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Abstract

We develop a method, VIPER, to impute the zero values in single-cell RNA sequencing studies to facilitate accurate

transcriptome quantification at the single-cell level. VIPER is based on nonnegative sparse regression models and is

capable of progressively inferring a sparse set of local neighborhood cells that are most predictive of the expression

levels of the cell of interest for imputation. A key feature of our method is its ability to preserve gene expression

variability across cells after imputation. We illustrate the advantages of our method through several well-designed

real data-based analytical experiments.

Introduction
Single-cell RNA sequencing (scRNAseq) technique is

becoming increasingly popular in transcriptome studies

[1–5]. While previous bulk RNAseq measures average gene

expression levels across cells by ignoring potential

cell-to-cell heterogeneity, scRNAseq provides an unbiased

characterization of gene expression at each single-cell level.

The high resolution of scRNAseq has thus far transformed

many areas of genomics. For example, scRNAseq has been

applied to classify novel cell subtypes [6, 7] and cellular

states [2, 4], quantify progressive gene expression [8–12],

perform spatial mapping [13, 14], identify differentially

expressed genes [15–17], and investigate the genetic basis

of gene expression variation [18, 19].

While scRNAseq holds great promise in studies with

complex cellular compositions, it also suffers from several

important technical disadvantages that limit its use in

many settings. These disadvantages include low transcript

capture efficiency, low sequencing depth per cell, and

wide-spread dropout events, to name a few [20–23]. As a

consequence, the gene expression measurements obtained

in scRNAseq often contain a large amount of zero values,

many of which are due to dropout events [20–23]. For

example, a typical drop-seq scRNAseq data can contain

up to 90% zero values in the expression matrix [24, 25].

Excess of zero values hinders the application of scRNAseq

in accurate quantitative analysis [24–27]. In addition,

standard analytic methods developed under bulk RNAseq

settings do not account for the excess of zero values

observed in scRNAseq data; thus, direct application of

these bulk RNAseq methods to scRNAseq often results in

sub-optimal performance [20, 28–30].

Several imputation methods have been recently pro-

posed to address the challenges resulted from excess zero

values in scRNAseq [24–27]. ScRNAseq imputation relies

on the fact that similar cells or correlated genes often con-

tain valuable information for predicting the missing value

of a given gene in a given cell. By borrowing information

across other cells or other genes, scRNAseq imputation

methods construct predictive models to fill in the missing

expression measurements. For example, the imputation

method SAVER borrows information across genes that are

correlated with the gene of interest and uses penalized re-

gression models to impute its missing values [24]. MAGIC

constructs a power transformed cell-to-cell similarity

matrix and borrows information across cells that are simi-

lar to the cell of interest for imputation [25]. scImpute

first clusters cells into different subpopulation and then

uses only cells within the same subpopulation to perform

imputation [26]. Finally, DrImpute clusters cells into dif-

ferent subpopulations, uses each subpopulation in turn to

predict the expression level for the cell of interest, and
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eventually averages these predicted values across all sub-

populations as the final imputed value [27].

While existing imputation methods have yielded promis-

ing results, they also have important drawbacks. For ex-

ample, methods such as MAGIC perform imputation based

on a low-dimensional space projected from the data, but

imputation on a low-dimensional space will likely eliminate

gene expression variability across cells and thus abolish a

key feature of single-cell sequencing data [25, 26]. As an-

other example, some methods treat all zero expression

values as missing data, but failing to distinguish a zero that

is due to dropout event from low expression may lead to a

loss in imputation accuracy [26, 27]. In addition, some

existing imputation methods rely on algorithms that

require input parameters that are difficult and even impos-

sible to pre-specify in real data applications. For example,

methods such as scImpute require knowing the true num-

ber of cell subpopulations in the data a priori, and some-

times also the number of low-dimensional factors that are

used to classify these cell subpopulations [26, 27]. As we

will show later, misspecification of the number of cell

subpopulations in these methods can introduce artificial

clusters to imputed data set. In contrast, some method such

as SAVER relies on a Markov chain Monte Carlo algorithm

to infer all tuning parameters in a sophisticated model, but

by inferring all tuning parameters, it becomes extremely

slow computationally and may not be applicable to large

data sets [24].

Here, we describe a straightforward, accurate, free-of-

tuning, and relatively computationally efficient scRNAseq

imputation method, which we refer as the Variability-Pre-

serving ImPutation for Expression Recovery (VIPER).

VIPER borrows information across cells of similar expres-

sion pattern to impute the expression measurements in the

cell of interest. However, unlike some of the previous

cell-based imputation methods, VIPER does not perform

cell clustering before imputation nor uses only cells that be-

long to the same cell subpopulation for imputation. Instead,

VIPER applies a sparse nongenerative regression model to

actively select a sparse set of local neighborhood cells that

are most predictive of the cell of interest. The selection of

this sparse set of cells is done in a progressive manner, and

their associated imputation weights are estimated in the

final estimation step to ensure both robustness and compu-

tational scalability. In addition, VIPER explicitly accounts

for expression measurement uncertainty of the zero values

in scRNAseq by modeling the dropout probability in a

cell-type-specific and gene-specific fashion. VIPER uses an

efficient quadratic programing algorithm that infers all

modeling parameters from the data at hand while keeping

computational cost in check. A key feature of VIPER is its

ability to preserve gene expression variability across cells

after imputation. We apply our method and compare it

with existing imputation methods in several real scRNAseq

data-based analytical experiments. We show that, com-

pared to existing methods, VIPER achieves better imput-

ation accuracy, preserves gene expression variability across

cells, recovers gene expression measurements that better

resemble the bulk RNAseq measurements in the same cell

type, and facilitates more reproducible differential expres-

sion analysis.

Materials and methods

Imputation model and parameter estimation

We aim to impute the zero values in the gene expression

matrix of scRNAseq by borrowing information across cells.

To do so, we denote Ci, j as the observed gene expression

count for ith cell and jth gene, with i ∈ {1,⋯, n} and j ∈ {1,

⋯,m}. We denote N i ¼
Pm

j¼1Ci; j as the total read depth

for ith cell and obtained normalized gene expression levels

in terms of RPM (reads per million reads) defined as Ri; j

¼
Ci; j

N i
� 106 . While we use RPM in the present study, we

note that our method is not restricted to the units of meas-

urement and is applicable to alternative normalized mea-

surements such as TPM (transcripts per kilobase per

millions reads) or RPKM (reads per kilobase per millions

reads). We denote Xi, j as the normalized expression level

obtained from RPM values by further performing a log

transformation Xi, j = log(Ri, j + 0.1). For imputation, we

examine one cell at a time. For ith cell, we assume that its

normalized expression level for the jth gene in expectation

can be expressed as a summation of the expression levels

of the same gene across all other cells

E X i; j

� �

¼
X

l∈ 1;⋯;i−1;iþ1;⋯;nf g
X l; jbi;l;

where bi, l is the predictive effect of lth cell on ith cell.

Note that we only specify a mean model as we only

intend to perform single imputation. Single imputation

of the mean does not require a full modeling specifica-

tion for the response variable Xi, j (more details in the

“Discussion” section).

We assume that the predictive effects bi, l are all non-

negative with ∑l ∈ {1,⋯, i − 1, i + 1,⋯, n}bi, l = 1, so that all bi, l
are bounded between 0 and 1 and can be naturally inter-

preted as imputation weights. Besides the ease of inter-

pretation, bounding all bi, l also ensures imputation

stability. Under the above model, the expression levels of

ith cell are represented as a weighted summation of the

expression levels of all other cells. In practice, we would

expect only a small set of cells to be informative for im-

puting the expression levels for the cell of interest.

Therefore, we set the estimated small weights to be

exactly zero if they are below a certain threshold of t =

0.001 (i.e., hard thresholding). Thresholding weights al-

lows us to identify a small set of neighborhood cells for

imputation. With hard thresholding and nonnegative
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weight constraint, our model becomes effectively a

sparse nonnegative regression model [31]. Note that, be-

cause we model each cell separately, the neighborhood

cell list is not symmetric: the fact that lth cell is a neigh-

borhood of ith cell does not guarantee that ith cell is

also a neighborhood of lth cell. This asymmetric pattern

ensures that the identification of neighborhood cells is

optimal for each cell. Once we obtain the parameter esti-

mates b̂i;l , for each missing data Xi, j in turn, we then

plug in these estimates to obtain a predicted value X̂ i; j

¼
P

l∈f1;⋯;i−1;iþ1;⋯;ngX l; jb̂i;l as the imputed value. To re-

duce the influence of missing values in the weight esti-

mation, the model is fitted using genes that have a zero

rate less than a threshold (set to be 10% in the analyses

presented in this paper).

We estimate the predictive effect parameters bi, l from

the above mean model using ordinary least squares with

a quadratic programming algorithm. Specifically, we

re-formulate parameter estimation problem in the above

model to an optimization problem, where, for each cell i

in turn, we aim to obtain a set of ith cell-specific predic-

tion weights (bi, 1,⋯, bi, i − 1, bi, i + 1,⋯, bi, n) from all

other cells by minimizing the sum of square prediction

errors for

min
bi;1;⋯;bi;i−1;bi;iþ1;⋯;bi;nf g

Xm

j¼1
X i; j−

X

l∈ 1;⋯;i−1;iþ1;⋯;nf g
X l; jbi;l

� �2

;

where the nonnegative effects bi, l satisfy the constraint

that bi, 1 +⋯ + bi, i − 1 + bi, i + 1 +⋯ + bi, n = 1, with the

non-zero effects being above a certain threshold of t =

0.001. To optimize the above function, we denote Wi, j =

Xi, j −Xn, j, Yl, j =Xl, j −Xn, j, and β = (bi, 1,⋯, bi, i − 1, bi, i +

1,⋯, bi, n)
T. The above constrained optimization problem

can be re-expressed as a quadratic programming problem

min
β

1

2
βT

Xm

j¼1
Y

: jY
T
: j

� �

β−
Xm

j¼1
W i; jY

T
: j

� �

β;

subject to
Iðn−1Þ�ðn−1Þ

−Iðn−1Þ�ðn−1Þ

� �

β≤
1ðn−1Þ
0ðn−1Þ

� �

, where I(n − 1) × (n

− 1) denotes a (n − 1) by (n − 1) identity matrix, 1(n − 1)

denotes a (n − 1)-vector of 1s, and 0(n − 1) denotes a (n −

1)-vector of 0s. We solve the optimization problem

using quadratic programming [32]. Once we obtain the

prediction weight estimates, we further set those weights

less than the threshold of t = 0.001 to be exactly zero to

ensure sparsity. Finally, we re-normalize the non-zero

weights to ensure a summation of one.

While the above quadratic programming algorithm is

effective, we find that the algorithm is computationally

inefficient and does not scale well to large-scale scRNA-

seq data sets. To ensure algorithm scalability and avoid

model overfitting, we perform a pre-selection procedure

to first select a small set of candidate cells that will be

eventually selected as local neighbors. Specifically, for

each cell i in turn, we apply standard penalized regres-

sion model (lasso or elastic net, with the default tenfold

cross validation to determine the penalty parameter)

using a random sampled set of 5,000 genes to identify a

set of candidate cells that are predictive of the expres-

sion of the ith cell. Among these candidate cells, we

apply the quadratic programming algorithm described

previously to further identify a set of neighborhood cells

for final imputation. Therefore, our imputation method

eventually consists of two steps: a lasso/elastic net-based

pre-selection step and a quadratic programming

algorithm-based fine tuning and estimation step. With

two separate steps, our method ensures computational

scalability while avoiding model overfitting by sequen-

tially reducing model complexity.

Finally, we note that a zero count can be generated by

two possible mechanisms: it either comes from a drop-

out event or represents a low or zero level of gene ex-

pression. If the zero value of Cl, j is due to a dropout

event, then it is not an accurate measurement of the true

expression level of jth gene in lth cell. Subsequently, we

do not wish to use the normalized value Xl, j from a

dropout event to impute Xi, j. However, if the zero value

of Cl, j comes from low or zero expression level of jth

gene in lth cell, then we would want to use the normal-

ized value Xl, j to impute Xi, j. To distinguish between

these two possibilities, we estimate an expected expres-

sion level for any zero value of Cl, j and use these esti-

mates to perform imputation. The modeling and

estimation details for this dropout adjustment step are

provided in detail in the Additional file 1: Supplementary

Text. Briefly, we assume that the gene expression levels

of the jth gene for all selected neighborhood cells for the

ith cell of interest follow a zero-inflated Poisson mixed

model, such that Cl, j~pi, jδ0 + (1 − pi, j)PMM(Nlλl, j,ψi, j).

In the model, pi, j represents the dropout probability of

jth gene that is specific for all neighborhood cells of the

ith cell of interest; δ0 denotes a point mass at zero; Nl is

the total read depth for the lth cell; λl, j is the Poisson

rate parameter that represents the expression level of jth

gene in the lth cell; ψi, j is an over-dispersion parameter

that is specific for jth gene and for all neighborhood cells

of the ith cell of interest; and PMM denotes a Poisson

mixed effects model. Under the zero-inflated Poisson

mixed effects model, Cl, j is exactly zero with a dropout

probability pi, j and follows an over-dispersed Poisson

distribution with probability 1 − pi, j. Our goal is to esti-

mate λl, j, the underlying expression level of jth gene in

lth cell, to serve as our final predictor variable for all

zero values of Cl, j. To do so, we first estimate all param-

eters (i.e., pi, j, λl, j, ψi, j) through an expectation

maximization (EM) algorithm based on the selected
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neighborhood cells for the ith cell of interest. After-

wards, we obtain an estimate of λ̂l; j and use it to replace

Xl, j to serve as the final predictor variable. Certainly, we

use the normalized expression measurement Xl, j directly

as the predictor variable if Cl, j is non-zero.

We refer to our method described above as the

Variability-Preserving ImPutation for Expression Recovery

(VIPER). We note that the non-statistical term “variability

preserving” in the method name refers to the fact that our

method is capable of preserving gene expression variance

across cells after imputation, as we will show in the fol-

lowing real data-based analytic experiments. The property

of “variability preserving” in our method contrasts a few

other imputation methods that aggressively reduce vari-

ance across cells after imputation (e.g., MAGIC and scIm-

pute). However, we also acknowledge that, just like any

existing single-cell imputation method, our method is a

single imputation method that suffers from the usual

drawbacks when compared to other more advanced

imputation methods such as multiple imputation [33].

Real data sets

We examine four scRNAseq data collected from three

studies. These three studies include both unique mo-

lecular identifier (UMI)-based techniques (CEL-seq; the

first study) and non-UMI-based techniques (Fluidigm

C1; the second two studies).

Specifically, the first data set is from Grun et al. [34].

It is a mouse study that examines a total of 251 cells that

were cultured in two different media. These cells include

74 embryonic stem cells (ESCs) cultured in a

two-inhibitor (2i) medium, 45 ESCs cultured in a serum

medium, 56 samples with pooled RNA from ESCs cul-

tured in a 2i medium, and 76 samples with pooled RNA

from ESCs cultured in serum. The first two types of cells

are single-cell measurements while the second two types

of samples are measurements averaged across single

cells. We obtained raw UMI count measurements for

23,459 genes from the authors. We selected genes that

are expressed in at least 10% of the cells and analyzed a

total of 12,184 genes in the final analyses.

The second and third data are both from Chu et al.

[35]. The second data set contains gene expression mea-

surements for 1,018 single cells from both human ESCs

and the lineage-specific progenitor cells derived from

these ESCs. We refer to the second data as the “Cell

Type” data because the cells belong to seven known cell

subpopulations that include neuronal progenitor cells

(NPCs), definitive endoderm derivative cells (DEDs),

endothelial cells (ECs), trophoblast-like cells (TBs), un-

differentiated H1 and H9 ESCs, and foreskin fibroblasts

(HFFs). Note that above we denoted the definitive endo-

derm derivative cells as DEDs instead of the traditional

notation of DEs because we later used DE to represent

differential expression. Besides the single-cell data, the

second data also contains 19 corresponding samples

from bulk RNAseq. The third data set contains gene

expression measurements for 758 single cells. We refer

to the third data set as the “Time Course” data as the

cells are collected at six different time points (0, 12, 24,

36, 72, and 96 h) during the developmental trajectory of

ESCs differentiating towards DEDs. In addition to the

single-cell data, the third data also contains 15 samples

from bulk RNAseq for all other time points except for

0 h. We downloaded both the second and third data in

terms of four expected count matrices from the Gene

Expression Omnibus (GEO) website with accession

number GSE75748. We filtered out genes that are

expressed in less than 10% of the cells and analyzed a

total of 13,829 genes in the Cell Type data and 13,059

genes in the Time Course data.

The fourth data is from Shalek et al. [15]. It contains

gene expression measurements for 1,700 primary mouse

dendritic cells (DCs) stimulated with three pathogenic

components for different amount of time (1 h, 2 h, 4 h,

and 6 h). The three pathogenic components include

lipopolysaccharide (LPS) which is a component of

Gram-negative bacteria, PAM3CSK4 (PAM) which is a

synthetic mimic of bacterial lipopeptides, and PIC which

is a viral-like double-stranded RNA. For this data, we

retained cells with library sizes greater than one million.

After further filtering out genes that are expressed in

less than 10% of the cells, we focus on a final set of

1,053 cells with 16,702 genes for the following analysis.

Real data-based experiments

We performed three different experiments using published

scRNAseq data. Two experiments (masking and compari-

son to bulk RNAseq) are described in detail in the

“Results” section. We describe the details of the third

down-sampling experiment in the following paragraphs.

The down-sampling experiment is performed on one real

data at a time and consists of two steps.

In the first step, for each gene in turn, we randomly

sampled gene expression values across all cells based on

a multinomial distribution. In this multinomial distribu-

tion, the cell-specific probability parameters are set to be

the corresponding cell expression proportion in the ori-

ginal data, while the total read count parameter is set so

that the down-sampled read depth represents a fixed

proportion of the original read depth (i.e., one minus the

down-sampling rate, where the down-sampling rate is

set to be either 0.5, 0.6, 0.7, 0.8, 0.9, or 0.95; thus, 0.5

represents the setting where the library size is reduced

to 50% and thus corresponds to a larger down-sampling

rate compared to 0.95). The multinomial distribution

Chen and Zhou Genome Biology          (2018) 19:196 Page 4 of 15



ensures that the expected gene expression proportion of

each cell remains unchanged after down-sampling.

The down-sampled data from the first step contains

both zero values and non-zero values. After the initial

down-sampling step, we further introduce extra dropout

events to the non-zero values as a second step of the

down-sampling experiment, in order to mimic data gen-

erating process of real scRNAseq data. These dropout

events are introduced to each of the non-zero values by

sampling from a Bernoulli distribution characterized by

a dropout rate. The dropout rate is designed using two

different strategies. In the first strategy, we set a fixed

dropout rate of 0.8 that is independent of the non-zero

value from the initial multinomial sampling step. In the

second strategy, we model the dropout rate as a logistic

function of the non-zero down-sampled value. This lo-

gistic function is estimated in the original data for each

cell subpopulation separately. Specifically, within each

cell subpopulation, for each gene in turn, we obtained

the percentage of zero values and the mean of non-zero

values across all cells. Treating the zero percentage as

outcome and the non-zero means as explanatory vari-

able, we fitted a logistic regression model to establish

their quantitative relationship in each cell subpopulation.

Afterwards, we used the fitted logistic model to compute

a dropout rate for each non-zero value in the data ob-

tained from the initial down-sampling step. With either

strategy, we set each non-zero value to be zero with a

probability equal to the dropout rate. Therefore, the zero

values in the final down-sampled data are either due to

low expression values in the original data and the subse-

quent multinomial down-sampling (i.e., first step) or due

to the extra dropout events (i.e., second step).

We examined several down-sampling scenarios based on

various down-sampling rates. In each scenario, we per-

formed imputation on the zero values resulting from either

multinomial down-sampling or from the additional drop-

out events. We measured imputation accuracy by compar-

ing the imputed data to the original data across all entries.

Note that the zero values that were already present in the

original data were not analyzed here because we do not

know their “true” values in the original data.

Methods for comparison

We compared our method with four existing imputation

methods. These imputation methods include DrImpute

[27] (version 1.0), MAGIC [25] (version 0.1.0), SAVER

[24] (version 0.3.1), and scImpute [26] (version 0.0.5).

Note that we downloaded most of these software versions

and compared them in 2017 when the original papers

describing these methods were unpublished. We carried

out analyses following the recommended procedure from

each software. The software scImpute also requires a spe-

cification of the number of cell subpopulations, which is

generally unknown in most real data. Here, we set the

number of cell subpopulations required by scImpute to be

the truth in all our experiments (except those described in

the “Discussion” section). To assess imputation accuracy,

in one experiment, we performed differential expression

analysis between pairs of cell subpopulations following im-

putation. For differential expression analysis, we used

three different DE software that include DEseq2 [36] (ver-

sion 1.16.1), edgeR [37–39] (version 3.20.7; with either the

likelihood ratio test, LRT, or with the quasi-likelihood F

test, QLF), and SCDE [20] (version 1.99.1). Note that

SCDE was specifically designed for single-cell DE analysis.

Both edgeR and DEseq2 were originally designed for bulk

RNAseq studies and do not account for the excessive zero

values encountered in the single-cell RNAseq data. How-

ever, recent comparative studies have suggested that the

QLF version of edgeR and DESeq2 enjoy superior per-

formance for single-cell DE analysis than many single-cell

data-specific DE methods [38]. We carried out differential

expression analyses also following the recommended

procedure from each software.

Results

Method and analysis overview

The technical details of VIPER are described in the “Ma-

terials and methods” section with an illustration of the

imputation procedure provided in Additional file 2: Fig-

ure S1. Briefly, VIPER examines one cell at a time,

searches for a small subset of neighborhood cells that

are predictive of its gene expression levels, and finally

imputes its missing expression measurements using its

neighborhood cells. For imputation, VIPER relies a

sparse nonnegative regression model to model the gene

expression levels of the cell of interest as a weighted

summation of a sparse set of its neighborhood cells.

These neighborhood cells and their imputation weights

are inferred through a computationally efficient two-step

procedure that includes a pre-selection step and an esti-

mation step. In the pre-selection step, VIPER identifies a

moderate-sized set of candidate cells that are likely pre-

dictive of the expression levels of the cell of interest and

that will serve as a candidate pool for the final selection

of neighborhood cells. The pre-selection step is done ef-

ficiently using a standard penalized regression method

based on either lasso or elastic net and is designed to

mitigate the computation burden of the later estimation

step. In the estimation step, with the selected candidate

cells, VIPER fits a sparse nonnegative regression model

using a quadratic programming algorithm to further

identify a final set of neighborhood cells and estimate

their weights for imputation. The size of the final set is

often a few times smaller than the candidate pool (Fig. 1).

As a consequence, VIPER reduces model complexity in a

sequential fashion, which can help to avoid overfitting.
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Finally, when imputing the zero values, VIPER also ex-

plicitly models a gene-cell-specific dropout probability

to distinguish between zero due to a dropout event and

due to a low or zero level of gene expression, which fur-

ther improves imputation accuracy.

We use four real data sets from three published studies

to evaluate the performance of our method. The details of

these data are described in the “Materials and methods”

section. We refer to the first data as the Grun et al. data

[34], the second data as the Cell Type data which is ob-

tained from Chu et al. [35], the third data as the Time

Course data which is also obtained from Chu et al. [35],

and the fourth data as Shalek et al. data [15]. Both the Cell

Type and Time Course data also contain a corresponding

bulk RNAseq data. We used all data sets in most of our

evaluation experiments described in the following sections.

In addition, we used primarily the Cell Type and Time

Course data from Chu et al. [35] for some simple illustra-

tions described in the “Discussion” section and for an ex-

periment that requires corresponding bulk RNAseq data.

We compare the performance of our method with

existing approaches, including (1) DrImpute, which re-

lies on pre-identified cell subpopulations for imputation

[27]; (2) MAGIC, which uses a power-transformed cell

similarity matrix constructed using a few number of

principal components to perform imputation [25]; (3)

SAVER, which uses genes that are correlated with the

gene of interest to perform imputation [24]; and (4)

scImpute, which also uses pre-identified cell subpopula-

tions to perform imputation [26]. We access the

accuracy of different imputation methods by performing

four real data-based experiments.

Assessing imputation accuracy through data masking

First, we assess imputation performance of different

methods in recovering randomly masked non-zero gene ex-

pression values. To do so, in each of the four scRNAseq

data (Grun, Cell Type, Time Course, Shalek), we randomly

selected a fixed percentage (2%, 5%, or 10%) of non-zero

entries in the observed data matrix and masked these

values to be zero to generate a new gene expression matrix.

We then apply different methods to the newly generated

gene expression matrix and compute the correlation be-

tween the imputed values and the masked values across all

entries as a measurement of imputation accuracy. For each

data set, we perform 10 masking replicates and plot the re-

sults across these replicates in Fig. 2. Overall, VIPER out-

performs all other existing approaches in all data sets. The

performance of our method is followed by scImpute and

MAGIC, while SAVER and DrImpute do not perform well.

For example, in Cell Type data, when masking percentage

is 2%, the correlation between the imputed values by VIPER

and masked truth is 0.71 (when lasso is used in the

pre-selection step) or 0.72 (when elastic net is used in the

pre-selection step), while the correlation by DrImpute is

0.0005, by MAGIC is 0.62, by SAVER is 0.27, and by scIm-

pute is 0.68. In addition, as one might expect, the perform-

ance of our method and the other methods decay slightly

with the increasing of masking percentage, though the

rankings of different methods remain the same. For
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Fig. 1 Estimated imputation weights inferred in the two steps of the VIPER method in four data sets. Results are shown for Grun data (a, b), Cell

Type data (c, d), Time Course data (e, f), and Shalek data (g, h). Cells with non-zero weights are shown in red. Color labels on top of each

heatmap represent different cell subpopulations in that data set. Compared to the pre-selection step (a, c, e, g), the sparsity of non-zero weights

further reduced after the estimation step (b, d, f, h) in all data sets
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example, in Cell Type data, when masking percentage in-

creases to 10%, the correlation between the imputed values

by VIPER and the truth is 0.70 (for lasso) or 0.71 (for elastic

net), while the correlation by DrImpute is 0.0007, by

MAGIC is 0.61, by SAVER is 0.27, and by scImpute is 0.68.

The rankings of different methods are similar when we use

squared loss (a.k.a mean squared error) and L1 loss (a.k.a.

mean absolute deviation) as alternative imputation accuracy

measurements (Additional file 2: Figures S2–S4). For ex-

ample, in Cell Type data, when masking percentage is 2%,

the square loss for the imputed values when compared to

the masked truth is 0.66 (for lasso) or 0.651 (for elastic net)

by VIPER, while the square loss by DrImpute is 15.698, by

MAGIC is 3.029, by SAVER is 13.696, and by scImpute is

0.98. The masking experiments suggest that our method is

capable of accurately recovering the true expression levels

in real data.

Assessing imputation accuracy through down-sampling

Second, we assess the performance of different imput-

ation methods using two down-sampling experiments.

The procedure of the down-sampling experiments is de-

scribed in detail in the “Materials and methods” section

with an illustration in Additional file 2: Figure S5. Spe-

cifically, we generated down-sampled version of each of

the four scRNAseq data through multinomial

down-sampling, created additional zero values by intro-

ducing dropout events, applied different methods to im-

pute the zero entries in the down-sampled data, and

examined whether these imputed values recover the

known truth compared to the original data. The dropout

events are introduced using a rate that is either

dependent or independent on the expression values (de-

tails in the “Materials and methods” section). The zero

values due to low expression level and the multinomial

down-sampling or due to the additional dropout events

vary across different data sets (Additional file 3: Table

S1). For example, with a dropout rate dependent on the

expression values and a down-sampling rate of 0.9,

8.52% of the zero values in the Grun down-sampled data

are due to multinomial down-sampling (while 91.48%

are due to dropout); 43.7% of zeros in the Cell Type
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Fig. 2 Correlation between the masked truth and imputed values by different methods in the data masking experiment. Rows represent the four different

data sets (Grun, Cell Type, and Time Course, Shalek) used in the experiment. Columns represent masking percentage (2%, 5%, and 10%). Methods for

comparison include DrImpute (blue), MAGIC (green), SAVER (pink), scImpute (purple), VIPER with elastic net selection (peach), and VIPER with lasso selection

(dark blue). Boxplots show correlation values obtained from 10 masking replicates, where in each replicate we calculated the correlation for each cell in

turn and plotted the median correlation value across cells
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data, 35.59% in the Time Course data, and 29.38% in the

Shalek data are due to multinomial down-sampling. The

down-sampling experiment provides a unique opportunity

for us to assess the performance of different imputation

methods for imputing these two different types of zeros

separately. To assess imputation accuracy, for zeros due to

dropout, we computed the correlation between the im-

puted data and the original data before down-sampling.

For zeros due to low abundance and down-sampling, we

calculated the L1 loss between the imputed data and the

original data before down-sampling; we did not use correl-

ation for down-sampling zeros here because correlation is

no longer an effective measurement due to the excessively

large number of zeros in the original data for these

down-sampling zeros. The results are shown in Fig. 3.

Corresponding results measured with L1 loss for both

these two types of dropout rates are consistent with the

main results and are shown in Additional file 2: Figure S6.

For the zeros due to dropouts, VIPER outperforms

most other imputation approaches across the four differ-

ent data sets and the two different dropout rate settings:

it is ranked as the best method in six out of the eight

scenarios examined. The only exceptions are Time

Course data as well as the Grun et al. data with an

expression-dependent sampling rate (i.e., one scenario

out of eight), where, in the later case, while VIPER

outperforms SAVER when the down-sampling rate is high

(0.6 to 0.95), it performs slightly worse than SAVER in the

presence of a low down-sampling rate (0.5). The perform-

ance of our method in other settings is generally followed

by SAVER and then scImpute, while DrImpute and

MAGIC do not work well. For example, in the Cell Type

data, when the down-sampling rate is 0.5, the correlation

between the imputed values in the down-sampled data and

the truth in the original data is 0.830 using lasso and 0.832

using elastic net by VIPER, while the correlation by DrIm-

pute is 0.572, by MAGIC is 0.266, by SAVER is 0.828, and

by scImpute is 0.522. The rankings of different methods

also remain largely the same when we use different

down-sampling rates or alternative down-sampling

strategies.

For the zeros due to low expression abundance and

multinomial down-sampling, VIPER outperforms all other

imputation approaches except for SAVER across the four

different data sets and the two different dropout rate set-

tings. VIPER and SAVER were each ranked as the best

method in four out of the eight scenarios. In particular,

VIPER produces better results than SAVER in three out of

four data sets when we use expression-independent drop-

out rates and produces better results in one out of four

data sets when we use expression-dependent dropout rate.

The good performance of SAVER in half of the scenarios
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Fig. 3 Imputation accuracy in the down-sampling experiment. Results are shown for down-sampling experiments using either expression-

dependent dropout rate (a) or expression-independent dropout rate (b) for four different data sets (Gurn, Cell Type, Time Course, and Shalek).

Imputation accuracy are measured by comparing imputed values to the original truth and are evaluated for two different types of zeros

separately: zeros that are due to low expression level in the original data and the multinomial subsampling step (down-sampling entries; y-axis)

and zeros that are due to dropout events (dropout entries; x-axis). Accuracy is measured by correlation for the dropout entries and by L1 loss for

the down-sampling entries (because of an excess of zero values in the original data for the down-sampling entries). Color of the dots represents

methods for comparison: DrImpute (blue), MAGIC (green), SAVER (pink), scImpute (purple), VIPER with elastic net selection (peach), and VIPER with

lasso selection (dark blue). Shape of the dots represents the down-sampling rate used in the multinomial subsampling step
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for imputing zeros due to low expression abundance is

presumably due to the fact that the imputed values from

SAVER do not differ much from the unimputed data in

general (which will become apparent in the next section);

thus, the imputed values from SAVER for these zeros due

to low expression abundance remain close to zero. The

performance of our method and SAVER is followed by

either DrImpute or scImpute, depending on the data set,

while MAGIC does not work well here. For example, in

the Cell Type data, when the down-sampling rate is 0.5,

the L1 loss between the imputed values in the

down-sampled data and the truth in the original data is

0.405 (for either lasso or elastic net) by VIPER, while the

L1 loss by DrImpute is 0.686, by MAGIC is 4.182, by

SAVER is 0.514, and by scImpute is 0.857. The rankings of

different methods remain largely the same when we use

different down-sampling rates.

Therefore, consistent with the masking experiments,

the down-sampling experiments here also suggest that

VIPER is capable of accurately recovering the true

expression levels in real data.

Assessing imputation accuracy by comparing to bulk

RNAseq

Third, we assess the performance of different methods

by comparing the imputed gene expression values from

scRNAseq to the expression values measured by bulk

RNAseq in the same cell subpopulation. To do so, we

rely on the Cell Type and Time Course data from Chu

et al. [35] that also have bulk RNAseq data measured in

the same cell subpopulations. We apply different

methods to perform imputation in each data and display

the imputed values from scRNAseq together with the

bulk RNAseq data in Fig. 4 (for Cell Type data) and

Additional file 2: Figure S7 (for Time Course data). The

gene expression heatmaps show that there are almost no

zero entries in the bulk RNAseq data, but there is a large

proportion of zero entries in the raw scRNAseq data

before imputation. In addition, scRNAseq data display a

substantial gene expression variation across cells within

each cell subpopulation. Intuitively, a good imputation

method would generate an expression heatmap lying

somewhere between the bulk RNAseq data and the raw

Before ImputationBulk

VIPER-Elastic NetVIPER-Lasso

DrImpute

SAVER scImpute
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Fig. 4 Heatmaps show the unimputed or imputed gene expression measurements in the scRNAseq data together with the gene expression

measurements from bulk RNAseq in the Cell Type data. Expression measurements are shown across cells (for scRNAseq) or across sample

replicates (for bulk RNAseq) in seven different cell subpopulations. The seven different cell subpopulations include H1, H9, DEC, EC, HFF, NPC, and

TB. Imputed scRNAseq data are obtained from different imputation methods that include DrImpute, MAGIC, SAVER, scImpute, VIPER with elastic

net selection, and VIPER with lasso selection
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scRNAseq data: the imputed data should contain mean

gene expression levels that are consistent with the bulk

RNAseq data, but also maintain substantial gene expres-

sion variation across cells within the subpopulation. After

imputation, with the exception of SAVER (and to a less

extent of DrImpute), we found that most imputation

methods are able to replace a large proportion of zero en-

tries with imputed values. In addition, the imputed data

from VIPER (with lasso or elastic net) lies somewhere be-

tween the bulk RNAseq data and the raw unimputed

scRNAseq data, with reasonably accurate mean estimation

and substantial variation across cells. In contrast, the im-

puted data from SAVER looks very similar to the raw

scRNAseq data before imputation, while the imputed data

from scImpute and MAGIC only resemble the bulk RNA-

seq data well. Careful examination of the imputed data

heatmap also suggests that the imputed data from DrIm-

pute appears to be deprived much of the gene expression

variation across genes, while the imputed data from

MAGIC (and to a less extent scImpute) appears to be de-

prived much of the gene expression variation across

cells—even though the mean imputed gene expression

levels across cells within each cell subpopulation from

MAGIC resemble quite closely to that of bulk RNAseq.

To quantify the performance of different imputation

methods in terms of recovering the mean expression level

of each cell type, we averaged the expression levels across

all cells within a cell subpopulation to obtain an averaged

gene expression measurement in the imputed scRNAseq

data. For each cell subpopulation in turn, we then com-

puted the correlation between bulk RNAseq and the im-

puted mean scRNAseq measurements across all genes

(Fig. 5a, b). Among these methods, MAGIC produces the

highest correlation, suggesting that MAGIC is capable of

imputing the mean expression level across cells within

each cell subpopulation relatively accurately, even though

it eliminates the majority of the variability across cells (see

also the next paragraph). In contrast, our method works

well in recovering the mean expression level of a cell type

while maintaining the expression variability across cells

within the same cell type. The performance of our method

is followed by scImpute. On the other hand, the imputed

mean expression values by SAVER are correlated with

bulk RNAseq in the same degree as unimputed data, while

the imputed mean expression values by DrImpute are less

correlated with bulk RNAseq compared to the unimputed

data. The similar or reduced correlation between the im-

puted data by SAVER/DrImpute and bulk RNAseq data

suggests that both SAVER and DrImpute do not improve

gene expression measurement accuracy in these data.

To quantify the cross-cell gene expression variability

in the imputed data sets, for each gene in turn, we com-

puted the coefficient of variation (CV) across cells after

imputation and compared it to the CV of the non-zero

values before imputation. We contrasted these two CV

values for DEC cells in Cell Type data set and stratified

the contrast by showing different zero proportions (Fig. 5c)

or different non-zero mean expression levels (Add-

itional file 2: Figure S8) with colors in gradient. Intuitively,

for a given gene, if the zero values across cells are all due

to dropout events, then we would expect the CV after im-

putation to be similar to the CV before imputation—be-

cause the imputed data would follow the same

distribution as the non-zero values before imputation. In

contrast, if the zero values are all due to low gene expres-

sion levels, then we would expect the CV after imputation

to be higher than the CV before imputation—because the

imputed data would generally have lower values than the

non-zero values before imputation. Therefore, CV after

imputation by a proper method would be either equal to

or higher than the CV before imputation. Indeed, our

method (lasso or elastic net) produces results that meet

this expectation, with some genes having similar CV

values after imputation while some genes having higher

CV values after imputation. In contrast, almost all genes

have smaller CV values after imputation by MAGIC (or,

to a less extent, by scImpute), suggesting that MAGIC

and scImpute reduce gene expression variability across

cells after imputation. The reduced variability by MAGIC

or scImpute is consistent with the heatmaps shown in

Fig. 4. On the other hand, most genes have higher CV

values after imputation by either DrImpute or SAVER,

suggesting that DrImpute/SAVER effectively treats most

zero values as non-dropout events.

Importantly, CV plots in the other three data sets (Time

Course, Grun data, and Shalek data) display similar patterns

(Additional file 2: Figures S9–S11). We also examined CV

plots in the down-sampled data, which allows us to

visualize the imputed value variance for two different types

of zeros separately: zeros that are due to true zero or low

abundance in the original data, and zeros that are due to

dropouts. To do so, in the down-sampling experiment, we

computed CV for the imputed zeros originating from drop-

out together with unimputed data and contrast it with the

CV from the corresponding original truth (Additional file 2:

Figure S12). We also computed CV for the imputed zeros

originating from true zero or low abundance together with

unimputed data and contrast it again with the CV from the

corresponding original truth (Additional file 2: Figure S13).

Both CV plots are consistent with our main results, sug-

gesting that our method is capable of preserving variability

regardless which type of zeros we focus on.

Overall, both the correlation that measures the expres-

sion mean of a cell type (Fig. 5a, b) and the CV that

quantifies the expression variability across cells within

the cell type (Fig. 5c) suggest that only our method can

produce accurate expression measurements while main-

taining desired gene expression variability across cells.
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Accurate imputation facilitates reproducible differential

expression analysis

Finally, we performed differential expression analysis on

the imputed data to illustrate the benefits of imputation.

Specifically, we focus on detecting differentially

expressed genes between pairs of cell subpopulations

from the Cell Type data, for all 21 pairs of 7 cell types.

For each pair in turn, we randomly split cells into two

subsets and applied different DE methods (DESeq2, two

different versions of edgeR, and SCDE) to analyze each

subset separately. We then computed the proportion of

overlap between the top 100, 200, 500, or 1000 DE genes

detected from each subset—and we compute this pro-

portion as Jaccard index, defined as the ratio of the

intersection and the union between the top gene lists

from the two subsets. We performed the random data

split 10 times and show the mean overlap proportions of

DE genes detected by SCDE from these replicates in

Fig. 6. The results based on the DE methods edgeR and

DESeq2 are similar and are shown in Additional file 2:

Figures S14–S16. We also display the overlap propor-

tions among the top 100 DE genes across replicates for
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Fig. 5 Quantifying imputed gene expression in scRNAseq. a, b Correlation between imputed scRNAseq data and bulk RNAseq data across

different cell subpopulations in the Cell Type data (a) and the Time Course data (b). Correlation is computed between the mean gene expression

measurements averaged across cells with a cell type from scRNAseq and the mean gene expression measurements averaged across sample

replicates from bulk RNAseq in the same cell type. For scRNAseq, results are shown for unimputed data (red) and imputed data by different
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lasso selection (dark blue). c Gene expression variation across cells in imputed scRNAseq data versus that in the raw data for DEC cells in Cell

Type data set. For each gene in turn, the coefficient of variation (CV) across all cells after imputation (y-axis) is computed and plotted against the

CV of non-zero cells before imputation (x-axis) for different methods. Each dot represents a gene, and the color of the dot represents the mean
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three exemplary pairs (H1 vs DEC, EC vs HFF, and NPC

vs TB) in Additional file 2: Figure S17. Intuitively, if an

imputation method works well, then DE analysis on the

imputed data from the method would yield reproducible

results, leading to a high overlap proportion among the

top DE genes detected from the two split subsets. Con-

sistent with the higher imputation accuracy of our

method observed in the previous experiments, our

method indeed achieves consistent DE results between

the two data subsets, often a few times more so than the

other imputation methods, for most cell type pairs. The

performance of our method is often followed by

MAGIC, and sometimes SAVER. In contrast, DrImpute

(and occasionally scImpute) achieves a lower overlap

proportion compared with the unimputed data, again

consistent with its low performance in other experi-

ments. As a concrete example, comparing H1 vs DEC,

the mean Jaccard index between the top 100 DE genes

detected by SCDE from the two data splits is 0.192 (for

lasso) or 0.256 (for elastic net) by VIPER, while the over-

lap proportion is 0.035 by DrImpute, 0.238 by MAGIC,

0.048 by SAVER, 0.047 by scImpute, and 0.05 without

imputation. Similarly, the mean Jaccard index between

the top 500 DE genes detected from the two data splits

is 0.421 (for lasso) or 0.600 (for elastic net) by VIPER,

while the Jaccard index is 0.044 by DrImpute, 0.238 by

MAGIC, 0.099 by SAVER, 0.082 by scImpute, and 0.106

without imputation. Overall, our method produces

reproducible differential expression results between split

data sets, suggesting that imputation can facilitate the

detection of DE genes.

One thing we noticed in our analysis is that many genes

are detected as DE in MAGIC imputed data (Add-

itional file 2: Figure S21), which likely originates from the

diminished gene expression variation across cells within

each cell subpopulation after imputation (Additional file 2:

Figures S18–S20); thus, even a small difference in the

mean expression level between two cell subpopulations

would lead to a detection of differential expression. As an-

other example, besides MAGIC, we found that scImpute

also detects a higher number of DE genes than our

methods, which is consistent with the reduced gene ex-

pression variation across cells in the imputed data from

scImpute (Fig. 5b). Therefore, we caution that the number

of DE genes is likely highly influenced by gene expression

variation across cells after imputation.

To further validate our results, we also performed ana-

lyses by permuting data in both subsets and performing

overlap analysis based on the permuted data. In particu-

lar, we permuted cell type labels but preserved the ex-

pression correlation structure across genes and then

performed DE analysis. Intuitively, if an imputation

method introduces artificial bias to the data in the sense

of facilitating the identification of DE genes not based

on their true differential expression evidence but based

on other properties of the gene, then this method would

Fig. 6 Overlap of top differentially expressed genes identified by SCDE between two data splits of the raw data or imputed data by different

methods. SCDE is applied to detect genes that are differentially expressed between pairs of cell subpopulations in the Cell Type data for all pairs

of seven cell types. In each comparison, cells from the two cell types are split randomly into two subsets. Imputation and differential expression

analysis methods are applied to each data subset separately. The mean Jaccard index between the top 100, 200, 500, or 1000 differentially

expressed genes from two subsets are computed across 10 random data splits for each imputation method as a quantification of imputation

accuracy, where the Jaccard index is computed as the ratio of the intersection and the union between the top gene lists from the two subsets.

Methods for comparison include DrImpute (blue), MAGIC (green), SAVER (pink), scImpute (purple), VIPER with elastic net selection (peach), and

VIPER with lasso selection (dark blue)
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also lead to a high overlap proportion between the two

permuted data subsets. The results (Additional file 2: Fig-

ures S22–S23) show that the overlap proportion detected

by all methods, except for MAGIC, in the permuted data

are very similar and small, suggesting that most imput-

ation methods unlikely introduce artificial bias to the data

and that our previous comparison results are valid. On

the contrary, MAGIC introduces an excessive number of

artificially overlapped DE genes in the permuted data,

consistent with the diminished gene expression variation

across cells observed in MAGIC imputed data.

Finally, we emphasize that our method is reasonably

computationally efficient. We list the imputation time by

all methods for the four data sets in Additional file 3:

Table S2. The computation time of different methods

depends on the number of cell, number of genes, and

number of genes that have missing values. Among these

methods, MAGIC is the fastest method among all while

SAVER is the slowest, and our method is 5–50 times

faster than SAVER. Overall, our method is reasonably

computationally efficient while producing more accurate

results than the other imputation methods.

Discussion

We have presented a new method for imputing gene ex-

pression levels in scRNAseq data. We have compared its

performance with other existing scRNAseq imputation

methods in four experiments using published scRNAseq

data sets. With these real data examples, we show that our

method achieves higher imputation accuracy compared

with existing methods, preserves expression variability

across cells, and facilitates the robust identification of dif-

ferentially expressed genes between cell subpopulations.

Besides differential expression analysis, several previ-

ous studies have also performed clustering analysis on

imputed data to identify cell subpopulations. Evaluating

the performance of different imputation methods for

clustering analysis in real data is challenging because the

underlying subpopulation structures are largely un-

known. Even for the data set that consists of several dis-

tinct cell types, such as the Cell Type data used in this

paper, it is unknown whether some cell types are hetero-

geneous and consist of cell subpopulations within.

Therefore, it is difficult to comprehensively evaluate the

performance of different imputation methods for clus-

tering in real data. Instead, we present a simple example

here to illustrate the behavior of different imputation

methods for clustering analysis, using two cell types (H1

and NPC) from the Cell Type data. Specifically, for each

cell type, we display cells based on the top two principal

components (PCs) extracted from either the raw data or

the imputed data by different methods (Additional file 2:

Figures S24–S25). Overall, the clustering results from

VIPER imputed data, as visualized in the PC plots, are

generally consistent with that from raw data, DrImpute

imputed data or SAVER imputed data. However, the

clustering results obtained from scImpute or MAGIC

imputed data are generally different from the raw data

and the rest of the methods. Specifically, scImpute re-

quires the specification of the number of cell subpopula-

tions before imputation, which is unknown in any real

data, and which, as is shown below, fully determines the

number of cell clusters identified in the imputed data. In

particular, when we set the number of cell subpopula-

tions to be either 2, 3, or 4 before imputation (2 is the

minimum allowed in scImpute), we also detected 2, 3, or

4 cell subpopulations after imputation, respectively. In

contrast, MAGIC produces a parabola-shaped curvature

in the H1 cells and a circular-shaped curvature in the

NPC cells. While not completely impossible, both curva-

tures by MAGIC are rather unexpected. Therefore, for

any imputation method, we would recommend practi-

tioners to carefully examine clustering results both on

the raw data and on the imputed data to arrive at a

sensible interpretation.

We have primarily focused on selecting neighborhood

cells to impute missing data in scRNAseq. In principle,

one could borrow information across cells or across

genes to impute a missing value in scRNAseq. Indeed,

an alternative imputation strategy that has also been ap-

plied before (i.e., SAVER) is to select genes that have

similar expression levels as the gene of interest to per-

form imputation. Our method can be easily adapted to

use neighborhood genes to impute missing data. How-

ever, in our experience, we find that using neighborhood

cells is often more accurate than using neighborhood

genes to perform imputation. To illustrate the difference

in accuracy between these two different strategies, we

perform a simple analysis using the Grun et al. and Cell

Type data from Chu et al. [35]. Specifically, we fit the

standard lasso penalized linear regression model in two

different fashions: (1) either predict the expression of a

given cell by regressing on the expression of all other

cells; (2) or predict the expression of a given gene by

regressing on the expression of all other genes. We

measure the prediction performance using in-sample R2

and find that prediction based on cells are much more

accurate than prediction based on genes (Additional file 2:

Figure S26). Therefore, we have primarily focused on il-

lustrating our method on selecting neighborhood cells

for imputation. However, we acknowledge that all data

examined in the present study contain a smaller number

of cells than the number of genes. The accuracy of

gene-based imputation is likely dependent on the num-

ber of cells and will likely improve with increasing cell

number. In contrast, the accuracy of cell-based imput-

ation is likely dependent on the number of genes. Subse-

quently, using genes to perform imputation may have
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added benefits for larger scRNAseq data where the num-

ber of cells exceeds the number of genes. Our method

can be easily adapted to switch from cell-based imput-

ation to gene-based imputation for large scRNAseq data.

In addition, exploring the benefits of combining both

imputation strategies will be an important avenue for

future research.

Like all other existing imputation methods [24–27], we

have been primarily focused on modeling and imputing

log-transformed normalized gene expression data that are

converted from the original count data. Modeling

log-transformed normalized expression data assumes ap-

plication of a normalization method as a pre-processing

step. Though the performance of normalization methods

varies in different settings, VIPER does not depend on

choice of a particular normalization method. While in the

present study we have only examined a relatively simple

normalization method based on RPM, we note that using

advanced normalization offsets [40] or including cellular

detection rate [41] may further improve the performance

of VIPER. Importantly, modeling log-transformed normal-

ized gene expression data using Gaussian models is com-

putationally more tractable than modeling count data

using over-dispersed Poisson models (e.g., negative bino-

mial or Poisson mixed models) [42–44]. Because of the

computational tractability, modeling log-transformed nor-

malized gene expression data are commonly applied in

scRNAseq studies for clustering analysis, differential ex-

pression analysis, and various other analytic tasks [20, 22,

45]. However, scRNAseq data are of count nature. Because

of the relatively low sequencing depth of scRNAseq, ac-

counting for the mean and variance relationship by mod-

eling the original count data directly often has added

benefits [20, 22, 23]. Therefore, extending our method to

model and impute the count data from scRNAseq directly

while properly accounting for the over-dispersion or drop-

out events will likely improve imputation accuracy further,

especially for data with lower per-cell read depth such as

those collected from the 10x genomics platform. In

addition, for study designs, whether the bulk tissue se-

quencing and scRNAseq are applied to same cell content,

incorporating bulk data as prior information for imput-

ation of scRNAseq data will likely further improve accur-

acy. Exploring and benchmarking this strategy will also be

a promising direction.
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