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SOFTWARE Open Access

VIPER: Visualization Pipeline for RNA-seq, a
Snakemake workflow for efficient and
complete RNA-seq analysis
MacIntosh Cornwell1†, Mahesh Vangala5†, Len Taing1,2†, Zachary Herbert6, Johannes Köster1,4, Bo Li3, Hanfei Sun7,

Taiwen Li8, Jian Zhang9, Xintao Qiu1,2, Matthew Pun1, Rinath Jeselsohn1,2, Myles Brown1,2, X. Shirley Liu1,2,3 and

Henry W. Long1,2*

Abstract

Background: RNA sequencing has become a ubiquitous technology used throughout life sciences as an effective

method of measuring RNA abundance quantitatively in tissues and cells. The increase in use of RNA-seq technology

has led to the continuous development of new tools for every step of analysis from alignment to downstream

pathway analysis. However, effectively using these analysis tools in a scalable and reproducible way can be

challenging, especially for non-experts.

Results: Using the workflow management system Snakemake we have developed a user friendly, fast, efficient, and

comprehensive pipeline for RNA-seq analysis. VIPER (Visualization Pipeline for RNA-seq analysis) is an analysis

workflow that combines some of the most popular tools to take RNA-seq analysis from raw sequencing data,

through alignment and quality control, into downstream differential expression and pathway analysis. VIPER has

been created in a modular fashion to allow for the rapid incorporation of new tools to expand the capabilities. This

capacity has already been exploited to include very recently developed tools that explore immune infiltrate and T-

cell CDR (Complementarity-Determining Regions) reconstruction abilities. The pipeline has been conveniently

packaged such that minimal computational skills are required to download and install the dozens of software

packages that VIPER uses.

Conclusions: VIPER is a comprehensive solution that performs most standard RNA-seq analyses quickly and

effectively with a built-in capacity for customization and expansion.

Keywords: RNA-seq, Analysis, Pipeline, Snakemake, Gene fusion, Immunological infiltrate

Background

Transcriptome sequencing is now a commonplace tech-

nique employed in many disparate scientific settings [1–4].

The decrease of cost and rapid development of simple kits

for this technology has enabled researchers to use tran-

scriptome sequencing (RNA-seq) as a common and essen-

tial method for probing the underlying transcriptional

behavior of cells and tissues.

Current next-generation sequencing methods yield

fastq files that contain the sequencing reads captured

from the sample. These reads are typically aligned to a

specific reference genome. In RNA-seq, the reads after

alignment are quantified on a per gene or per transcript

basis to discern information regarding the level of gene

expression in a population of cells. Additional analyses

may include technical quality control of the sequencing

libraries and clustering analysis for experimental quality

control. Often, analysis is done to compare samples of

two conditions against each other, and determine the

statistically significant differences in the level of tran-

scripts per gene. Further analysis can investigate the

pathways associated with these differentially expressed
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genes, perform various read metrics to assess the vari-

ability of the data, and identify single nucleotide changes

or deletions that occur throughout the coding regions or

the genome.

In this contribution we address the problem of creat-

ing robust, easily adaptable software for the quality con-

trol and analysis of RNA-seq data. This is a difficult

problem because the field is moving very rapidly with

new and improved algorithms for key tasks being pub-

lished frequently. Also novel applications of RNA-seq

are constantly being enabled by new analytic approaches.

For example innovations in analysis now permit tools to

be developed that aid in the discovery of fusion genes

[5–7], the identification of viral transcripts [8, 9] and the

analysis of immunological infiltrate in samples [10, 11],

which enable a deeper understanding of the biological

system being studied.

Although some aspects of RNA-seq analysis are be-

coming more standard, the number of bioinformatics

tools to choose from can be overwhelming. Furthermore,

installing the desired tools and all requisite dependencies

is often non-trivial. Lastly, maintaining such a system

while allowing for the rapid modification to accommo-

date new analyses is a challenging task.

Other groups have addressed these issues and a com-

mon solution is to piece together several tools to create

a single pipeline, through which one can then process

their data while minimizing hands on time and optimiz-

ing the choice of each underlying algorithm. Numerous

pipelines have been reported in the literature [12–14]

but there is still a strong need for new pipelines that are

easy to modify to allow new analysis methods to be

added onto the existing ones and can be used by people

of all levels of computational experience.

The system presented here, VIPER (Visualization Pipe-

line for RNA sequencing analysis), uses a modern com-

putational workflow management system, Snakemake

[15], to combine many of the most useful tools currently

employed in RNA-seq analysis into a single, fast, easy to

use pipeline, that includes alignment steps, quality con-

trol, differential gene expression and pathway analyses.

In addition, VIPER includes a variety of optional steps

for variant analysis, fusion gene detection, viral DNA de-

tection and evaluation of potential immune cell infil-

trates. VIPER was built with three guiding principles. (1)

Highly modular pipeline exploiting the Snakemake

framework that allows for rapid integration of new ap-

proaches or replacement of existing algorithms. (2) Vis-

ual output for rapid “at a glance” insight with detailed

results from each analysis step available in a well-defined

folder hierarchy. (3) Can be run using simple command

line entries by the inexperienced, while maintaining the

ability to be fully customizable by users who have more

experience with writing and deploying computational

biology tools. Using these principles we have created a

flexible analysis pipeline that carries out many standard

tasks, adds several very recently developed algorithms

for immunological analysis and can be rapidly extended

when new capabilities are required.

Implementation
The analysis steps of VIPER are expressed in terms of

“rules” connecting input files to output files as part of

the overall workflow (Fig. 1). Upon execution, Snake-

make infers the combination of rules necessary to

achieve a “target” or specific output, in our case the final

report. The necessary steps are run in an optimized

manner depending on the computational environment

[15]. This inference allows for rules to be swapped out

transparently if the inputs and outputs remain the same,

e.g. changing an alignment algorithm. VIPER runs from

a single configuration file (referred to as the config file),

where the user lists their fastq files and certain parame-

ters pertaining to the analysis using the human readable

yaml format (Additional file 1). VIPER uses a single csv

file, containing metadata about the samples and the dif-

ferential analyses to be performed that can be generated

with Excel (referred to as the metasheet) (Add-

itional file 2). Running the pipeline requires a single

command, and the output is all stored into a single

folder, containing easy to navigate subfolders that host

the generated analyses (Additional file 3: Figure S2). A

significant and unique advantage to VIPER is that its

underlying framework enables easy and efficient rerun-

ning of analyses. Unless the relevant input files have

been changed, upstream steps of the pipeline will not be

re-executed. The user can easily re-execute steps if er-

rors have occurred or the data needs to be subsetted or

parameters adjusted.

The overall VIPER workflow (Additional file 4: Figure

S1) is comprised of spliced alignment of raw reads to a

reference genome to generate raw and normalized

counts; a variety of quality checks of mapped reads;

Clustering of samples based on gene expression levels;

differential expression (DE) testing of genes across sam-

ples and Pathway analysis of differentially expressed

genes. In addition to these core functionalities, VIPER

currently contains several optional modules: (1) RSEM

quantification, (2) SNV (single nucleotide variant) identi-

fication, (3) Gene fusion detection, (4) Batch effect cor-

rection, (5) Virus analysis and (6) analysis of immune

cell infiltrate. Below we briefly review which algorithms

VIPER uses at each stage.

Results

To illustrate the utility of VIPER we applied it to a set of

patient derived xenografts from bone marrow and blood

specimens from patients with leukemia and lymphomas
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[16]. This publically available paired-end RNA-seq data-

set contains eight B-cell acute lymphoblastic leukemia

(B-ALL), three T-cell ALL (T-ALL), and three blastic

plasmacytoid dendritic cell neoplasm (BPDCN) samples.

These are the official World Health Organization

(WHO) categories defining these malignancies; add-

itional metadata is in Additional file 2.

Read alignment, counting and transcript assembly

VIPER uses STAR [17] as the default aligner. The STAR

aligner is known for its superior speed that integrates

very well with Snakemake’s underlying ability to allocate

resources and execute multithreaded processes. The read

alignments from STAR are stored in a binary alignment/

mapping (BAM) file. Cufflinks [18] is used to assemble

transcripts and obtain normalized read counts per gene

and isoform in terms of FPKM values. For the user’s

convenience in visualizing data in a genome browser,

VIPER also converts all the BAM files into BigWig for-

mat using Bedtools [19]. In addition, if the input data

are paired end, VIPER’s Gene Fusion module, which uses

STAR-Fusion [20, 21], will be triggered automatically,

and will output fusion genes discovered during align-

ment. Several custom scripts are added into VIPER to

graphically represent the alignment and fusion genes in-

formation. In all, the resulting gene and transcript

counts are returned as a raw count file from STAR, a

normalized gene count from Cufflinks, and optionally,

an RSEM formatted file if the user desires this output

for further analysis.

Read quality metrics

The alignment output is further investigated to assess

the quality of raw reads (Fig. 2). In order to expedite the

read quality assessment without compromising on statis-

tical meaningfulness of variability in raw reads, we inte-

grated down sampling of raw reads (to 1 million reads)

using the Picard [22] DownsampleSam tool. We have in-

tegrated RSeQC [23] to capture read quality metrics

such as read distribution, gene body coverage and rRNA

Fig. 1 Overview of the full workflow performed by VIPER (Visualization Pipeline for RNAseq analysis). The different segments of the pipeline are

broken down by color. The core of the pipeline is the read alignment performed by STAR that outputs alignment (bam) files. Gene expression is

quantitated with Cufflinks for unsupervised analysis (clustering and PCA). STAR also generates a count matrix used for supervised analysis

(differential expression with DESeq2). When a publically available analysis tool is used for a particular step, the name of the tool is identified

above the arrow leading to the resulting output (boxed). When there is no tool indicated next to an arrow, the analysis step was performed with

custom R code. Conditional/optional analyses are denoted with a hashed arrow and outlining box and represent the most distinguishing

functionality for VIPER
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contamination. Of note, the RSeQC package was

heavily modified to make it amenable to parallel

processing in grid/multi core environment. Specific-

ally, the tools that make up RseQC were parsed out

into individual rules to allow for 1) parallel process-

ing that significantly increases analysis speeds and

2) and adding scripts that process the RSeQC out-

put to be as readable and user friendly as possible.

The xenograft data show uniformly high quality

read metrics as expected from a published dataset.

There are similar numbers of reads for each sample

with high mapping rates (Fig. 1a) representing reads

that are mostly in exons and UTRs (Fig. 1b). The

coverage of these reads over gene bodies is quite

uniform (Fig. 1d, e) and ribosomal reads are all

comparable and at a relatively low level (Fig. 1c).

Fig. 2 a Read Alignment Report denoting the number of mapped and uniquely mapped reads per sample. b Read Distribution Report illustrating

the percentage of reads that fall into specific genomic regions. c rRNA Read Alignment Report demonstrating the percentage of each sample

that were considered rRNA reads. Gene Body Coverage of the samples illustrated as (d) curves and as (e) bars in a heatmap
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Unsupervised clustering of samples

After alignment is completed and quality control mea-

surements are taken, VIPER uses the count matrix from

STAR and the expression matrix from Cufflinks to per-

form downstream analysis. This begins with unsuper-

vised clustering to look for patterns within the data.

VIPER has configurable parameters for filtering genes,

such that it will only use genes that pass a configured

FPKM threshold and are seen in a user determined

number of samples (default is two). VIPER takes the fil-

tered expression data and generates three initial figures

for the overview of the sample data (Fig. 3).

First, VIPER will output a Sample-Sample Correlation

heatmap, determining the correlation between all of the

samples on a pairwise basis. Metadata (provided by the

user) are used to annotate samples along the top. In Fig.

3a the xenograft data shows clear clustering by category

(B-ALL, T-ALL, BPDCN) based on the sample dendro-

gram at the top of the figure as well as the differences in

the degree of correlation observed between groups vs. in

group seen in the heatmap. Secondly, VIPER will output

a Sample-Feature heatmap which will show the cluster-

ing of samples based on correlation on the horizontal

axis and a user configured number of features, or genes,

on the vertical axis that can be ordered by hierarchical

or k-means clustering (where k is simply specified in the

configuration file as one or multiple values). In Fig. 3b

and c one sees the same sample clustering along the top

as in Fig. 3a and clear groups of genes that are upregu-

lated in the different sample groups in the heatmap. Fi-

nally, VIPER will output a Principal Component Analysis

(PCA) plot depicting how samples cluster across the first

two principal axes (those with the largest variance) and,

if metadata is provided for these samples, they will be

color coded by the provided annotations. The xenograft

samples are clearly clustered based on the different

WHO categories colored in the first PCA plot (Fig. 3d).

In the second PCA plot the coloring allows one to see a

clear separation between the B-ALL samples based on

WHO Defining Alterations, namely those with a MLL

gene rearrangement and those with an ETV6 fusion.

These unsupervised plots provide a preliminary view of

the data to determine if any overarching patterns exist

between the samples, whether any outliers exist and,

using the Sample-Feature map, which genes may be for-

cing the clustering of samples [24].

Differential expression and pathway analysis

The first step of the downstream analysis is to determine

the differential expression of genes within the user-

defined comparisons. Differential expression analysis can

be done using several tools that are currently available,

with differing models and advantages [25]. There are a

number of opinions on which differential expression

tools are best [4, 25–28] and VIPER’s modular frame-

work could theoretically enable a user to build in which-

ever differential expression method that is desired.

Based upon literature review and also their wide spread

use, we opted for DEseq2 [29] and Limma [30]. Output-

ting both analyses enables users to confirm results

across two leading methodologies, but for the purpose

of being as conservative and accurate as possible [26],

we have elected to use DEseq2 results for further down-

stream expression analysis. For each comparison the

number of differentially expressed genes for two Padj

cutoffs and two Fold Change cutoffs is displayed in a

simple bar chart showing both up and down-regulated

genes (Fig. 4a); a volcano plot is also shown (Fig. 4b).

For the xenograft samples we see a very large number of

genes differentiating the B-cell malignancies from the T-

cell malignancies as would be expected for such distinct

lineages. There are also a significant number of differen-

tially expressed genes between the subtypes of B-ALL;

since these are defined by distinct rearrangements of

transcription factors this is also expected.

The DEseq2 table from each comparison is subse-

quently used by a number of tools to perform the gene

set and pathway analysis associated with this differential

expression (Fig. 5). Gene Ontology (GO) term analysis is

also a useful tool to categorize differentially expressed

genes. Using GOstats [31] we take in all of the genes

that meet a user defined false discovery rate (set in the

config file), and extract all of the GO terms associated

with this gene set.

KEGG pathway analysis is another fundamental tool

for exploring how differentially expressed genes are re-

lated on a systematic basis. Using the GAGE [32] pack-

age, VIPER takes the entire set of differentially expressed

genes, and searches for KEGG pathways significantly as-

sociated with the expression differences (Fig. 5b). Using

the Pathview package [33], VIPER will also output de-

tailed figures depicting the individual genes within their

pathway and their respective expression changes. Finally,

Gene Set Enrichment Analysis (GSEA) is also per-

formed. This outputs the top scoring gene sets (Fig. 5c)

against MSigDB using the tool ClusterProfiler [34]. We

note that this can be used to test for enrichment against

user-defined signatures by expanding the text file hold-

ing the reference signatures.

As per the VIPER guiding principles, each of these

analyses is accompanied by a useful figure that depicts

the key aspect of the analysis and the associated table of

the underlying data, which can be useful for further in-

vestigation. All of this is output into an easy to navigate

folder (Additional file 3: Figure S2), and the figures are

summarized in a single report (Additional file 5). For the

xenograft data the simple T-cell vs. B-cell comparison

generated a large number of differentially expressed
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genes that results in the top GO terms for the genes up-

regulated in T-cells including “T-cell activation”, “T-cell

aggregation” (Fig. 5a). The KEGG analysis top hits in-

clude “T-cell receptor signaling pathway” (Fig. 5b). Fi-

nally the GSEA has a top hit of “LUPUS_CD4_TCELL_

VS_LUPUS_BCELL_DN” and other clearly biologically

relevant hits such as “MULLIGHAN_MLL_

SIGNATURE_1_UP” (Fig. 5c). The GSEA leading edge

enrichment produced by ClusterProfiler for top hits is

shown in Fig. 5d.

Immunology module

While the above functionality is useful to a large fraction

of RNA-seq analysis, we illustrate the advantages of the

a

d

b c

e

Fig. 3 a Sample-Sample Clustering Map depicting samples on both axes with the color representative of the correlation between samples. Metadata

columns (provided by the user) are annotated along the top. b Sample-Feature (Gene) Hierarchical Clustering Map with samples along the x-axis and

genes along the y-axis. Metadata columns (provided by the user) are annotated along the top. c Sample-Feature heatmaps can also be plotted using

k-means clustering, with the number of clusters being configured in the input file. d Principal Component Analysis (PCA) plots, with one being output

per metasheet column with the coloring corresponding to the metadata within the column. e Scree plot depicting the amount of variance captured

within each principal component

Cornwell et al. BMC Bioinformatics  (2018) 19:135 Page 6 of 14



easy extensibility of VIPER with several optional pack-

ages, specifically with regards to immunology analysis.

VIPER is packaged with the Tumor IMmune Estimation

Resource [11] (TIMER), software that estimates the

abundance of tumor-infiltrating immune cell types

within samples. Given a sample from one of the 23 sup-

ported TCGA cancer types set in the config file, a user

can perform TIMER analysis that will report the esti-

mated abundance of B cells, CD4 T cells, CD8 T cells,

neutrophils, macrophages, and dendritic cells within

their samples (Fig. 6a). These immune cell types are

linearly separable in the statistical model and represent

currently the most promising immunotherapy targets.

In addition to TIMER, VIPER also comes packaged

with TRUST, a recently developed method to perform de

novo assembly of the hypervariable complementarity-

determining region 3 (CDR3) sequences of the T cell re-

ceptors from RNA-seq data [10]. For each sample input,

after initial alignment, the bam file, including unmapped

reads, is used to infer the CDR3 RNA and amino acid

sequences based on the contigs assembled from the

unaligned reads. Since tumors with higher levels of T

cell infiltrates have more TCR reads, resulting in the as-

sembly of more CDR3 sequences, we therefore report

the number of unique CDR3 calls in each sample nor-

malized by the total read count in the TCR region, which

we visualize in a boxplot as a distribution of clonotypes

per thousand (kilo) reads (CPK), as a measure of clono-

type diversity (Fig. 6c). The output CDR3 assemblies can

be used to study tumor-infiltrating T cells and study the

association between the T cell repertoire and tumor

somatic mutations, potentially in a correlative manner to

predicting tumor neoantigens [10].

Other conditional analyses

As mentioned above when the input data are paired

end, VIPER uses STAR-Fusion [20, 21] to identify

potential fusion genes discovered during alignment.

The evidence for the top candidates is put in the re-

port as a heatmap (Fig. 7a). Numerous false positives

are seen and so manual curation of the top hits is

recommended; in the case of the xenografts all the

Fig. 4 a Differential Gene Expression Summary plot summarizing the number of up and down regulated genes per comparison, broken down by

various Padj (adjusted p-value) and Log2 Fold Change cutoffs. b Volcano Plot visually representing the each of the differential expressions in the

VIPER run, labeled points have a Padj < 0.01, and an absolute Log2 Fold Change > 1
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clinically detected fusions for these samples are also

detected in the xenografts [16]. For paired end data

the distribution of insert sizes is also generated (Fig.

7b). VIPER also comes packaged with modules that

perform whole-genome SNV (single nucleotide vari-

ant) calling (human and mouse), viral analysis (hu-

man samples only) and batch effect correction which

users can enable by toggling flags in the configur-

ation file.

By default, VIPER performs an efficient SNV analysis

using the varscan tool [35] on the HLA regions (of the

specified species) to help users detect sample swaps/mis-

labeling events (Fig. 7c). Genome-wide SNV analysis can

be enabled using a flag within the configuration file and

a b

c

d

Fig. 5 Summary plot depicting the results of analyzing the differentially increased genes for enrichment (a) in GO terms (b) KEGG pathways and

(c) MSigDB gene sets. There are corresponding plots (not shown) showing top differentially decreased pathways. d A plot showing the running

enrichment score of the indicated gene sets within the ranked list of differentially expressed genes
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VIPER will generate results in Variant Call Format

(VCF) annotated using SNPeff [36] (Fig. 7d).

VIPER allows users to detect human viral transcripts

within their samples. Reads that failed to map during the

initial alignment step are re-processed and aligned to a

hybrid human assembly that contains a compendium of

viral DNA sequences classified as being part of chromo-

some M [8]. Cufflinks is then used to calculate viral

abundance, counts, and FPKM values of the top viral

hits. These results are summarized in the VIPER report

[37]. For the xenograft samples chosen there were no vi-

ruses detected other than a murine virus from the xeno-

graft host (Fig. 7e).

Batch effects are known to be a major problem

when combining datasets from different labs or gen-

erated with different protocols [38–40]. VIPER incor-

porates an easily accessible method for implementing

batch correction to the analysis using the R library

ComBat [41]. VIPER will correct for the batches spe-

cified by the user, and output the batch-corrected

expression matrix, in addition to the original, and

several graphics output by ComBat depicting the cor-

rection performed. This batch-corrected matrix is

then automatically utilized in all further analysis.

Discussion

VIPER was designed around a few core concepts that

permeate throughout the design of the pipeline. First,

VIPER was designed with visualization of results as a

key principle with the output encapsulating important

analysis results in informative, publication quality fig-

ures. Secondly, using Snakemake offers distinct advan-

tages in both efficiency and customizability. Lastly, we

wanted to ensure that VIPER could be installed and used

by anyone, even those with limited computational ex-

perience. Therefore installation of VIPER requires min-

imal user input and the full pipeline is run using inputs

that can be made in any text or table editor and a single

terminal command.

a

c

b

Fig. 6 a Summary boxplot depicting the population levels of various immune cell classes seen across normal, luminal and basal breast cancers in

TCGA. b A Q-Q plot that depicts the gene expression of immune cells after batch correction within the TIMER module, and a bar graph per

sample that depicts the proportion of immune cell signature in a particular sample. c Plots depicting TCR clonal diversity reported as clonotypes

per thousand reads (CPK) in normal, luminal and basal breast cancers
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Visualization of data

VIPER outputs a figure or table for all analyses that al-

lows all users to rapidly understand and utilize the ana-

lysis results. The most important visualizations are all

compiled into a single report file, which highlights the

main features of the analysis, while providing explan-

ation of each of the individual processes needed to cre-

ate the figure. All of the figures are output in pdf or png

format, and provide clear explanations of the RNA-

sequencing results of the experiment (Additional file 5).

Snakemake as a framework

VIPER’s Snakemake backbone provides several advan-

tages that set it apart from other sequencing pipelines.

VIPER’s “rules” can be composed of tools that are writ-

ten in a number of languages including R, Perl, Python,

*NIX command line tools or even tools written in JAVA

or C++. As of Snakemake 3.7 each rule is evaluated in

its own environment making it even easier to mix tools

(e.g. Python 2.7 and Python 3 based software). This en-

ables VIPER to be flexible in the tools that can be used

a b

c d

e

Fig. 7 a Fusion-Gene Analysis Summary Plot with samples along the x-axis and the fusion genes discovered depicted along the y-axis. b Histogram

Plot illustrating the insert size per paired end sample. c HLA SNP correlation heatmap showing the correlation between the HLA regions of each

sample. d Example of an IGV snapshot with the full vcf annotation of all SNPs seen genome wide. e Table output for the virus-seq module that depicts

the top represented viruses within the sample
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in the pipeline, permitting construction of a pipeline

most appropriate for the data under examination.

Snakemake was built with the concept of

parallelization in mind enabling VIPER to make use of

its ability to spawn jobs in parallel to maximize its speed

and make full use of the provided processing power. For

example, RSeQC is the quality control suite that VIPER

uses for determination of the quality of the sequencing

data. We modified this suite and parallelized the individ-

ual tools in addition to adding additional scripts that to-

gether enable QC of multiple samples to occur at once,

drastically increasing the speed of analysis. This

parallelization is also used in many of the steps including

the alignment, where the aligner itself is a multi-

threaded application, to the downstream analysis, where

all of the various differential expression analyses are

done in a fashion that maximizes the use of the provided

computational power. Additionally, Snakemake has the

capability to scale from single-core workstations over

multi-core servers to compute clusters of different archi-

tectures, without the need to modify the workflow.

Snakemake’s “bottom up” method of determination of

job execution allows for a number of advantages includ-

ing crash recovery and specification of subsetted ana-

lyses. A Snakemake workflow is composed of

individualized rules, each of which takes a specified in-

put and generates a designated output. Snakemake de-

termines the execution of events by checking

timestamps, and as long as a rule was properly executed

and the input file timestamps have not changed, then it

will not attempt to regenerate the output. If there is a

computer or user error during VIPER execution, the

output up to the point of failure is not lost, and the user

will not need to rerun the whole pipeline.

This feature also enables the user to easily rerun

downstream analyses or reprocess subsets of samples

without repeating the whole pipeline. VIPER will only

execute a rule if its output is required for a later rule, or

if its input has been updated. Because of this core con-

cept, subsetting of analyses is as simple as changing the

metadata input file. Snakemake will determine via the

file timestamps that the aligned data was not changed

(just the metadata describing samples) and will proceed

to the analysis downstream of alignment (starting with

differential expression) thus skipping the computationally

intensive upstream rules. With this in mind, we incorpo-

rated a simple “analysis token” within the config file that

enables users to save several different subanalyses while

maintaining VIPER’s folder hierarchy (Additional file 3:

Figure S2).

Customization of VIPER requires a baseline under-

standing of the underlying framework of Snakemake, but

will allow users to continually update and modify their

instance of VIPER. For example, while developing

VIPER, we determined that in addition to the SNP scan

of the HLA region, we also wanted to build in the option

for a genome wide SNP scan. Incorporation of this func-

tionality simply required defining a new “rule” and then

adding a flag in the config file to turn on the analysis

(Additional file 6: Figure S4).

Ease of use

The methods for installing, deploying, and using VIPER

are provided in the Additional file 7, and the documen-

tation is available online. It is worth noting here that

VIPER was designed to use the package manager Conda

[42] and the Bioconda [43] channel. This allows users to

download and install the dozens of tools and packages

that go into VIPER with a single command. Setting up a

VIPER analysis requires basic usage of the terminal and

software such as Excel to edit a comma separated values

(csv) file, both of which involve very simple commands.

Comparison to other tools

VIPER is not the only non-commercial RNA-seq analysis

software package available. Other recently published

RNA-seq pipelines include HppRNA [12], TRAPLINE

[13], and QuickRNASeq [14]. While these pipelines have

some features and software packages in common with

VIPER, the number of features included, package man-

agement software, and reporting functionalities vary

considerably (Table 1).

The RNA-seq pipeline HppRNA employs the same

Snakemake workflow management platform as VIPER

allowing it to share the benefits of this workflow engine.

The software offers an impressive number of mapping,

quantification and testing algorithms, but this flexibility

may be confusing for users primarily interested in data

Table 1 Comparison of features in VIPER with other RNA-seq

pipelines

Features VIPER HppRNA TRAPLINE QuickRNASeq

Quality Control X X X X

SNP Detection X X X X

Fusion Gene Detection X X

Differential Expression X X X

Pathway Analysis X X X

Consolidated Report X X

Galaxy Based X

Dependencies Packaged X X X

Support New Species X X

Package Easy Update X X

Batch Correction X

Virus Detection X

Immunology Analysis X
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analysis and not benchmarking different alignment algo-

rithms. While it is possible to customize VIPER to use

any preferred aligner, the default tools included in

VIPER have been curated based on current best prac-

tices in the field [4] and a fast runtime. For some ana-

lyses, such as differential gene expression testing, it is

informative to compare results generated by different al-

gorithms, and indeed this was the motivation for includ-

ing both Limma and DESeq2 for statistical testing in

VIPER. Finally HppRNA does not offer the focus on the

visual output we had a main design criterion.

RNA-seq pipelines also display variability in strategies

to manage software dependencies. TRAPLINE manages

dependences through Galaxy, which provides a helpful

user interface, but it requires a Galaxy installation. In

contrast, VIPER utilizes the Conda package and environ-

ment management system that can be installed and up-

dated easily with only a few commands.

The graphical summary report generated by VIPER is

another feature that allows quick and efficient communi-

cation and summarization of experimental results.

QuickRNAseq also provides a very nice interactive dis-

play of the data, but it is not as easily transferable. In

contrast, the VIPER report is a self-contained html

document that can be attached in an email and opened

on a mobile phone.

The other pipelines also have additional features such

as SNP detection, gene fusion detection, and pathway

analysis, but none except VIPER has all of these features

(Table 1). Additionally, the integrated batch-correction,

Virus detection and Immunology modules are unique to

VIPER. These capabilities are otherwise only available to

those who can successfully navigate the installation and

implementation of the individual tools. We believe that

this represents high value for users requiring such ana-

lyses for their samples.

We are currently running the software on both multi-

core servers and compute clusters. As not everyone has

access to such systems we see an exciting future direc-

tion as VIPER being implemented within an Amazon

Machine Image that will enable high scalability for any-

one. This should be readily achievable with the capabil-

ities of the snakemake framework [15] and make highly

scalable analysis more widely available.

Conclusions
We present a new RNA-seq pipeline VIPER that is fast,

efficient, customizable, and easy of use enabling it to be

an effective and modern tool for life scientists. We be-

lieve that one of VIPER’s most important advantages is

that it is a tool built primarily by biologists to run a wide

variety of useful analyses, in a manner easy enough to be

employed by users without significant computational

training. There are new and innovative tools for RNA-

seq being created at an extraordinary rate that can fur-

ther our understanding of the transcriptomic landscape

and the easy extensibility of VIPER allows for new ap-

proaches to be tested and incorporated as needed. We

designed VIPER to incorporate what we believe to be

fundamental to gaining a useful understanding of any

RNA-seq data set. But it is the authors’ hope that VIPER

can be a framework and starting point for others to

build upon and further improve VIPER as a tool and ul-

timately extend our collective ability to extract informa-

tion from the transcriptome.

Additional files

Additional file 1: Config Example (YAML 6 kb)

Additional file 2: Metasheet Example (CSV 600 bytes)

Additional file 3: Figure S2. (a) Example of the VIPER project folder.

The main components are VIPER, DATA, and ANALYSIS with the input

files config.yaml and metasheet.csv. (b) Expanded ANALYSIS folder

illustrating the output of VIPER. The plots folder here is expanded to

illustrate how the output assumes a simple hierarchical structure, and

that each of the clustering figures are associated with a text file

containing the underlying information. (PDF 212 kb)

Additional file 4: Figure S1. Graphical overview of the computational

steps performed by VIPER processing a single fastq file. The nodes of the

graph represent the execution of a rule and a directed edge between

node A and B means that the rule underlying node B needs the output

of node A as an input. A path in the graph represents a sequence of jobs

that have to be executed serially, but disjoint paths can be run in parallel.

This specific directed acyclic graph (DAG) was automatically generated by

VIPER based on the directive to run the rule named ‘target’, using a

single fastq file as input. (PDF 436 kb)

Additional file 5: Complete VIPER report in html format (HTML 10310 kb)

Additional file 6: Figure S4. (a) Code snippet from the config.yaml file

demonstrating the addition of a boolean flag indicating whether or not

to run the genome wide SNP scan. (b) Code snippet from the

snp.snakefile demonstrating the addition of rules built off of existing

output (aligned STAR BAM files) and yielding additional output

(genome-wide SNP scans). (PDF 104 kb)

Additional file 7: Implementation and Installation [43–45]

(Additional file 8: Figure S3). (DOCX 15 kb)

Additional file 8: Figure S3. VIPER was run on a dataset (12 samples;

single end data; 36.7 M reads on average) and finished in 24 h. VIPER

performance during this run is captured using Ganglia on a 96GB RAM 6

processor Intel Xeon machine. (a) System usage and (b) CPU load

captured showing how VIPER is parallelized across 6 processors with (c)

~35G memory utilized for the alignment part of the pipeline. (PDF 79 kb)
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