
VIPRAM_L1CMS: a 2-Tier 3D Architecture for
Pattern Recognition for Track Finding

J. R. Hoff, G.W. Deptuch, Senior Member, IEEE, S. Joshi, T. Liu, J. Olsen, and A. Shenai

Abstract– In HEP tracking trigger applications, flagging an
individual detector hit is not important. Rather, the path of a
charged particle through many detector layers is what must be
found. Moreover, given the increased luminosity projected for
future LHC experiments, this type of track finding will be
required within the Level 1 Trigger system. This means that future
LHC experiments require not just a chip capable of high-speed
track finding but also one with a high-speed readout architecture.
VIPRAM_L1CMS is 2-Tier Vertically Integrated chip designed to
fulfill these requirements. It is a complete pipelined Pattern
Recognition Associative Memory (PRAM) architecture including
pattern recognition, result sparsification, and readout for Level 1
trigger applications in CMS with 15-bit wide detector addresses
and eight detector layers included in the track finding. Pattern
recognition is based on classic Content Addressable Memories
with a Current Race Scheme to reduce timing complexity and a 4-
bit Selective Precharge to minimize power consumption.
VIPRAM_L1CMS uses a pipelined set of priority-encoded binary
readout structures to sparsify and readout active road flags at
frequencies of at least 100MHz. VIPRAM_L1CMS is designed to
work directly with the Pulsar2b Architecture.

I. INTRODUCTION

HE use of hardware-based pattern recognition for fast
triggering on particle tracks is well established in High-

Energy Physics [1][2][3]. The central concept is to use a
massively parallel associative memory architecture to identify
patterns on an event by event basis with high speed and low
latency. Prior to data taking, significant tracks are determined
by Monte Carlo simulation as are the detector layers and
addresses traversed by these tracks. These detector layers and
addresses are stored within the associative memory structures
which can rapidly flag the presence of those tracks within event
data.

Of critical importance to the future of CMS and its ability to
maintain physics acceptances for basic objects (leptons,
photons, jets and MET) in the HL-LHC era is the inclusion of
tracks within the Level-1 trigger [4]. As such, the development
of a readout architecture for hardware-based pattern recognition
with the ability to respond with the speed necessary for Level-
1 trigger applications is of vital importance.

The choice of vertical integration serves to simplify the
readout architecture and minimize the bus lengths necessary to
communicate layer data and matched road data around a large
chip.

Manuscript received April 3, 2016. (Write the date on which you submitted
your paper for review.) This work was supported by Fermi Research Alliance,
LLC under Contract No. DE-AC02-07CH11359 with the United States
Department of Energy.

J. R. Hoff (telephone: 630-840-2398 email: jimhoff@fnal.gov) ,
G. W. Deptuch (email: deptuch@fnal.gov), T. Liu (email: thliu@fnal.gov) and

II. GLOSSARY

 Associative Memory – a memory capable of
determining if a particular piece of data is contained
within itself.

 CAM – Content Addressable Memory – a special type
of associative memory that is loaded with a particular
pattern and then responds to the presence of that
particular pattern within a data stream. Commercial-
Off-The-Shelf CAMs are not typically required to
remember pattern matches.

 PRAM – Pattern Recognition Associative Memory –
a double-layered associative memory structure
containing several CAMs and the means to remember
matches and monitor the state of matches within the
PRAM. Each CAM flags the arrival of one particular
pattern which, in Tracking Detectors, corresponds to a
particular detector address within a particular detector
layer. Once a CAM is flagged, that flag is remembered
by the PRAM until reset. When a sufficient (user
definable) number of the component CAMs have
flagged a match, the PRAM itself raises a flag. This is
called a road flag or road match.

III. THE CHOSEN 3D TECHNOLOGY

VIPRAM_L1CMS has been fabricated using Global
Foundries’ 130nm Low Power CMOS Technology with 3D
fabrication through Tezzaron/Novati [5][6]. Fig. 1 shows a

A. Shenai (email: shenai@fnal.gov) are with the Fermi National Accelerator
Laboratory, Batavia, IL 60510 USA

S. Joshi was an intern with the Fermi National Accelerator Laboratory when
this work was performed and is a graduate student with Department of
Electrical Engineering and Computer Science, McCormick School of
Engineering and Applied Science, Northwestern University, Evanston, IL

T

Fig. 1. A sketch of the elements of a two-tier, vertically integrated circuit.
Both the Top Tier and the Bottom Tier are common, readily-available CMOS
integrated circuits. The two tiers are joined face-to-face by a copper direct bond
interface. Through-Silicon Vias (TSVs) join the route metals of the CMOS top
tier back through the substrate to back metal. Pads are formed from back metal
for off-chip connection.

FERMILAB-CONF-16-690-PPD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science,
Office of High Energy Physics.

mailto:deptuch@fnal.gov
mailto:thliu@fnal.gov
mailto:shenai@fnal.gov

simplified sketch of the resulting structure, but this sketch is not
to scale.

Each tier is fabricated in a common, readily-available CMOS
process. In this particular case, that process is the GF 130nm
LPCMOS for both tiers, but this is not required. In fact, it is
not even necessary for both tiers to be from the same process.
Moreover, the design rules of the process do not have to be
modified in any way though there are a few additional rules
regarding Through Silicon Vias and Bond Interfaces. This is so
that these elements can be added to the chips after 2D
processing has been completed.

The two tiers are bonded to one another using a low
temperature copper Direct-Bond Interface [5]. The metals for
the bond interface are placed after 2D integration, so no route
layers are lost. The bond interface metals are a 2-dimensional
array of 2.5m wide octagons spaced on a rectangular grid 5m
apart and they serve as both a mechanical adhesion between the
tiers and as a means of electrical communication between the
tiers. Of course, the vast majority of interface octagons are not
used for inter-tier communication and are left electrically inert.
The two tiers are bonded face-to-face, meaning that each tier’s
substrate faces outward of the sandwich created by joining the
tiers together.

The two tier stack communicates to the outside world by
Through Silicon Vias (TSVs) inserted into the backside of the
top tier down to landing pads on the lowest metal layer of the
top tier (M1). After the two tiers are bonded into a stack, the
top tier’s substrate is thinned to approximately 6 microns by
chemical-mechanical polishing (CMP). Via cavities are formed
by the Bosch process [5] and filled with Tungsten and a spacer
layer for substrate isolation.

Finally, Aluminum back metal is placed on the top tier.
VIPRAM_L1CMS does no routing on the back metal, so, in
fact, all back metal is also pad metal.

IV. A TWO-TIER, VERTICALLY-INTEGRATED PIPELINE

At its most basic level, VIPRAM_L1CMS is a very simple,

two-stage pipelined device. (See Fig. 2.) The stages of the
pipeline are advanced by the arrival of an End-of-Event signal
from outside the chip. The first stage of the pipeline is the
pattern recognition or PRAM stage. In the PRAM stage,

candidate addresses from different detector layers (layerData)
are matched against stored patterns in CAM cells within each
PRAM. If a sufficient number of CAM cells match, then a
matched road is flagged. Over the course of an event, any
number of matched roads may fire. The second stage of the
pipeline is the readout or IO stage. In the IO stage, matched
roads are identified, sparsified and read out.

What makes VIPRAM_L1CMS unique is the simple fact that
these two pipeline stages are located on two different tiers of a
3D Vertically Integrated Circuit. (See Fig. 3.) The PRAM stage
is placed on the PRAMtier which is the bottom tier of the stack
and the IO stage is placed on the ioTier which is the top tier. In
keeping with the facts of the 3D process, all pads are located on
the ioTier. Therefore layerData arrives to the ioTier and is
driven to the center of the chip, across the bond interface to the
PRAMtier and then around the PRAMtier to the various PRAM
road cells. All road flags are connected directly to bond
interface octagons and are driven across to the ioTier. All road
flags, whether or not they are successful, are captured into the
ioTier with the arrival of the End-of-Event signal. In the ioTier,
the successful road flags are sparsified and driven to the pads
and out of the chip.

V. THE PRAM ROAD CELL AND THE PRAM TIER
Each PRAM Road Cell searches for one and only one road

which represents a particular path of a charged particle through
the various layers of a detector. (See Fig. 4.) The
VIPRAM_L1CMS PRAM Cells consists of eight CAM cells
each dedicated to searching for one detector address on one
detector layer. The first CAM is dedicated to detector layer 0
and receives layerData only from detector layer 0; the second
CAM is dedicated to detector layer 1 and receives layerData
only from detector layer 1; and so on.

Fig. 3. An abstracted sketch of the two tiers of VIPRAM_L1CMS. Layer
hit data arrives to the pads and crosses through Through Silicon Vias (TSVs) to
the typical routing metals of the ioTier. From there it is routed in the usual way
to the center of the ioTier and passed through the bond interface to the typical
routing metals of the PRAM tier. From there it is routed to the PRAMs.
Matched roads are passed up from the PRAM Tier to to the ioTier through bond
interfaces. Once there, they are sparsified and routed out of the chip through the
TSVs and then the pads.

Fig. 2. Pipeline Diagram for the VIPRAM_L1CMS architecture.

In addition to the eight CAM cells,
the PRAM Road Cell consists of eight
Set-Reset latches (one for each CAM
cell) for capturing and remembering
matches. Understand that event data
arrives to the VIPRAM_L1CMS
unordered, so the likelihood that the
layerData for a particular track will
arrive to the VIPRAM_L1CMS from
all of the different detector layers at the
same time is vanishingly remote. All
of the event data will eventually reach
the VIPRAM_L1CMS, so the PRAM
Road Cell simply remembers CAM
address matches and the final road
match itself is accumulated over the
arrival time of all of the event data. In
addition to the eight CAM cells and the
eight latches, the PRAM Road Cell also
contains the Majority Logic which
monitors status of the stored CAM
address matches and flags a road when
the number of matches reaches a user
defined threshold. The user can request
a perfect road match (all eight CAMs
match), or 1 missing layer or 2 missing
layers. Finally, the PRAM Road Cell
contains simple driver circuitry to push
the road match across the bond
interface to the ioTier.

The CAM cell itself is a classic architecture with a current
race scheme and a four bit selective pre-charge [7]. It has
fifteen bits, a single matchline per CAM cell, searchlines (called
layerData in this paper), and a sense amplifier. The matchline
precharge signal (mlpre) when high resets the matchline to zero
through the nFET on the right side of Fig. 5 and when low
supplies current to the matchline through the pFET on the left
side. Bits 0, 1, 2 and 3 in Fig. 5 are NAND Cells [7] which
block current flow to the rest of the matchline in the event of a
bit mismatch. Bits 5, 6, 7, 9, 10, 11, 13, 14 and 15 are NOR
Cells [7] which pull the matchline low in the event of a bit
mismatch. Finally, bits 4, 8, and 12 are Ternary NOR Cells [7]
which behave like NOR Cells in that they have the ability to
pull the matchline low but they also can be placed into a forced
mismatch condition (to kill a pattern) or a forced match
condition to provide a “don’t care” option for the bit.

The layout of the PRAM Road Cell is shown in Fig. 7. The
cell is square at 70m x 70m. The CAM cells themselves are

twice as tall as they are wide. The layerData for layers 0, 1, 6,
and 7 flow horizontally and for layers 2, 3, 4, and 5 flow
vertically in the figure. In all cases, the layerData flows into the
long side of the CAM cell layout.

The PRAM Road Cells are arranged into a 64x64 array called
a Quadrant and then four of these are arranged in a square,
resulting in 16k road patterns per VIPRAM_L1CMS chip. (See
Fig. 6.) The figure also shows the Quad Driver layout which
drives the layerData from the center of the chip outward to all
PRAM cells. Routing in the 3rd dimension permits this type of
structure in which a long route is dropped strategically in the

Fig. 4. A simple event
display illustrative of the
particle path through the
various layers of the
detector. This is the entity

Fig. 7. The layout of the PRAM Road Cell highlighting the locations of the
eight CAM cells, the majority logic and the Flag or threshold logic.

Fig. 5. A functional sketch of the CAM cell architecture. The “f” function
is a current block for NAND Cells or a matchline pulldown for NOR and
Ternary NOR Cells.

Fig. 6. The layout of the entire PRAM Tier highlighting the four Quadrants
and the Quad Driver.

center of some area (in this case, it is in the center of the entire
Tier) and then routed in all directions. This technique can be
used, for example, to minimize overall route lengths or to
equalize propagation delays across a wide area. This version of
VIPRAM_L1CMS uses a single central drop point with four
64x64 arrays, but other structures are possible – e.g. 4 drop
points each sourrounded by four 32x32 arrays.

VI. THE IOTIER
The ioTier is itself another pipeline, this one advanced on the

rising edge of the master clock (MClkA) rather than the End-
of-Event signal. The pipeline diagram is shown in Fig. 8. In
both the first and second pipeline stages, modified Fischer
Trees are used to pick the next row within each column and then
the next column within the quadrant. Fischer Trees are also
known by their original name, the Mephisto Binary Readout
Architectures [8]. Since the operation of the Fischer Tree is
important to VIPRAM_L1CMS, it will be discussed first. A
discussion of the pipeline and its use of the Fischer Tree will
follow.

A. The Fischer Tree (Mephisto Binary Readout
Architecture)
A Fischer Tree is a binary tree of Leaf Cells that process data

both forward and backward. Fig. 9 (a) shows a simple logic
gate implementation of a Leaf Cell. Moving from left to right
(forward), if either alertTop OR alertBot are active, then Alert
will be activated. Moving from right to left (backward), if Pick
is active AND alertTop is active, pickTop is activated but if
Pick is active AND alertTop is NOT active, pickBot is
activated. Fig. 9 (b) shows the symbol used for Leaf Cells in
this paper and Fig. 9 (c) shows an 8-input, 3-stage Fischer Tree.
The aggregate function of all these Leaf Cells processing data
in the forward direction is a giant OR-gate. If any of the Alerts
are active, the FastOR signal will activate in O(log2(N)) time.

This FastOR signal is then passed back through the same tree
in the reverse direction. The reverse processing has the effect
of following one and only one Alert signal back to its origin by

Fig. 8. The ioTier pipeline diagram.

Fig. 9. Three diagrams illustrating the Fischer Tree. (a) Shows the Fischer
Leaf Cell with its forward and backward processing. (b) Shows the symbol used
in for the Fischer Tree in (c) and (c) An 8-input Fischer Tree showing forward
and backward processing to select one of three alerts.

choosing any alertTop - if it is active - over the corresponding
alertBot. alertBot signals will be chosen only if they are active
and the alertTop is not. This reverse processing is also
accomplished in O(log2(N)) time. In the example illustrated in
Fig. 9 (c), Alert1, Alert5 and Alert6 are all active (red). This
causes the Alert outputs of Leaf Cells A1, A3, B12, B34 and
C1234 to activate. Of course, the Alert output of Leaf Cell
C1234 is the FastOR output and it is fed back through the Pick
input of C1234. Since both the alertTop and alertBot inputs of
C1234 are active, alertTop is selected by activating C1234’s
pickTop. This activates the Pick input of B12 and B12’s
alertTop is active, so the pickTop output of B12 is activated.
This activates the Pick input of A1 and ultimately the pickTop
output of A1 which is the Pick1 signal. All other PickX signals
are inactive. In short, a Fischer Tree which picks alertTop over
alertBot will form a priority encoder with the highest priority
being the topmost alert. Similarly, a Fischer Tree which picks
alertBot over alertTop will form a priority encoder with the
highest priority being the bottommost alert. In either case, the
time from alert to selection will be O(2xlog2(N)).

In the VIPRAM_L1CMS implementation of a Fischer Tree,
the PickX vector (i.e the vector formed from Pick1, Pick2,
Pick3…, PickN) is captured at the rising edge of MClkA as one
of the products of whatever pipeline stage the Fischer Tree is
in. It is possible to extract the pick address directly from the
Fischer Tree itself [8], but this approach is not fast enough for
the VIPRAM_L1CMS implementation.

B. The ioTier Pipeline

1) Pick Next Row
 Inputs

o Captured roadFlags (64 bits)
o releaseFischerTree (1 bit)

 Outputs
o FastOR (1 bit)
o PickX vector

This pipeline stage is simply a Fischer Tree and this pipeline
stage exists independently within each column of the ioTier.
The FastOR output and the PickX vector of the Fischer Tree are
the outputs of the pipeline stage. By virtue of the Fischer Tree,
if the FastOR output is active, one and only one bit of the PickX
vector will be active and it will be the bit corresponding to the
highest priority Alert (roadFlag) input currently active. If the
FastOR output is inactive, all bits of the PickX vector will be
inactive and it means that no Alert (roadFlag) inputs are active.

Since all columns contain one of these pipeline stages and
since they operate in parallel and, finally, since only one column
can be selected to output at any given time, this means that the
captured PickX vector of any column cannot change until that
column has been released to do so by the next pipeline stage
through the signal releaseFischerTree.

The Alert inputs to each Fischer Tree are the roadFlags
captured by the last End-of-Event signal. These roadFlags are
reset by the PickX vector outputs of this pipeline stage during
the next pipeline stage. Consequently, every time a particular
roadFlag is selected by the Fischer Tree and this pipeline stage
has been released to advance its PickX outputs then that

roadFlag is reset at the next rising edge of the master clock
(MClkA). In this fashion, the selection of the Fischer Tree
changes every time a new roadFlag is selected by the PickX
output of this pipeline stage.

2) Generate Row Address and Pick Next Column
 Inputs

o Each Column FastOR (64 bits)
o Each Column PickX vector (64x64 bits)

 Outputs
o Full Quadrant FastOR (1 bit)
o Each Row address (64x6 bits)
o Full Quadrant PickX vector (64 bits)

Each 64-bit PickX vector from the “Pick Next Row” stage is
converted into a 6-bit binary address and captured as one of the
outputs of this stage. Simultaneously, each 64-bit PickX vector
is used to reset the corresponding roadFlag input to the “Pick
Next Row” stage.

Each FastOR output from a “Pick Next Row” stage will be
active if there is something to output in that column and inactive
if not. Selecting a column to output is logically identical to
selecting a row to output within a column of roadFlags. The
solution, again, is a Fischer Tree. This time, the Alert inputs to
the Fischer Tree are the 64 FastOR signals from the preceding
pipeline stage. The FastOR output of this Fischer Tree will be
captured as one of the outputs of this stage. The 64-bit PickX
vector of this Fischer Tree will also be captured as another of
the outputs of this stage. Each bit of the PickX vector also
serves as the releaseFischerTree signal for the corresponding
“Pick Next Row” stage.

3) Generate Row Addr and Broadcast HaveData, Row
Address and Column Address

 Inputs
o Full Quadrant FastOR (1 bit)
o Each Row address (64x6 bits)
o Full Quadrant PickX vector (64 bits)

 Outputs
o Column Address (6 bits)
o Row Address (6 bits)
o Have Data (1 bit)

The 64-bit PickX vector from the “Pick Next Column” stage
is converted into a 6-bit binary address and captured as Column
Address output of this stage.

The Full Quadrant PickX vector is used to place one of the
64 6-bit Row addresses from the “Pick Next Column” stage
onto a bus. This bus is captured as the Row Address output of
this stage.

The Full Quadrant FastOR output from the “Pick Next
Column” stage is captured as the HaveData output of this stage.

4) Prepare for DDR Output
 Inputs

o Column Address (6 bits)
o Row Address (6 bits)
o Have Data (1 bit)
o End-of-Event signal (1 bit)

 Outputs
o DDR Clock=1 Data (8 bits)
o DDR Clock=0 Data (8 bits)

This pipeline stage is actually a state machine whose state
diagram is shown in Fig. 10. There are two start states for the
state machine. If the state machine is “Idle” – i.e. has no data
to output – when the End-of-Event signal arrives, it moves to
the “clean start” state (Frame Start +). If the state machine is
“Data Out” when the End-of-Event signal arrives, it is still
trying to output data from the previous event. The state
machine moves to the “dirty start” state (Frame Start -).
Regardless of whether or not the start is dirty or clean, the
outputting of the next event must begin because the End-of-
Event signal also captures new roadFlags into the ioTier. Any
data from the previous event must be overwritten. The purpose
of the clean start and dirty start is to notify the user of potential
data loss in the previous event. The state machine then passes
through two additional states, Status 1 and Status 2, to allow
time for the ioTier pipeline to start generating data. Currently,
Status 1 and Status 2 just output a fixed data pattern, but it will
be possible to insert error or status data into them in future
versions. From Status 2, the state machine returns to Idle if
there is no data to output (i.e. if HaveData is inactive) or it
moves on to Data Out if HaveData is active. The state machine
remains in Data Out as long as HaveData is active.

The data output is shown in Table 1. All data displayed in
the table is in hexadecimal except for the Data Out state which
is shown in binary. In the data out state the two most significant
bits are 00 during both the MClkA=1 and the MClkA=0 phases.

The remaining 6 bits are the Row Address (when MClkA=1)
and the Column Address (when MClkA=0).

TABLE 1.THE OUTPUT DEPENDING ON STATE

State MClkA = 1 MClkA=0
Idle 0xC3 0xCC
Frame Start + 0x40 0x40
Frame Start - 0x40 0x4F
Status1 0x85 0x80
Status2 0x8A 0x80
Data Out 00 Row Addr 00 Col Addr
Bad1 0xD3 0xDC
Bad2 0xE3 0xEC

VII. SUMMARY
The VIPRAM_L1CMS architecture is a readout architecture

pipelined by event across two vertically integrated VLSI tiers.
It takes advantage of the 3D integration to pass matched roads
from the lower PRAMtier to the upper ioTier instantly at the
conclusion of each event. An additional pipeline, this one
advanced by the master clock and confined to the ioTier first
sparsifies each row and then funnels them to the output by
sparsified column. The output each quadrant of the chip is
designed to indicate if the chip is idle or not and if there was or
was not any data loss from the previous event in the case of high
event rates.

Fig. 10. The State Diagram that controls this Pipeline stage.

Fig. 11. A picture of the complete reticule. The chip on the top and right is
VIPRAM_L1CMS ioTier. The chip on the top and left is VIPRAM_L1CMS
PRAMtier. The four chips in the middle are the VIPRAM3D chips and the two
on the bottom are the VIPIC chips.

The first implementation of this architecture was submitted
in March of 2016. Wafers were returned from Global Foundries
in August of 2016 (see Fig. 11) and 3D fabrication began in
September of 2016. Final chip delivery is anticipated in early
2017.

REFERENCES
[1] M. Dell’Orso and L. Ristori, “VLSI Structures for Track Finding,”

Proceedings in Nuclear Instruments and Methods, vol. A278, pp. 436-
440, 1989.

[2] A. Annovi et al., "The GigaFitter: A next generation track fitter to enhance
online tracking performances at CDF," Nuclear Science Symposium
Conference Record (NSS/MIC), pp.1143-1146, 2009.

[3] A. Annovi, et al., “A VLSI Processor for Fast Track Finding Based on
Content Addressable Memories,” IEEE Trans. Nucl. Sci, vol. 53, no. 4,
pp. 1-6, 2006.

[4] T. Liu, J. Hoff, G. Deptuch, R. Yarema, “A New Concept of Vertically
Integrated Pattern Recognition Associative Memory”, published in the
Proceedings of the TIPP 2011 Conference, DOI number
10.1016/j.phpro.2012.02.521

[5] G.W.Deptuch, G.Carini, P.Grybos, S.Holm, P.Kmom, R.Lipton, P.Maj,
D.P.Siddons, A.Shenai, R.Szerzygiel, R.Yarema, " Fully 3D-integrated
Pixel Detectors for X-Rays," IEEE Trans. Electrib Devices, vol. 63, no.
1, pp. 205-214, Jan. 2016.

[6] G.W. Deptuch, “Status of 3D Integration”, presented at the 10th
International Meeting on Front End Electonics (FEE 2016), Krakow,
Poland, 2016. Available:
https://indico.cern.ch/event/522485/contributions/2145788/attachments/
1282830/1906666/FEE_05_2016.pdf

[7] K. Pagiamtzis and A. Sheikholeslami, “Content-Addressable Memory
(CAM) Circuits and Archtectures: A Tutorial and Survey”, IEEE Journal
of Solid-State Circuits, Vol. 41, No. 3, pp. 712-727, March, 2006.

[8] P. Fischer, “First Implementation of the MEPHISTO Binary Readout
Architecture for Strip Detectors”, Nuclear Instruments and Methods in
Physics Research A, vol. 461, pp. 499-504, 2001.

https://indico.cern.ch/event/522485/contributions/2145788/attachments/1282830/1906666/FEE_05_2016.pdf
https://indico.cern.ch/event/522485/contributions/2145788/attachments/1282830/1906666/FEE_05_2016.pdf

