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Abstract– In HEP tracking trigger applications, flagging an 
individual detector hit is not important. Rather, the path of a 
charged particle through many detector layers is what must be 
found. Moreover, given the increased luminosity projected for 
future LHC experiments, this type of track finding will be 
required within the Level 1 Trigger system. This means that future 
LHC experiments require not just a chip capable of high-speed 
track finding but also one with a high-speed readout architecture. 
VIPRAM_L1CMS is 2-Tier Vertically Integrated chip designed to 
fulfill these requirements. It is a complete pipelined Pattern 
Recognition Associative Memory (PRAM) architecture including 
pattern recognition, result sparsification, and readout for Level 1 
trigger applications in CMS with 15-bit wide detector addresses 
and eight detector layers included in the track finding. Pattern 
recognition is based on classic Content Addressable Memories 
with a Current Race Scheme to reduce timing complexity and a 4-
bit Selective Precharge to minimize power consumption. 
VIPRAM_L1CMS uses a pipelined set of priority-encoded binary 
readout structures to sparsify and readout active road flags at 
frequencies of at least 100MHz. VIPRAM_L1CMS is designed to 
work directly with the Pulsar2b Architecture. 

I. INTRODUCTION

HE use of hardware-based pattern recognition for fast
triggering on particle tracks is well established in High-

Energy Physics [1][2][3].  The central concept is to use a 
massively parallel associative memory architecture to identify 
patterns on an event by event basis with high speed and low 
latency.  Prior to data taking, significant tracks are determined 
by Monte Carlo simulation as are the detector layers and 
addresses traversed by these tracks.  These detector layers and 
addresses are stored within the associative memory structures 
which can rapidly flag the presence of those tracks within event 
data. 

Of critical importance to the future of CMS and its ability to 
maintain physics acceptances for basic objects (leptons, 
photons, jets and MET) in the HL-LHC era is the inclusion of 
tracks within the Level-1 trigger [4].  As such, the development 
of a readout architecture for hardware-based pattern recognition 
with the ability to respond with the speed necessary for Level-
1 trigger applications is of vital importance. 

The choice of vertical integration serves to simplify the 
readout architecture and minimize the bus lengths necessary to 
communicate layer data and matched road data around a large 
chip.   
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II. GLOSSARY

 Associative Memory – a memory capable of
determining if a particular piece of data is contained
within itself.

 CAM – Content Addressable Memory – a special type
of associative memory that is loaded with a particular
pattern and then responds to the presence of that
particular pattern within a data stream.  Commercial-
Off-The-Shelf CAMs are not typically required to
remember pattern matches.

 PRAM – Pattern Recognition Associative Memory –
a double-layered associative memory structure
containing several CAMs and the means to remember
matches and monitor the state of matches within the
PRAM.  Each CAM flags the arrival of one particular
pattern which, in Tracking Detectors, corresponds to a
particular detector address within a particular detector
layer.  Once a CAM is flagged, that flag is remembered
by the PRAM until reset.  When a sufficient (user
definable) number of the component CAMs have
flagged a match, the PRAM itself raises a flag.  This is
called a road flag or road match.

III. THE CHOSEN 3D TECHNOLOGY

VIPRAM_L1CMS has been fabricated using Global 
Foundries’ 130nm Low Power CMOS Technology with 3D 
fabrication through Tezzaron/Novati [5][6].  Fig. 1 shows a 
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Fig. 1. A sketch of the elements of a two-tier, vertically integrated circuit. 
Both the Top Tier and the Bottom Tier are common, readily-available CMOS 
integrated circuits.  The two tiers are joined face-to-face by a copper direct bond 
interface.  Through-Silicon Vias (TSVs) join the route metals of the CMOS top 
tier back through the substrate to back metal.  Pads are formed from back metal 
for off-chip connection. 
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simplified sketch of the resulting structure, but this sketch is not 
to scale.   

Each tier is fabricated in a common, readily-available CMOS 
process.  In this particular case, that process is the GF 130nm 
LPCMOS for both tiers, but this is not required.  In fact, it is 
not even necessary for both tiers to be from the same process.  
Moreover, the design rules of the process do not have to be 
modified in any way though there are a few additional rules 
regarding Through Silicon Vias and Bond Interfaces.  This is so 
that these elements can be added to the chips after 2D 
processing has been completed. 

The two tiers are bonded to one another using a low 
temperature copper Direct-Bond Interface [5].  The metals for 
the bond interface are placed after 2D integration, so no route 
layers are lost.  The bond interface metals are a 2-dimensional 
array of 2.5m wide octagons spaced on a rectangular grid 5m 
apart and they serve as both a mechanical adhesion between the 
tiers and as a means of electrical communication between the 
tiers.  Of course, the vast majority of interface octagons are not 
used for inter-tier communication and are left electrically inert.  
The two tiers are bonded face-to-face, meaning that each tier’s 
substrate faces outward of the sandwich created by joining the 
tiers together.   

The two tier stack communicates to the outside world by 
Through Silicon Vias (TSVs) inserted into the backside of the 
top tier down to landing pads on the lowest metal layer of the 
top tier (M1).  After the two tiers are bonded into a stack, the 
top tier’s substrate is thinned to approximately 6 microns by 
chemical-mechanical polishing (CMP).  Via cavities are formed 
by the Bosch process [5] and filled with Tungsten and a spacer 
layer for substrate isolation. 

Finally, Aluminum back metal is placed on the top tier.  
VIPRAM_L1CMS does no routing on the back metal, so, in 
fact, all back metal is also pad metal. 

IV. A TWO-TIER, VERTICALLY-INTEGRATED PIPELINE 
 
At its most basic level, VIPRAM_L1CMS is a very simple, 

two-stage pipelined device.  (See Fig. 2.) The stages of the 
pipeline are advanced by the arrival of an End-of-Event signal 
from outside the chip.  The first stage of the pipeline is the 
pattern recognition or PRAM stage.  In the PRAM stage, 

candidate addresses from different detector layers (layerData) 
are matched against stored patterns in CAM cells within each 
PRAM.  If a sufficient number of CAM cells match, then a 
matched road is flagged.  Over the course of an event, any 
number of matched roads may fire.  The second stage of the 
pipeline is the readout or IO stage.  In the IO stage, matched 
roads are identified, sparsified and read out.   

What makes VIPRAM_L1CMS unique is the simple fact that 
these two pipeline stages are located on two different tiers of a 
3D Vertically Integrated Circuit.  (See Fig. 3.) The PRAM stage 
is placed on the PRAMtier which is the bottom tier of the stack 
and the IO stage is placed on the ioTier which is the top tier.  In 
keeping with the facts of the 3D process, all pads are located on 
the ioTier.  Therefore layerData arrives to the ioTier and is 
driven to the center of the chip, across the bond interface to the 
PRAMtier and then around the PRAMtier to the various PRAM 
road cells.  All road flags are connected directly to bond 
interface octagons and are driven across to the ioTier.  All road 
flags, whether or not they are successful, are captured into the 
ioTier with the arrival of the End-of-Event signal.  In the ioTier, 
the successful road flags are sparsified and driven to the pads 
and out of the chip. 

V. THE PRAM ROAD CELL AND THE PRAM TIER 
Each PRAM Road Cell searches for one and only one road 

which represents a particular path of a charged particle through 
the various layers of a detector. (See Fig. 4.) The 
VIPRAM_L1CMS PRAM Cells consists of eight CAM cells 
each dedicated to searching for one detector address on one 
detector layer.  The first CAM is dedicated to detector layer 0 
and receives layerData only from detector layer 0; the second 
CAM is dedicated to detector layer 1 and receives layerData 
only from detector layer 1; and so on.   

Fig. 3.  An abstracted sketch of the two tiers of VIPRAM_L1CMS.  Layer 
hit data arrives to the pads and crosses through Through Silicon Vias (TSVs) to 
the typical routing metals of the ioTier.  From there it is routed in the usual way 
to the center of the ioTier and passed through the bond interface to the typical 
routing metals of the PRAM tier.  From there it is routed to the PRAMs.  
Matched roads are passed up from the PRAM Tier to to the ioTier through bond 
interfaces. Once there, they are sparsified and routed out of the chip through the 
TSVs and then the pads. 

 

Fig. 2. Pipeline Diagram for the VIPRAM_L1CMS architecture.   



 

In addition to the eight CAM cells, 
the PRAM Road Cell consists of eight 
Set-Reset latches (one for each CAM 
cell) for capturing and remembering 
matches.  Understand that event data 
arrives to the VIPRAM_L1CMS 
unordered, so the likelihood that the 
layerData for a particular track will 
arrive to the VIPRAM_L1CMS from 
all of the different detector layers at the 
same time is vanishingly remote.  All 
of the event data will eventually reach 
the VIPRAM_L1CMS, so the PRAM 
Road Cell simply remembers CAM 
address matches and the final road 
match itself is accumulated over the 
arrival time of all of the event data.  In 
addition to the eight CAM cells and the 
eight latches, the PRAM Road Cell also 
contains the Majority Logic which 
monitors status of the stored CAM 
address matches and flags a road when 
the number of matches reaches a user 
defined threshold.  The user can request 
a perfect road match (all eight CAMs 
match), or 1 missing layer or 2 missing 
layers.  Finally, the PRAM Road Cell 
contains simple driver circuitry to push 
the road match across the bond 
interface to the ioTier. 

The CAM cell itself is a classic architecture with a current 
race scheme and a four bit selective pre-charge [7].  It has 
fifteen bits, a single matchline per CAM cell, searchlines (called 
layerData in this paper), and a sense amplifier.  The matchline 
precharge signal (mlpre) when high resets the matchline to zero 
through the nFET on the right side of Fig. 5 and when low 
supplies current to the matchline through the pFET on the left 
side.  Bits 0, 1, 2 and 3 in Fig. 5 are NAND Cells [7] which 
block current flow to the rest of the matchline in the event of a 
bit mismatch.  Bits 5, 6, 7, 9, 10, 11, 13, 14 and 15 are NOR 
Cells [7] which pull the matchline low in the event of a bit 
mismatch.  Finally, bits 4, 8, and 12 are Ternary NOR Cells [7] 
which behave like NOR Cells in that they have the ability to 
pull the matchline low but they also can be placed into a forced 
mismatch condition (to kill a pattern) or a forced match 
condition to provide a “don’t care” option for the bit. 

The layout of the PRAM Road Cell is shown in Fig. 7.  The 
cell is square at 70m x 70m.  The CAM cells themselves are 

twice as tall as they are wide.  The layerData for layers 0, 1, 6, 
and 7 flow horizontally and for layers 2, 3, 4, and 5 flow 
vertically in the figure.  In all cases, the layerData flows into the 
long side of the CAM cell layout.   

The PRAM Road Cells are arranged into a 64x64 array called 
a Quadrant and then four of these are arranged in a square, 
resulting in 16k road patterns per VIPRAM_L1CMS chip. (See 
Fig. 6.)  The figure also shows the Quad Driver layout which 
drives the layerData from the center of the chip outward to all 
PRAM cells.  Routing in the 3rd dimension permits this type of 
structure in which a long route is dropped strategically in the 

Fig. 4. A simple event 
display illustrative of the 
particle path through the 
various layers of the 
detector.  This is the entity 

Fig. 7. The layout of the PRAM Road Cell highlighting the locations of the 
eight CAM cells, the majority logic and the Flag or threshold logic. 

 

Fig. 5. A functional sketch of the CAM cell architecture.  The “f” function 
is a current block for NAND Cells or a matchline pulldown for NOR and 
Ternary NOR Cells. 

Fig. 6. The layout of the entire PRAM Tier highlighting the four Quadrants 
and the Quad Driver. 



 

center of some area (in this case, it is in the center of the entire 
Tier) and then routed in all directions.  This technique can be 
used, for example, to minimize overall route lengths or to 
equalize propagation delays across a wide area.  This version of 
VIPRAM_L1CMS uses a single central drop point with four 
64x64 arrays, but other structures are possible – e.g. 4 drop 
points each sourrounded by four 32x32 arrays.   

VI. THE IOTIER 
The ioTier is itself another pipeline, this one advanced on the 

rising edge of the master clock (MClkA) rather than the End-
of-Event signal.  The pipeline diagram is shown in Fig. 8.  In 
both the first and second pipeline stages, modified Fischer 
Trees are used to pick the next row within each column and then 
the next column within the quadrant.  Fischer Trees are also 
known by their original name, the Mephisto Binary Readout 
Architectures [8].  Since the operation of the Fischer Tree is 
important to VIPRAM_L1CMS, it will be discussed first.  A 
discussion of the pipeline and its use of the Fischer Tree will 
follow. 

A. The Fischer Tree (Mephisto Binary Readout 
Architecture) 
A Fischer Tree is a binary tree of Leaf Cells that process data 

both forward and backward.  Fig. 9 (a) shows a simple logic 
gate implementation of a Leaf Cell.  Moving from left to right 
(forward), if either alertTop OR alertBot are active, then Alert 
will be activated.  Moving from right to left (backward), if Pick 
is active AND alertTop is active, pickTop is activated but if 
Pick is active AND alertTop is NOT active, pickBot is 
activated.  Fig. 9 (b) shows the symbol used for Leaf Cells in 
this paper and Fig. 9 (c) shows an 8-input, 3-stage Fischer Tree.  
The aggregate function of all these Leaf Cells processing data 
in the forward direction is a giant OR-gate.  If any of the Alerts 
are active, the FastOR signal will activate in O(log2(N)) time.  

This FastOR signal is then passed back through the same tree 
in the reverse direction.  The reverse processing has the effect 
of following one and only one Alert signal back to its origin by 

Fig. 8. The ioTier pipeline diagram. 
 

Fig. 9. Three diagrams illustrating the Fischer Tree.  (a) Shows the Fischer 
Leaf Cell with its forward and backward processing. (b) Shows the symbol used 
in for the Fischer Tree in (c) and (c) An 8-input Fischer Tree showing forward 
and backward processing to select one of three alerts. 



 

choosing any alertTop - if it is active - over the corresponding 
alertBot.  alertBot signals will be chosen only if they are active 
and the alertTop is not.  This reverse processing is also 
accomplished in O(log2(N)) time.  In the example illustrated in 
Fig. 9 (c), Alert1, Alert5 and Alert6 are all active (red).  This 
causes the Alert outputs of Leaf Cells A1, A3, B12, B34 and 
C1234 to activate.  Of course, the Alert output of Leaf Cell 
C1234 is the FastOR output and it is fed back through the Pick 
input of C1234.  Since both the alertTop and alertBot inputs of 
C1234 are active, alertTop is selected by activating C1234’s 
pickTop.  This activates the Pick input of B12 and B12’s 
alertTop is active, so the pickTop output of B12 is activated.  
This activates the Pick input of A1 and ultimately the pickTop 
output of A1 which is the Pick1 signal.  All other PickX signals 
are inactive.  In short, a Fischer Tree which picks alertTop over 
alertBot will form a priority encoder with the highest priority 
being the topmost alert.  Similarly, a Fischer Tree which picks 
alertBot over alertTop will form a priority encoder with the 
highest priority being the bottommost alert.  In either case, the 
time from alert to selection will be O(2xlog2(N)). 

In the VIPRAM_L1CMS implementation of a Fischer Tree, 
the PickX vector (i.e the vector formed from Pick1, Pick2, 
Pick3…, PickN) is captured at the rising edge of MClkA as one 
of the products of whatever pipeline stage the Fischer Tree is 
in.  It is possible to extract the pick address directly from the 
Fischer Tree itself [8], but this approach is not fast enough for 
the VIPRAM_L1CMS implementation. 

B. The ioTier Pipeline 

1) Pick Next Row 
 Inputs 

o Captured roadFlags (64 bits) 
o releaseFischerTree (1 bit) 

 Outputs 
o FastOR (1 bit) 
o PickX vector 

This pipeline stage is simply a Fischer Tree and this pipeline 
stage exists independently within each column of the ioTier.  
The FastOR output and the PickX vector of the Fischer Tree are 
the outputs of the pipeline stage.  By virtue of the Fischer Tree, 
if the FastOR output is active, one and only one bit of the PickX 
vector will be active and it will be the bit corresponding to the 
highest priority Alert (roadFlag) input currently active.  If the 
FastOR output is inactive, all bits of the PickX vector will be 
inactive and it means that no Alert (roadFlag) inputs are active. 

Since all columns contain one of these pipeline stages and 
since they operate in parallel and, finally, since only one column 
can be selected to output at any given time, this means that the 
captured PickX vector of any column cannot change until that 
column has been released to do so by the next pipeline stage 
through the signal releaseFischerTree.  

The Alert inputs to each Fischer Tree are the roadFlags 
captured by the last End-of-Event signal.  These roadFlags are 
reset by the PickX vector outputs of this pipeline stage during 
the next pipeline stage.  Consequently, every time a particular 
roadFlag is selected by the Fischer Tree and this pipeline stage 
has been released to advance its PickX outputs then that 

roadFlag is reset at the next rising edge of the master clock 
(MClkA). In this fashion, the selection of the Fischer Tree 
changes every time a new roadFlag is selected by the PickX 
output of this pipeline stage. 

2) Generate Row Address and Pick Next Column 
 Inputs 

o Each Column FastOR (64 bits) 
o Each Column PickX vector (64x64 bits) 

 Outputs 
o Full Quadrant FastOR (1 bit) 
o Each Row address (64x6 bits) 
o Full Quadrant PickX vector (64 bits) 

Each 64-bit PickX vector from the “Pick Next Row” stage is 
converted into a 6-bit binary address and captured as one of the 
outputs of this stage.  Simultaneously, each 64-bit PickX vector 
is used to reset the corresponding roadFlag input to the “Pick 
Next Row” stage. 

Each FastOR output from a “Pick Next Row” stage will be 
active if there is something to output in that column and inactive 
if not.  Selecting a column to output is logically identical to 
selecting a row to output within a column of roadFlags.  The 
solution, again, is a Fischer Tree.  This time, the Alert inputs to 
the Fischer Tree are the 64 FastOR signals from the preceding 
pipeline stage.  The FastOR output of this Fischer Tree will be 
captured as one of the outputs of this stage.  The 64-bit PickX 
vector of this Fischer Tree will also be captured as another of 
the outputs of this stage.  Each bit of the PickX vector also 
serves as the releaseFischerTree signal for the corresponding 
“Pick Next Row” stage. 

3) Generate Row Addr and Broadcast HaveData, Row 
Address and Column Address 

 Inputs 
o Full Quadrant FastOR (1 bit) 
o Each Row address (64x6 bits) 
o Full Quadrant PickX vector (64 bits) 

 Outputs 
o Column Address (6 bits) 
o Row Address (6 bits) 
o Have Data (1 bit) 

The 64-bit PickX vector from the “Pick Next Column” stage 
is converted into a 6-bit binary address and captured as Column 
Address output of this stage. 

The Full Quadrant PickX vector is used to place one of the 
64 6-bit Row addresses from the “Pick Next Column” stage 
onto a bus.  This bus is captured as the Row Address output of 
this stage. 

The Full Quadrant FastOR output from the “Pick Next 
Column” stage is captured as the HaveData output of this stage. 

4) Prepare for DDR Output 
 Inputs 

o Column Address (6 bits) 
o Row Address (6 bits) 
o Have Data (1 bit) 
o End-of-Event signal (1 bit) 



 

 Outputs 
o DDR Clock=1 Data (8 bits) 
o DDR Clock=0 Data (8 bits) 

This pipeline stage is actually a state machine whose state 
diagram is shown in Fig. 10.  There are two start states for the 
state machine.  If the state machine is “Idle” – i.e. has no data 
to output – when the End-of-Event signal arrives, it moves to 
the “clean start” state (Frame Start +).  If the state machine is 
“Data Out” when the End-of-Event signal arrives, it is still 
trying to output data from the previous event.  The state 
machine moves to the “dirty start” state (Frame Start -).  
Regardless of whether or not the start is dirty or clean, the 
outputting of the next event must begin because the End-of-
Event signal also captures new roadFlags into the ioTier.  Any 
data from the previous event must be overwritten.  The purpose 
of the clean start and dirty start is to notify the user of potential 
data loss in the previous event.  The state machine then passes 
through two additional states, Status 1 and Status 2, to allow 
time for the ioTier pipeline to start generating data.  Currently, 
Status 1 and Status 2 just output a fixed data pattern, but it will 
be possible to insert error or status data into them in future 
versions.  From Status 2, the state machine returns to Idle if 
there is no data to output (i.e. if HaveData is inactive) or it 
moves on to Data Out if HaveData is active.  The state machine 
remains in Data Out as long as HaveData is active. 

The data output is shown in Table 1.  All data displayed in 
the table is in hexadecimal except for the Data Out state which 
is shown in binary.  In the data out state the two most significant 
bits are 00 during both the MClkA=1 and the MClkA=0 phases.  

The remaining 6 bits are the Row Address (when MClkA=1) 
and the Column Address (when MClkA=0). 

 
TABLE 1.THE OUTPUT DEPENDING ON STATE 

State MClkA = 1 MClkA=0 
Idle 0xC3 0xCC 
Frame Start + 0x40 0x40 
Frame Start - 0x40 0x4F 
Status1 0x85 0x80 
Status2 0x8A 0x80 
Data Out 00 Row Addr 00 Col Addr 
Bad1 0xD3 0xDC 
Bad2 0xE3 0xEC 
  

VII. SUMMARY 
The VIPRAM_L1CMS architecture is a readout architecture 

pipelined by event across two vertically integrated VLSI tiers.  
It takes advantage of the 3D integration to pass matched roads 
from the lower PRAMtier to the upper ioTier instantly at the 
conclusion of each event.  An additional pipeline, this one 
advanced by the master clock and confined to the ioTier first 
sparsifies each row and then funnels them to the output by 
sparsified column.  The output each quadrant of the chip is 
designed to indicate if the chip is idle or not and if there was or 
was not any data loss from the previous event in the case of high 
event rates. 

Fig. 10. The State Diagram that controls this Pipeline stage. 
 

Fig. 11. A picture of the complete reticule.  The chip on the top and right is 
VIPRAM_L1CMS ioTier.  The chip on the top and left is VIPRAM_L1CMS 
PRAMtier.  The four chips in the middle are the VIPRAM3D chips and the two 
on the bottom are the VIPIC chips. 



 

The first implementation of this architecture was submitted 
in March of 2016.  Wafers were returned from Global Foundries 
in August of 2016 (see Fig. 11) and 3D fabrication began in 
September of 2016.  Final chip delivery is anticipated in early 
2017. 
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