodopsin, melanopsin, and melatonin suppression
sensitivities all are maximal. Blue blocking IOLs have spectral
transmittances similar to adult crystalline lenses.

Cataract surgery is an older adult’s once in a lifetime
opportunity to have improved circadian rhythmicity and
vision in dim environments. UV only blocking IOLs have
provided patients with their best possible scotopic vision and
melanopsin photoreception for over a quarter of a century.
Visible light blocking IOLs should endeavour to continue this
tradition, particularly since the phototoxicity-AMD hypoth-
esis remains unproved and blue light mediated melatonin
may actually help protect the RPE from the oxidative stresses
probably involved in AMD.
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