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ABSTRACT

Emerging information-centric networking architectures seek
to optimally utilize both bandwidth and storage for efficient
content distribution. This highlights the need for joint de-
sign of traffic engineering and caching strategies, in order to
optimize network performance in view of both current traffic
loads and future traffic demands. We present a systematic
framework for joint dynamic interest request forwarding and
dynamic cache placement and eviction, within the context
of the Named Data Networking (NDN) architecture. The
framework employs a virtual control plane which operates
on the user demand rate for data objects in the network,
and an actual plane which handles Interest Packets and Da-
ta Packets. We develop distributed algorithms within the
virtual plane to achieve network load balancing through dy-
namic forwarding and caching, thereby maximizing the user
demand rate that the NDN network can satisfy. Numerical
experiments within a number of network settings demon-
strate the superior performance of the resulting algorithms
for the actual plane in terms of low user delay and high rate
of cache hits.
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1. INTRODUCTION
Emerging information-centric networking (ICN) architec-

tures are currently changing the landscape of network re-
search. In particular, Named data networking (NDN) [1], or
content-centric networking (CCN)[2], is a proposed network
architecture for the Internet that replaces the traditional
client-server model of communications with one based on the
identity of data or content. This abstraction more accurately
reflects how the Internet is primarily used today: instead of
being concerned about communicating with specific nodes,
end users are mainly interested in obtaining the data they
want. The NDN architecture offers a number of important
advantages in decreasing network congestion and delays, and
in enhancing network performance in dynamic, intermittent,
and unreliable mobile wireless environments [1].

Content delivery in NDN is accomplished using two type-
s of packets, and specific data structures in nodes. Com-
munication is initiated by the data consumer or requester.
To receive data, the requester sends out an Interest Pack-
et, which carries the (hierarchically structured) name of the
desired data (e.g. /northeastern/videos/WidgetA.mpg/1).
The Interest Packet is forwarded by looking up the data
name in the Forwarding Information Base (FIB) at each
router the Interest Packet traverses, along routes determined
by a name-based routing protocol. The FIB tells the router
to which neighbor node(s) to transmit each Interest Pack-
et. Each router maintains a Pending Interest Table (PIT),
which records all Interest Packets currently awaiting match-
ing data. Each PIT entry contains the name of the interest
and the set of node interfaces from which the Interest Pack-
ets for the same name arrived. When multiple interests for
the same name are received, only the first is sent toward
the data source. When a node receives an interest that it
can fulfill with matching data, it creates a Data Packet con-
taining the data name, the data content, together with a
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signature by the producer’s key. The Data Packet follows in
reverse the path taken by the corresponding Interest Packet,
as recorded by the PIT state at each router traversed. When
the Data Packet arrives at a router, the router locates the
matching PIT entry, transmits the data on all interfaces list-
ed in the PIT entry, and then removes the PIT entry. The
router may optionally cache a copy of the received Data
Packet in its local Content Store, in order to satisfy possible
future requests. Consequently, a request for a data object
can be fulfilled not only by the content source but also by
any node with a copy of that object in its cache [1].

Assuming the prevalence of caches, the usual approach-
es for forwarding and caching may no longer be effective for
ICN architectures such as NDN. Instead, these architectures
seek to optimally utilize both bandwidth and storage for ef-
ficient content distribution. This highlights the need for
joint design of traffic engineering and caching strategies, in
order to optimize network performance in view of both cur-
rent traffic loads and future traffic demands. Unlike many
existing works on centralized algorithms for static caching,
our goal is to develop distributed, dynamic algorithms that
can address caching and forwarding under changing content,
user demands, and network conditions.

To address this fundamental problem, we introduce the
VIP framework for the design of high performing NDN net-
works. The VIP framework relies on the new metric of Vir-
tual Interest Packets (VIPs), which captures the measured
demand for the respective data objects in the network. The
central idea of the VIP framework is to employ a virtual
control plane which operates on VIPs, and an actual plane
which handles Interest Packets and Data Packets. Within
the virtual plane, we develop distributed control algorithms
operating on VIPs, aimed at yielding desirable performance
in terms of network metrics of concern. The flow rates and
queue lengths of the VIPs resulting from the control algo-
rithm in the virtual plane are then used to specify the for-
warding and caching policies in the actual plane.

The general VIP framework allows for a large class of con-
trol and optimization algorithms operating on VIPs in the
virtual plane, as well as a large class of mappings which use
the VIP flow rates and queue lengths from the virtual plane
to specify forwarding and caching in the actual plane. Thus,
the VIP framework presents a powerful paradigm for design-
ing efficient NDN-based networks with different properties
and trade-offs. In order to illustrate the utility of the VIP
framework, we present two particular instantiations of the
framework. The first instantiation consists of a distribut-
ed forwarding and caching policy in the virtual plane which
achieves effective load balancing and adaptively maximizes
the throughput of VIPs, thereby maximizing the user de-
mand rate for data objects satisfied by the NDN network.
The second instantiation consists of distributed algorithm-
s which achieves not only load balancing but also stable
caching configurations. Experimental results show that the
latter set of algorithms have superior performance in terms
of low user delay and high rate of cache hits, relative to
several baseline routing and caching policies.

We begin with a formal description of the network model
in Section 2, and discuss the VIP framework in Section 3.
We present two instantiations of the VIP framework in Sec-
tions 4 and 5. The performance of the proposed forwarding
and caching policies is numerically evaluated in comparison

with several baseline routing and caching policies using sim-
ulations in Section 5.3.

Although there is now a rapidly growing literature in infor-
mation centric networking, the problem of optimal joint for-
warding and caching for content-oriented networks remains
open. In [3], a potential-based forwarding scheme with ran-
dom caching is proposed for ICNs. A simple heuristically
defined measure (called potential value) is introduced for
each node. A content source or caching node has the lowest
potential and the potential value of a node increases with its
distance to the content source or caching node. Potential-
based forwarding guides Interest Packets from the requester
toward the corresponding content source or caching node.
As the Data Packet travels on the reverse path, one node
on the path is randomly selected as a new caching node.
The results in [3] are heuristic in the sense that it remains
unknown how to guarantee good performance by choosing
proper potential values. In [4], the authors consider one-
hop routing and caching in a content distribution network
(CDN) setting. Throughput-optimal one-hop routing and
caching are proposed to support the maximum number of
requests. Given the simple switch topology, however, rout-
ing is reduced to cache node selection. Throughput-optimal
caching and routing in multi-hop networks remains an open
problem. In [5], the authors consider single-path routing and
caching to minimize link utilization for a general multi-hop
content-oriented network, using primal-dual decomposition
within a flow model. Here, it is assumed that the path be-
tween any two nodes is predetermined. Thus, routing design
reduces to cache node selection [5]. The benefits of selective
caching based on the concept of betweenness centrality, rel-
ative to ubiquitous caching, are shown in [6]. Cooperative
caching within ICNs has been investigated in [7], where an
age-based caching scheme is proposed. These proposed co-
operative caching schemes have been heuristically designed,
and have not been jointly optimized with forwarding strate-
gies. Finally, adaptive multipath forwarding in NDN has
been examined in [8], but has not been jointly optimized
with caching strategies.

2. NETWORK MODEL
Consider a connected multi-hop (wireline) network mod-

eled by a directed graph G = (N ,L), where N and L denote
the sets of N nodes and L directed links, respectively. As-
sume that (b, a) 2 L whenever (a, b) 2 L. Let Cab > 0 be
the transmission capacity (in bits/second) of link (a, b) 2 L.
Let Ln be the cache size (in bits) at node n 2 N (Ln can
be zero).

Assume that content in the network are identified as data
objects, with the object identifiers determined by an appro-
priate level within the hierarchical naming structure. These
identifiers may arise naturally from the application, and are
determined in part by the amount of control state that the
network is able to maintain. Each data object (e.g. /north-
eastern/videos/WidgetA.mpg) consists of a sequence of da-
ta chunks (e.g. /northeastern/videos/WidgetA.mpg/1). We
assume that any data object is demarcated by a starting
chunk and an ending chunk. Content delivery in NDN op-
erates at the level of data chunks. That is, each Interest
Packet requests a particular data chunk, and a matching
Data Packet consists of the requested data chunk, the data
chunk name, and a signature. A request for a data object
consists of a sequence of Interest Packets which request al-
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l the data chunks of the object, where the sequence starts
with the Interest Packet requesting the starting chunk, and
ends with the Interest Packet requesting the ending chunk.1

In the VIP framework which we introduce below, distributed
control algorithms are developed in a virtual control plane
operating at the data object level, while forwarding of Inter-
est Packets and caching of Data Packets in the actual plane
operate at the data chunk level.

We will operate our forwarding and caching algorithms
over a set K of K data objects in the network. As mentioned
above, K may be determined by the amount of control state
that the network is able to maintain. Since the data object
popularity distribution evolves at a relatively slow time scale
compared to the caching and forwarding, one approach is
to let K include the set of the most popular data objects
in the network, which is typically responsible for most of
the network congestion.2 For simplicity, we assume that all
data objects have the same size z (in bits). The results in
the paper can be extended to the more general case where
object sizes differ. We consider the scenario where Ln < Kz
for all n 2 N . Thus, no node can cache all data objects.

For each data object k 2 K, assume that there is a unique
node src(k) 2 N which serves as the content source for the
object. Interest Packets for chunks of a given data object can
enter the network at any node, and exit the network upon
being satisfied by a matching Data Packet at the content
source for the object, or at the nodes which decide to cache
the object. For convenience, we assume that the content
sources are fixed, while the caching points may vary in time.

Assume that routing (topology discovery and data reach-
ability) has already been accomplished in the network, so
that the FIBs have been populated for the various data ob-
jects. Upon the arrival of an Interest Packet at an NDN
node, the following sequence of events happen. First, the
node checks its Content Store (CS) to see if the requested
data object chunk is locally cached. If it is, then the Interest
Packet is satisfied locally, and a Data Packet containing a
copy of the data object chunk is sent on the reverse path.
If not, the node checks its PIT to see if an Interest Packet
requesting the same data object chunk has already been for-
warded. If so, the new Interest Packet (interest, for short)
is suppressed while the incoming interface associated with
the new interest is added to the PIT. Otherwise, the node
checks the FIB to see to what node(s) the interest can be
forwarded, and chooses a subset of those nodes for forward-
ing the interest. Next, we focus on Data Packets. Upon
receiving a Data Packet, a node needs to determine whether
to make a copy of the Data Packet and cache the copy or
not. Clearly, policies for the forwarding of Interest Packets
and the caching of Data Packets are of central importance in
the NDN architecture. Thus far, the design of the strategy
layer for NDN remains largely unspecified. Moreover, in the
current CCN implementation, a Data Packet is cached at
every node on the reverse path. This, however, may not be
possible or desirable when cache space is limited.

We shall focus on the problem of finding dynamic forward-
ing and caching policies which exhibit superior performance
in terms of metrics such as the total number of data ob-

1The data chunks in between the starting and ending chunks
can be requested in any order.
2The less popular data objects not in K may be distribut-
ed using simple techniques such as shortest-path forwarding
with little or no caching.























































Figure 1: VIP framework. IP (DP) stands for In-
terest Packet (Data Packet).

ject requests satisfied (i.e., all corresponding Data Packets
are received by the requesting node), the delay in satisfying
Interest Packets, and cache hit rates. We propose a VIP
framework to solve this problem, as described in the next
section.

3. VIRTUAL INTEREST PACKETS AND

THE VIP FRAMEWORK
The VIP framework for joint dynamic forwarding and

caching relies on the essential new metric of virtual inter-
est packets (VIPs), which are generated as follows. As illus-
trated in Figure 1, for each request for data object k 2 K
entering the network, a corresponding VIP for object k 2 K
is generated.3 The VIPs capture the measured demand for
the respective data objects in the network, and represen-
t content popularity which is empirically measured, rather
than being given a priori. Specifically, the VIP count for
a data object in a given part of the network represents the
local level of interest in the data object, as determined by
network topology and user demand.

The VIP framework employs a virtual control plane which
operates on VIPs at the data object level, and an actual plane
which handles Interest Packets and Data Packets at the data
chunk level. This design has two motivations. First, this ap-
proach reduces the implementation complexity of the VIP
algorithm in the virtual plane considerably (as compared
with operating on data chunks in the virtual plane). Sec-
ond, as shown in Section 4.2 below, this approach leads to
a desirable implementation which forwards all the Interest
Packets for the same ongoing request for a data object on
the same path, and which caches the entire data object (con-
sisting of all data chunks) at a caching node (as opposed to
caching different chunks of the same data object at differ-
ent nodes). At the same time, the approach also allows
Interest Packets for non-overlapping requests for the same
data object to be forwarded on different paths, thus making
multi-path forwarding of object requests possible.4

Within the virtual plane, we develop distributed control
algorithms operating on VIPs, aimed at yielding desirable
performance in terms of network metrics of concern. The

3More generally, VIPs can be generated at a rate proportion-
al to that of the corresponding data object requests, which
can in some cases improve the convergence speed of the pro-
posed algorithms.
4In principle, the VIP algorithm in the virtual plane can be
applied at the chunk level (corresponding to the case where
there is only one chunk in each data object). In this case,
the virtual and actual planes operate at the same granular-
ity. On the other hand, the complexity of implementing the
algorithm in the virtual plane would be much larger.
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flow rates and queue lengths of the VIPs resulting from the
control algorithm in the virtual plane are then used to spec-
ify the forwarding and caching policies in the actual plane
(see Figure 1). A key insight here is that control algorithms
operating in the virtual plane can take advantage of local
information on network demand (as represented by the VIP
counts), which is unavailable in the actual plane due to in-
terest collapsing and suppression.

In order to illustrate the utility of the VIP framework,
we present two particular instantiations of the framework
in Sections 4 and 5. For both instantiations, the following
hold. First, the VIP count is used as the common metric
for enabling both the distributed forwarding and distributed
caching algorithms in the virtual and actual control planes.
Second, the forwarding strategy in the virtual plane achieves
load balancing through the application of the backpressure
algorithm [9] to the VIP queue state. Finally, one caching
algorithm determines the caching locations and cache re-
placement policy for both the virtual and actual planes. The
two instantiations differ in the manner in which they use the
VIP count to determine caching actions.

3.1 VIP Dynamics
We now specify the dynamics of the VIPs within the vir-

tual plane. Consider time slots of length 1 (without loss of
generality) indexed by t = 1, 2, . . .. Specifically, time slot
t refers to the time interval [t, t + 1). Within the virtual
plane, each node n 2 N maintains a separate VIP queue for
each data object k 2 K. Note that no data is contained in
these VIPs. Thus, the VIP queue size for each node n and
data object k at the beginning of slot t (i.e., at time t) is
represented by a counter V k

n (t).5 Initially, all VIP counters
are set to 0, i.e., V k

n (1) = 0. As VIPs are created along with
data object requests, the counters for the corresponding da-
ta object are incremented accordingly at the entry nodes.
After being forwarded through the network (in the virtu-
al plane), the VIPs for object k are removed at the content
source src(k), and at nodes that have cached object k. That
is, the content source and the caching nodes are the sinks
for the VIPs. Physically, the VIP count can be interpreted
as a potential. For any data object, there is a downward
“gradient” from entry points of the data object requests to
the content source and caching nodes.

An exogenous request for data object k is considered to
have arrived at node n if the Interest Packet requesting the
starting chunk of data object k has arrived at node n. Let
Ak

n(t) be the number of exogenous data object request ar-
rivals at node n for object k during slot t (i.e., over the
time interval [t, t + 1)).6 For every arriving request for da-
ta object k at node n, a corresponding VIP for object k
is generated at n (V k

n (t) incremented by 1).7 The long-
term exogenous VIP arrival rate at node n for object k is
�k
n , limt!1

1
t

Pt
τ=1 A

k
n(⌧).

5We assume that VIPs can be quantified as a real number.
This is reasonable when the VIP counts are large.
6We think of a node n as a point of aggregation which com-
bines many network users. While a single user may request
a given data object only once, an aggregation point is likely
to submit many requests for a given data object over time.
7For the general case where object sizes differ, V k

n (t) is in-
cremented by the object size zk for every arriving request
for object k.

Let µk
ab(t) � 0 be the allocated transmission rate of VIPs

for data object k over link (a, b) during time slot t. Note
that at each time t and for each object k, a single mes-
sage between node a and node b can summarize all the VIP
transmissions during that time slot.

In the virtual plane, we assume that at each time t, each
node n 2 N can gain access to any data object k 2 K
for which there is interest at n, and potentially cache the
object locally. Let skn(t) 2 {0, 1} represent the caching state
for object k at node n during slot t, where skn(t) = 1 if
object k is cached at node n during slot t, and skn(t) = 0
otherwise. Now note that even if skn(t) = 1, the content
store at node n can satisfy only a limited number of VIPs
during one time slot. This is because there is a maximum
rate rn (in objects per slot) at which node n can produce
copies of cached object k.8

The time evolution of the VIP count at node n for object
k is as follows:

V k
n (t+ 1) 
  

V k
n (t)�

X

b2N

µk
nb(t)

!+

+Ak
n(t) +

X

a2N

µk
an(t)� rns

k
n(t)

!+

(1)

where (x)+ , max(x, 0). Furthermore, V k
n (t) = 0 for all

t � 1 if n = src(k).
From (1), it can be seen that the VIPs for data object k at

node n at the beginning of slot t are transmitted during slot
t at the rate

P

b2N µk
nb(t). The remaining VIPs (V k

n (t) �
P

b2N µk
nb(t))

+, as well as the exogenous and endogenous
VIP arrivals during slot t, are reduced by rn at the end of
slot t if object k is cached at node n in slot t (skn(t) = 1). The
VIPs still remaining are then transmitted during the next
slot t+ 1. Note that (1) is an inequality because the actual
number of VIPs for object k arriving to node n during slot
t may be less than

P

a2N µk
an(t) if the neighboring nodes

have little or no VIPs of object k to transmit.

4. THROUGHPUT OPTIMAL VIP CONTROL
In this section, we describe an instantiation of the VIP

framework in which the VIP count is used as a common
metric for enabling both the distributed forwarding and dis-
tributed caching algorithms in the virtual and actual control
planes. The forwarding strategy within the virtual plane is
given by the application of the backpressure algorithm [9]
to the VIP queue state. Note that while the backpressure
algorithm has been used for routing in conventional source-
destination-based networks, its use for forwarding in ICNs
appears for the first time in this paper. Furthermore, back-
pressure forwarding is being used in the virtual plane rather
than in the actual plane, where interest collapsing and sup-
pression make the application of the algorithm impractical.

The caching strategy is given by the solution of a max-
weight problem involving the VIP queue length. The VIP
flow rates and queue lengths are then used to specify for-
warding and caching strategies in the actual plane, which
handles Interest Packets and Data Packets. We show that

8The maximum rate rn may reflect the I/O rate of the stor-
age disk. Since it is assumed that all data objects have the
same length, it is also assumed that the maximum rate rn
is the same for all data objects.
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the joint distributed forwarding and caching strategy adap-
tively maximizes the throughput of VIPs, thereby maximiz-
ing the user demand rate for data objects satisfied by the
network.

We now describe the joint forwarding and caching algo-
rithm for VIPs in the virtual control plane.

Algorithm 1. At the beginning of each time slot t, ob-
serve the VIP counts (V k

n (t))k2K,n2N and perform forward-
ing and caching in the virtual plane as follows.

Forwarding: For each data object k 2 K and each link
(a, b) 2 Lk, choose

µk
ab(t) =

(

Cba/z, W ⇤
ab(t) > 0 and k = k⇤

ab(t)

0, otherwise
(2)

where

W k
ab(t) , V k

a (t)� V k
b (t), (3)

k⇤
ab(t) , arg max

{k:(a,b)2Lk}
W k

ab(t),

W ⇤
ab(t) ,

⇣

W
k⇤

ab
(t)

ab (t)
⌘+

.

Here, Lk is the set of links which are allowed to transmit the
VIPs of object k, W k

ab(t) is the backpressure weight of object
k on link (a, b) at time t, and k⇤

ab(t) is the data object which
maximizes the backpressure weight on link (a, b) at time t.

Caching: At each node n 2 N , choose {skn(t)} to

maximize
X

k2K

V k
n (t)skn subject to

X

k2K

skn  Ln/z (4)

Based on the forwarding and caching in (2) and (4), the
VIP count is updated according to (1).

At each time t and for each link (a, b), backpressure-based
forwarding algorithm allocates the entire normalized “re-
verse” link capacity Cba/z to transmit the VIPs for the da-
ta object k⇤

ab(t) which maximizes the VIP queue difference
W k

ab(t) in (3). Backpressure forwarding maximally balances
out the VIP counts, and therefore the demand for data ob-
jects in the network, thereby minimizing the probability of
demand building up in any one part of the network and
causing congestion.

The caching strategy is given by the optimal solution
to the max-weight knapsack problem in (4), which can be
solved optimally in a greedy manner as follows. For each n 2
N , let (k1, k2, . . . , kK) be a permutation of (1, 2, . . . ,K) such

that V k1

n (t) � V k2

n (t) � · · · � V kK
n (t). Let in = bLn/zc.

Then for each n 2 N , choose

skn(t) =

(

1, k 2 {k1, · · · , kin}

0, otherwise
(5)

Thus, the objects with the highest VIP counts (the highest
local popularity) are cached.

It is important to note that both the backpressure-based
forwarding algorithm and the max-weight caching algorith-
m are distributed. To implement the forwarding algorithm,
each node must exchange its VIP queue state with only its
neighbors. The implementation of the caching algorithm is
local once the updated VIP queue state has been obtained.

To characterize the implementation complexity of Algo-
rithm 1, we note that both the computational and commu-
nication complexity of the back pressure forwarding algo-
rithm per time slot is O(N2K), where the bound can be

improved to O(NDK) if D is the maximum node degree in
the network. Assuming fixed cache sizes, the computational
complexity of the caching algorithm per time slot can be
found to be O(NK).

In the following section, we show that the forwarding and
caching strategy described in Algorithm 1 is throughput op-
timal within the virtual plane, in the sense of maximizing
the throughput of VIPs in the network G = (N ,L) with
appropriate transmission rate constraints.

4.1 Maximizing VIP Throughput
We now show that Algorithm 1 adaptively maximizes the

throughput of VIPs in the network G = (N ,L) with appro-
priate transmission rate constraints. In the following, we as-
sume that (i) the VIP arrival processes {Ak

n(t); t = 1, 2, . . .}
are mutually independent with respect to n and k; (ii) for
all n 2 N and k 2 K, {Ak

n(t); t = 1, 2, . . .} are i.i.d. with
respect to t; and (iii) for all n and k, Ak

n(t)  Ak
n,max for all

t.
To determine the constraints on the VIP transmission

rates µk
ab(t), we note that Data Packets for the requested

data object must travel on the reverse path taken by the
Interest Packets. Thus, in determining the transmission of
the VIPs, we take into account the link capacities on the
reverse path as follows:

X

k2K

µk
ab(t)  Cba/z, for all (a, b) 2 L (6)

µk
ab(t) = 0, for all (a, b) 62 Lk (7)

where Cba is the capacity of “reverse” link (b, a).

4.1.1 VIP Stability Region

To present the throughput optimality argument, we first
define the VIP stability region. The VIP queue at node n is
stable if

lim sup
t!1

1

t

t
X

τ=1

1[V k
n
(τ)>ξ]d⌧ ! 0 as ⇠ ! 1,

where 1{·} is the indicator function. The VIP network sta-
bility region Λ is the closure of the set of all VIP arrival
rates (�k

n)k2K,n2N for which there exists some feasible join-
t forwarding and caching policy which can guarantee that
all VIP queues are stable. By feasible, we mean that at
each time t, the policy specifies a forwarding rate vector
(µk

ab(t))k2K,(a,b)2L satisfying (6)-(7), and a caching vector

(skn(t))k2K,n2N satisfying the cache size limits (Ln)n2N .
Theorem 2 in the Appendix precisely characterizes the

VIP stability region in the virtual plane. To our knowledge,
Theorem 2 is the first instance where the effect of caching
has been fully incorporated into the stability region of a
multi-hop network.

4.1.2 Throughput Optimality

By definition, if the VIP arrival rates � = (�k
n)k2K,n2N

2 int(Λ), then all VIP queues can be stabilized. In general,
however, this may require knowing the value of �. In reality,
� can be learned only over time, and may be time-varying.
Moreover, stabilizing the network given an arbitrary VIP
arrival rate in the interior of Λ may require (time sharing
among) multiple forwarding and caching policies.

We now show that the joint forwarding and caching policy
in Algorithm 1 adaptively stabilizes all VIP queues in the
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network for any � 2 int(Λ), without knowing �. Thus, the
policy is throughput optimal, in the sense of adaptively max-
imizing the VIP throughput, and therefore the user demand
rate satisfied by the network.

Theorem 1 (Throughput Optimality). If there ex-
ists ✏ = (✏kn)n2N ,k2K � 0 such that � + ✏ 2 Λ, then the
network of VIP queues under Algorithm 1 satisfies

lim sup
t!1

1

t

t
X

τ=1

X

n2N ,k2K

E[V k
n (⌧)] 

NB

✏
(8)

where B , 1
2N

P

n2N

�

(µout
n,max)

2+(An,max+µin
n,max+rn,max)

2+

2µout
n,maxrn,max

�

, ✏ , minn2N ,k2K ✏kn, µ
in
n,max ,

P

a2N Can/z,

µout
n,max ,

P

b2N Cnb/z, An,max ,
P

k2K Ak
n,max, and rn,max =

Krn.

Proof. Please refer to [10].

The forwarding and caching policy in Algorithm 1 achieves
throughput optimality in the virtual plane by exploiting
both the bandwidth and storage resources of the network
to maximally balance out the VIP load (or the demand for
data objects in the network), thereby preventing the buildup
of congestion. Equivalently, Algorithm 1 is throughput op-
timal in the actual plane when Interest Packets are not col-
lapsed or suppressed. Note that Theorem 1 can be seen
as the multi-hop generalization of the throughput optimal
result in [4].

4.2 Forwarding and Caching in the Actual Plane
We now focus on the development of forwarding and caching

policies for the actual plane, based on the throughput opti-
mal policies of Algorithm 1 for the virtual plane. Forwarding
and caching in the actual plane take advantage of the explo-
ration in the virtual plane to forward Interest Packets on
profitable routes and cache Data Packets at profitable node
locations.

4.2.1 Forwarding of Interest Packets

The forwarding of Interest Packets in the actual plane fol-
lows the pattern established by the VIPs under Algorithm 1
in the virtual plane. For a given window size T , let

⌫̄
k
ab(t) =

1

T

t
X

t0=t�T+1

⌫
k
ab(t

0) (9)

be the average number of VIPs for object k transmitted over
link (a, b) over a sliding window of size T under Algorithm 1
prior to time slot t.9

Forwarding: At any node n 2 N , Interest Packets for
all data objects share one queue and are served on a First-
Come-First-Serve basis. Suppose that the head-of-the-queue
Interest Packet at node n at time t is an interest for the
starting chunk of data object k. If (i) node n has not yet
received a request for data object k, or if the last type-k
data chunk in the last Data Packet received at node n prior
to t is the ending chunk of object k, and if (ii) there is no

9Note that the number ⌫k
ab(t) of VIPs for object k transmit-

ted over link (a, b) during time slot t may not be the same
as the allocated transmission rate µk

ab(t). ⌫
k
ab(t) may be less

than µk
ab(t) if there are few VIPs waiting to be transmitted.

PIT entry at node n for any chunk of data object k, then
forward the Interest Packet to node

bkn(t) 2 arg max
{b:(n,b)2Lk}

⌫̄
k
nb(t). (10)

That is, the Interest Packet is forwarded on the link with
the maximum average object-k VIP flow rate over a sliding
window of size T prior to t, under Algorithm 1. This latter
link is a “profitable” link for forwarding the Interest Packet
at time slot t, from the standpoint of reducing delays and
congestion. If either condition (i) or (ii) does not hold, then
forward the Interest Packet on the link used by node n to
forward the most recent Interest Packet for a chunk of object
k.10

If the head-of-the-queue Interest Packet at node n at time
t is an interest for a chunk of data object k which is not the
starting chunk, then forward the Interest Packet on the link
used by node n to forward the most recent Interest Packet
for a chunk of object k.

The above forwarding algorithm ensures that a new re-
quest for data object k (which does not overlap with any
ongoing request for object k) at time t is forwarded on the
link with the maximum average object-k VIP flow rate over
a sliding window of size T prior to t. At the same time, the
algorithm ensures that an ongoing request for data object k
keeps the same outgoing link from node n. This ensures that
in the actual plane, all the Interest Packets for an ongoing
request for data object k are forwarded on the same path
toward a caching point or content source for data object k.
As a direct result, the Data Packets for all chunks for the
same ongoing request for data object k take the same reverse
path through the network.

Note that the Interest Packets for non-overlapping re-
quests for data object k can still be forwarded on different
paths, since the quantity bkn(t) can vary with t. Thus, the
forwarding of data object requests is inherently multi-path
in nature.

It can be seen that the computational complexity (per
time slot) of both the averaging operation in (9) and the link
selection operation in (10) is O(N2K). Thus, the complexity
of forwarding (per time slot) in the actual plane is O(N2K).

4.2.2 Caching of Data Packets

As mentioned in Section 3, within the instantiations of
the VIP framework we consider, the caching algorithm in
the actual plane coincides with the caching algorithm in the
virtual plane. Thus, in the current context, the caching
algorithm for the actual plane is the same as that described
in (5). Thus, at each time slot t, the data objects with
the highest VIP counts (highest local popularity) are cached
locally.11

10The router nodes need not know the names of the start-
ing chunk and ending chunk beforehand. These names can
be learned as the routers forward Interest Packets and re-
ceive Data Packets for the popular data objects. Before the
names of the starting and ending chunks are learned, In-
terest Packets for the data object can be forwarded using a
simple technique such as the shortest path algorithm.

11For practical implementation in the actual plane, we cannot
assume that at each time, each node can gain access to the
data object with the highest local popularity for caching.
Instead, one can use a scheme similar to that discussed in
Section 5.2, based on comparing the VIP count of the data
object corresponding to a Data Packet received at a given
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Figure 2: Network Topologies

In attempting to implement the caching algorithm in (5),
however, we encounter a problem. Since the VIP count of
a data object is decremented by rn immediately after the
caching of the object at node n, the strategy in (5) exhibits
oscillatory caching behavior, whereby data objects which are
cached are shortly after removed from the cache again due
to the VIP counts of other data objects now being larger.
Thus, even though Algorithm 1 is throughput optimal in
the virtual plane, its mapping to the actual plane leads to
policies which are difficult to implement in practice.

In the next section, we demonstrate another instantiation
of the VIP framework yielding a forwarding and caching
policy for the actual plane, which has more stable caching
behavior.

5. STABLE CACHING VIP ALGORITHM
In this section, we describe a practical VIP algorithm,

called Algorithm 2, that looks for a stable solution in which
the cache contents do not cycle in steady-state. Although
Algorithm 2 is not theoretically optimal in the virtual plane,
we show that it leads to significant performance gains in
simulation experiments.

5.1 Forwarding of Interest Packets
The forwarding algorithm in the virtual plane for Algo-

rithm 2 coincides with the backpressure-based forwarding
scheme described in (2)-(3) for Algorithm 1. The forward-
ing of Interest Packets in the actual plane for Algorithm
2 coincides with the forwarding scheme described in (10).
That is, all the Interest Packets for a particular request for
a given data object are forwarded on the link with the max-
imum average VIP flow rate over a sliding window of size T
prior to the arrival time of the Interest Packet for the first
chunk of the data object.

5.2 Caching of Data Packets
The caching decisions are based on the VIP flow in the vir-

tual plane. Suppose that at time slot t, node n receives the
Data Packet containing the first chunk of data object knew

which is not currently cached at node n. If there is suffi-
cient unused space in the cache of node n to accommodate
the Data Packets of all chunks of object knew, then node n
proceeds to cache the Data Packet containing the first chunk
of data object knew as well as the Data Packets containing

node to the VIP counts of the data objects currently cached
at the node.

all subsequent chunks for data object knew (which, by the
forwarding algorithm in Section 4.2.1, all take the same re-
verse path through node n). That is, the entire data object
k is cached at node n. Otherwise, the node compares the
cache scores for knew and the currently cached objects, as
follows. For a given window size T , let the cache score for
object k at node n at time t be

CSk
n(t) =

1

T

t
X

t0=t�T+1

X

(a,n)2Lk

⌫
k
an(t

0) =
X

(a,n)2Lk

⌫̄
k
an(t),

(11)
i.e., the average number of VIPs for object k received by n-
ode n over a sliding window of size T prior to time slot t.
Let Kn,old be the set of objects that are currently cached at
node n. Assuming that all data objects are of equal size,
let kmin 2 Kn,old be a current cached object with the small-
est cache score. If knew has a lower cache score than kmin,
then object kmin (consisting of all chunks) is evicted and re-
placed with object knew. Otherwise, the cache is unchanged.
If objects have different sizes, the optimal set of objects is
chosen to maximize the total cache score under the cache
space constraint. This is a knapsack problem for which low
complexity heuristics exist.

At each time t, the VIP count at node n for object k is
decreased by rns

k
n(t) due to the caching at node n. This

has the effect of attracting the flow of VIPs for each object
k 2 Kn,new, where Kn,new denotes the new set of cached
objects, to node n.

The Data Packets for data objects evicted from the cache
are potentially cached more efficiently elsewhere (where the
demand for the evicted data object is relatively bigger). This
is realized as follows: before the data object is evicted, VIPs
and Interest Packets flow toward the caching point as it is a
sink for the object. After eviction, the VIP count would be-
gin building up since the VIPs would not exit at the caching
point. As the VIPs build further, the backpressure load-
balancing forwarding policy would divert them away from
the current caching point to other parts of the network.

We now find the caching complexity for Algorithm 2. Note
that the complexity of calculating the cache scores (per time
slot) in (11) is O(N2K). Due to link capacity constraints,
the number of new data objects which arrive at a given node
in a time slot is upper bounded by a constant. Thus, for
fixed cache sizes, the total computational complexity for the
cache replacement operation (per time slot) is O(N). In
sum, the caching complexity for Algorithm 2 per time slot
is O(N2K).
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Figure 3: Abilene Network: Delay
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Figure 4: GEANT Network: Delay

5.3 Experimental Evaluation
This section presents the experimental evaluation of the

Stable Caching VIP Algorithm (Algorithm 2).12 Experi-
mental scenarios are carried on four network topologies: the
Abilene Topology (9 nodes), the GEANT topology (22 n-
odes), the Service Network topology (8 nodes), and the
DTelekom Topology (68 nodes) in Figure 2.

In the Service Network and Abilene topologies, all link
capacities are chosen to be 500 Mb/s. In the GEANT and
DTelekom topologies, all link capacities are chosen to be 200
Mb/s. The Interest Packet size is 125 B; the Data Packet
size is 50KB; the data object size is 5MB. At each node re-
questing data, object requests arrive according to a Poisson
process with an overall rate � (in requests/node/sec). Each
arriving request requests data object k (independently) with
probability pk, where {pk} follows a (normalized) Zipf distri-
bution with parameter 0.75. In the GEANT and DTelekom
topologies, a total of 2000 data objects are considered, while
in the other topologies (Service Network and Abilene), 5000
data objects are considered. The buffers which hold the In-
terest and Data Packets at each node are assumed to have
infinite size. We do not consider PIT expiration timers and
interest retransmissions.

In the Abilene, GEANT, and DTelekom topologies, object
requests can be generated by any node, and the content
source for each data object is independently and uniformly

12Our simulations are carried out on a computer with dual
Intel E5 2650 CPU’s (2.60GHz) and 128 GB RAM space.

40 60 80 100 120 140 160 180 200

0.5

1

1.5

2

2.5

x 10
8

Arrival Rates (requests/node/sec)

T
o

ta
l 

D
e

la
y

 (
s

e
c

/n
o

d
e

)

Service Network 5000 Objects − Delay

 

 
LCE−LRU

LCE−FIFO

LCE−UNIF

LCE−BIAS

LFU

LCD−LRU

AGE−BASED

POTENTIAL−LCE−LRU

VIP

Figure 5: Service Network: Delay

10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7
x 10

6 DTelekom 2000 Objects − Delay

Arrival Rates (requests/node/sec)

T
o

ta
l 
D

e
la

y
 (

s
e
c
/n

o
d

e
)

 

 
LCE−LRU

LCE−FIFO

LCE−UNIF

LCE−BIAS

LFU

LCD−LRU

AGE−BASED

POTENTIAL−LCE−LRU

VIP

Figure 6: DTelekom Network: Delay

distributed among all nodes. The cache sizes at all nodes are
identical, and are chosen to be 5 GB (1000 data objects) in
the Abilene topology and and 2 GB (400 data objects) in the
GEANT and DTelekom topologies. In the Service Network
topology, NODE 1 is the content source for all objects and
requests can be generated only by the CONSUMER nodes.
The cache sizes at NODE 2, NODE 3, NODE 4 and the
CONSUMER nodes are 5 GB.

In the virtual plane, the slot length is 200 msec in the
GEANT and DTelekom topologies and 80 msec in the oth-
er topologies. Forwarding uses the backpressure algorithm
with a cost bias to help direct VIPs toward content sources.13

The cost bias is calculated as the number of hops on the
shortest path to the content source, and is added to the VIP
queue differential. In the actual plane, the time step for for-
warding and caching decisions is 5 µsec in the GEANT and
DTelekom topologies and 2 µsec in the other topologies, i.e.,
the transmission time of one Interest Packet. The window
size T is 5000 slots. Each simulation generates requests for
100 sec and terminates when all Interest Packets are ful-
filled. Each curve in Figures 3-10 is obtained by averaging
over 10 simulation runs.

Simulation experiments were carried out to compare the
Stable Caching VIP Algorithm against a number of pop-
ular caching algorithms used in conjunction with shortest
path forwarding and a potential-based forwarding algorith-
m. In shortest path forwarding, at any given node, an In-

13It can be shown that the cost-biased version is also through-
put optimal in the virtual plane, as in Theorem 2.
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Figure 8: GEANT Network: Cache Hits

terest Packet for data object k is forwarded on the shortest
path to the content source for object k.14 The Data Packet
corresponding to the Interest Packet may be retrieved from a
caching node along the shortest path. In potential-based for-
warding, a potential value for each data object at each node
is set as in [3]. At each time and for each node, an Interest
Packet for object k is forwarded to the neighbor with the
lowest current potential value for object k. Each caching al-
gorithm consists of two parts: caching decision and caching
replacement. Caching decision decides whether or not to
cache a new data object when the first chunk of this objec-
t arrives and there is no remaining cache space. If a node
decides to cache the new data object, then caching replace-
ment decides which currently cached data object should be
evicted to make room for the new data object. We consid-
ered the following caching decision policies: (i) Leave Copies
Everywhere (LCE), which decides to cache all new data ob-
jects, and (ii) Leave a Copy Down (LCD)[11], where upon
a cache hit for data object k at node n, object k is cached
at the node which is one hop closer to the requesting node
(while object k remains cached at node n). We considered
the following caching replacement policies: (i) Least Recent-
ly Used (LRU), which replaces the least recently requested
data object, (ii) First In First Out (FIFO), which replaces
the data object which arrived first to the cache; (iii) UNIF,
which chooses a currently cached data object for replace-
ment, uniformly at random, and (iv) BIAS, which chooses

14We assume that all chunks of a data object are cached
together.
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two currently cached data objects uniformly at random, and
then replaces the less frequently requested one. In addition,
we considered Least Frequently Used (LFU) and age-based
caching [7]. In LFU, the nodes record how often each da-
ta object has been requested and choose to cache the new
data object if it is more frequently requested than the least
frequently requested cached data object (which is replaced).
In age-based caching [7], each cached object k at node n is
assigned an age which depends on pk, the (Zipf) popularity
of object k, and the shortest-path distance between n and
src(k). The cache replacement policy replaces the cached
object for which the age has been exhausted the longest.

We considered LCE-LRU, LCE-FIFO, LCE-UNIF, and
LCE-BIAS combined with shortest path forwarding. We
also considered (under shortest path forwarding) LCD com-
bined with LRU, as well as LCE-LRU combined with potential-
based forwarding.

The delay for an Interest Packet request is the difference
between the fulfillment time (i.e., time of arrival of the re-
quested Data Packet) and the creation time of the Interest
Packet request. A cache hit for a data chunk is recorded
when an Interest Packet reaches a node which is not a con-
tent source but which has the data chunk in its cache. When
a cache hit occurs, the corresponding metric is incremented
by the size of the chunk in cache.

Figures 3-6 show the delay performance of the algorithm-
s. It is clear that the Stable Caching VIP Algorithm signifi-
cantly outperforms all other algorithms tested. For instance,
for the Abilene topology at � = 100 requests/node/sec, the
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total delay for the VIP algorithm is only 55% of the de-
lay for the closest competitor (LCE-LRU), and only about
36% of the delay for the worst performing algorithm (LCE-
FIFO). Figures 7-10 show the cache hit performance for the
algorithms. Again, the Stable Caching VIP Algorithm has
significantly higher total cache hits than other algorithms.
For the Service topology at � = 200 requests/node/sec, the
total number of cache hits for Algorithm 2 is about 10%
higher than that for the closest competitor (LCD-LRU) and
is more than two times the number of cache hits for the
worst performing algorithm (LCE-FIFO).

In sum, the Stable Caching VIP Algorithm significantly
outperforms all competing algorithms tested, in terms of
user delay and rate of cache hits.

6. CONCLUSION
The joint design of traffic engineering and caching strate-

gies is central to information-centric architectures such as
NDN, which seek to optimally utilize both bandwidth and
storage for efficient content distribution. In this work, we
have introduced the VIP framework for the design of high
performing NDN networks. In the virtual plane of the VIP
framework, distributed control algorithms operating on vir-
tual interest packets (VIPs) are developed to maximize user
demand rate satisfied by the network. The flow rates and
queue lengths of the VIPs are then used to specify the for-
warding and caching algorithms in the actual plane, where
Interest Packets and Data Packets are processed. Experi-
mental results show that the latter set of algorithms have
superior performance in terms of user delay and cache hit
rates, relative to baseline routing and caching policies.
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APPENDIX

Theorem 2 (VIP Stability Region). The VIP sta-
bility region of the network G = (N ,L) with link capacity
constraints (6)-(7), and with VIP queue evolution (1), is the
set Λ consisting of all VIP arrival rates (�k

n)k2K,n2N such
that there exist flow variables (fk

ab)k2K,(a,b)2L and storage
variables (�n,i,l)n2N ;i=1,··· ,(K

l
); l=0,··· ,in,bLn/zc

satisfying

fk
ab � 0, fk

nn = 0, fk
src(k)n = 0, 8a, b, n 2 N , k 2 K

(12)

fk
ab = 0, 8a, b 2 N , k 2 K, (a, b) 62 Lk (13)

0  �n,i,l  1, i = 1, · · · ,

 

K

l

!

, l = 0, · · · , in, n 2 N

(14)

�
k
n 

X

b2N

fk
nb �

X

a2N

fk
an + rn

in
X

l=0

(K
l
)

X

i=1

�n,i,l1[k 2 Bn,i,l],

8n 2 N , k 2 K, n 6= src(k) (15)
X

k2K

fk
ab  Cba/z, 8(a, b) 2 L (16)

in
X

l=0

(K
l
)

X

i=1

�n,i,l = 1, 8n 2 N (17)

Here, Bn,i,l denotes the caching set consisting of the i-th
combination of l data objects out of K data objects at node
n, where i = 1, · · · ,

�

K
l

�

, l = 0, · · · , in , bLn/zc.

Proof. Please refer to [10].
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