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Abstract: Polymorphonuclear leukocytes (PMNs) presumably transmit human cytomegalovirus
(HCMV) between endothelial cells in blood vessels and thereby facilitate spread to peripheral organs.
We aimed to identify viral components that contribute to PMN-mediated transmission and test the
hypothesis that cellular adhesion molecules shield transmission sites from entry inhibitors. Stop
codons were introduced into the genome of HCMV strain Merlin to delete pUL74 of the trimeric
and pUL128 of the pentameric glycoprotein complex and the tegument proteins pp65 and pp71.
Mutants were analyzed regarding virus uptake by PMNs and transfer of infection to endothelial
cells. Cellular adhesion molecules were evaluated for their contribution to virus transmission using
function-blocking antibodies, and hits were further analyzed regarding shielding against inhibitors
of virus entry. The viral proteins pUL128, pp65, and pp71 were required for efficient PMN-mediated
transmission, whereas pUL74 was dispensable. On the cellular side, the blocking of the αLβ2-
integrin LFA-1 reduced virus transfer by 50% and allowed entry inhibitors to reduce it further by
30%. In conclusion, these data show that PMN-mediated transmission depends on the pentameric
complex and an intact tegument and supports the idea of a virological synapse that promotes this
dissemination mode both directly and via immune evasion.

Keywords: human cytomegalovirus; clinical isolates; hematogenous dissemination; herpesvirus
entry; entry inhibitors

1. Introduction

The human cytomegalovirus (HCMV) is widespread in the population, with an es-
timated seroprevalence of 83% worldwide [1]. Values vary widely by region, ranging
from 45–66% in Europe to 90–100% in the Eastern Mediterranean or Africa [1,2]. After
primary infection, which usually goes unnoticed in immunocompetent individuals [3], the
virus remains in a latent state in the body for a lifetime [4]. HCMV can spread throughout
the body via the bloodstream. In the blood, it is found predominantly in the cellular
fraction [5,6] and disseminates via infected circulating endothelial cells, monocytes, or poly-
morphonuclear leukocytes (PMNs) [7–9]. This hematogenous spread is thought to facilitate
the virus to rapidly infiltrate various tissues and organs. In HCMV-infected patients, high
viral titers were determined, especially in PMNs [9,10]. These cells do not produce virus
progeny themselves but rather act as vehicles by taking up the virus from infected cells
and transferring it to other cells that are not yet infected [11].

To study this pathophysiologically relevant mode of dissemination in more detail, cell
culture models that mimic the hematogenous spread of HCMV were developed. Uptake
of HCMV in PMNs is accompanied by translocation of the viral tegument protein pp65
into the cell nucleus. This phenomenon, also exploited in the antigenemia assay in HCMV
diagnostics [12], has already been repeatedly demonstrated and is also used as a surrogate
marker in other in vitro models, such as induced pluripotent stem cell lines that develop

Viruses 2022, 14, 1561. https://doi.org/10.3390/v14071561 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v14071561
https://doi.org/10.3390/v14071561
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0003-2358-5382
https://doi.org/10.3390/v14071561
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v14071561?type=check_update&version=2


Viruses 2022, 14, 1561 2 of 28

into cerebral organoids [13–15]. To date, it is unclear whether pp65 is merely an indicator of
virus uptake into PMNs or whether this protein has a functional role in the hematogenous
dissemination of HCMV. Even less is known about the role of the tegument protein pp71 in
PMN-mediated transfer, which is translated together with pp65 from a common bicistronic
RNA and is important for infection of fibroblasts at low multiplicity of infection [16,17].
Remarkably, deletion of the homologous protein in rhesus cytomegalovirus (RhCMV) com-
pletely prevented host-to-host transmission by blood cells, whereas replication in fibroblasts
was only slightly reduced which might indicate a particular role of pp71 in leukocytes [18].
With regard to the second step of the transfer, PMNs have previously been used as a vehicle
to transmit a clinical HCMV strain to uninfected fibroblast cell cultures [19]. Recently, we
established a model in which we used PMNs to transfer different clinical isolates and the
laboratory strain Merlin from infected fibroblast cultures to uninfected fibroblasts, epithe-
lial and endothelial cells [20]. Clinical isolates initially spread in a strictly cell-associated
manner in cell culture [21,22] but start to release infectious progeny into the supernatant
upon continued passaging. This phenotypic change is reflected by modifications in the
viral genome, particularly in RL13 and the UL128 locus [22,23]. Obviously, the cell-free
spreading mode provides an advantage in fibroblast culture resulting in the selection of
either preexisting or de novo mutations that disrupt viral genes that would keep HCMV
cell-associated [24]. The modified virus is then referred to as a laboratory strain. Strain
Merlin has been cloned as a bacterial artificial chromosome (BAC), in which mutations
in RL13 and UL128 were repaired to restore the wild-type genome. The introduction of a
tetracycline operator allows this variant to grow strictly cell-associated without releasing
cell-free infectious virus particles [24]. Thereby, this laboratory strain resembles clinical
isolates in its spread.

Such cell culture models can be used to study virus transmission at the molecular
level, and they also allow evaluating potential inhibitors for their efficacy against this
specific mode of dissemination. HCMV transfer to leukocytes appears to depend on the
UL128 locus of the viral genome, which encodes for the three proteins pUL128, pUL130,
and pUL131A [25]. Together with the glycoproteins gH and gL, they form the pentameric
complex in the viral envelope, which also mediates entry into endothelial and epithelial
cells [25–28]. Since this suggests similarities between virus uptake by leukocytes and
entry into those cell types, the use of so-called entry inhibitors might also be considered
against PMN-mediated spread of HCMV. While neuropilin-2 (Nrp2) has been identified
as a cellular receptor of the pentameric complex on endothelial and epithelial cells [29], it
is unclear whether it also contributes to pentamer-mediated uptake into leukocytes. The
soluble decoy receptor Nrp2-Fc inhibits infection of endothelial and epithelial cells by
binding to pUL128, pUL130, and pUL131A [29–31]. It is tempting to speculate whether
this soluble receptor would also be effective during PMN-mediated transfer of HCMV to
endothelial cells.

Entry inhibitors targeting the trimeric gH/gL/gO complex have already been analyzed
for their effect on PMN-mediated transfer of HCMV. This complex binds to platelet-derived
growth factor receptor alpha (PDGFRα) on the surface of fibroblasts and mediates entry
of HCMV into this cell type [32–34]. A soluble derivative thereof, PDGFRα-Fc, can bind
to cell-free virions and inhibit entry into fibroblasts, endothelial and epithelial cells, but
it could not inhibit PMN-mediated transfer [20,30,33]. In contrast to the failure of these
large decoy receptors, smaller peptide fragments derived from the extracellular PDGFRα
domains 1–3 [33,35] reduced the efficiency of virus transmission by PMNs when added
either during the initial uptake step or during the subsequent transfer step [20]. Similar
phenomena are observed for the spread of clinical HCMV isolates in fibroblast cultures.
While large entry inhibitors such as PDGFRα-Fc or neutralizing antibodies did not inhibit
the strictly cell-associated growth of these viruses [35–37], PDGFRα-derived peptides
reduced the number and size of infected foci [35]. The finding that large entry inhibitors
fail to reduce cell-associated spread of HCMV isolates or transmission via PMNs, whereas
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smaller derivatives prove effective, also prompts considerations regarding the virus-cell
interactions underlying this viral mode of transmission.

Cell-associated virus spread is thought to occur at close cell-cell contacts. However, a
precise mechanism is still under discussion. There are different ideas for the transmission
of virus particles between neighboring cells, for example, by retention and migration of
particles on the cell surface of the productively infected cell until contact with neighboring
cells, transmission in vesicles, or by polarized secretion [38,39]. A shared feature of these
mechanisms is the involvement of adhesion molecules, which mediate contacts between
neighboring cells. These molecules also play a central role in the concept of the so-called vi-
rological synapse, first described for human immunodeficiency virus 1 (HIV-1) transmission
between monocyte-derived dendritic cells and T cells [40,41], but then proposed for other
viruses as well [42,43]. Such a virological synapse might also form during PMN-mediated
transfer of HCMV. For interaction between PMNs and endothelial cells in general, various
adhesion molecules are known to be involved, including L-selectin, very late antigen-4
(VLA-4), or lymphocyte function-associated antigen 1 (LFA-1) on the surface of PMNs and
E-selectin, vascular cell adhesion protein 1 (VCAM-1), or intercellular adhesion molecule
1 (ICAM-1) on endothelial cells [44,45]. Blocking of LFA-1 or ICAM-1 during the uptake
step of HCMV from infected fibroblasts or endothelial cells was reported to reduce the
number of pp65-positive PMNs [46], and blocking of these adhesion molecules during
incubation of infected PMNs with uninfected fibroblasts was also reported to reduce virus
transfer [19]. Together, the findings on the possible involvement of adhesion molecules in
PMN-mediated transfer of HCMV and the inhibition of transfer exclusively by small entry
inhibitors may indicate the formation of a virological synapse, whereby larger inhibitors
such as neutralizing antibodies may fail to reach viral transmission by steric hindrance.

Therefore, we aimed to apply our recently established transfer model to investigate
whether (1) the viral tegument proteins pp65 and pp71 and the trimeric and pentameric
glycoprotein complex are necessary for HCMV transmission via PMNs using stop mutants
of the isolate-like strain Merlin and whether (2) large entry inhibitors like neutralizing
antibodies can actually interfere with PMN-mediated transfer of HCMV isolates when the
formation of the hypothetical synapse is disrupted by function-blocking antibodies against
cellular adhesion molecules. These analyses might contribute to a better understanding
and targeting of the pathophysiologically relevant hematogenous dissemination of HCMV.

2. Materials and Methods
2.1. Cells

Conditionally immortalized human endothelial cells (HEC-LTTs) [47,48] were culti-
vated in 0.1% gelatin (Sigma-Aldrich, St. Louis, MO, USA)-coated cell culture flasks in
human endothelial cell growth medium (PromoCell, Heidelberg, Germany) supplemented
with 2 µg/mL doxycycline (AppliChem, Darmstadt, Germany) and 100 µg/mL gentamicin
(Sigma-Aldrich). For experiments, cells were seeded in medium without doxycycline.
Primary human foreskin fibroblasts (HFFs) were cultivated in Dulbecco’s Modified Eagle
Medium with GlutaMAX (Thermo Fisher Scientific, Waltham, MA, USA) supplemented
with 10% fetal bovine serum (FBS; PAN Biotech, Aidenbach, Germany) and 100 µg/mL
gentamicin (denoted as DMEM10).

Polymorphonuclear leukocytes (PMNs) were isolated from EDTA blood of HCMV-
seronegative donors via Polymorphprep (Progen, Heidelberg, Germany) according to the
manufacturer’s instructions. In addition, the remaining contaminating erythrocytes were
lysed with NH4Cl for 5 min on ice. The PMNs were immediately used for the experiments.

2.2. Viruses

A Merlin bacterial artificial chromosome (BAC) clone that comprises the complete
wild-type HCMV genome of strain Merlin [24] with a single tet operator upstream of
the RL13 open reading frame [49] was used as the parental BAC for mutagenesis. For
the generation of respective revertants, the introduced stop codons were removed in
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the mutant BACs and restored to the Merlin-RL13tetO wild-type nucleotide sequence.
Mutant BACs Merlin-RL13tetO-UL74stop, Merlin-RL13tetO-UL128stop, and the revertant
BAC Merlin-RL13tetO-UL74stopREV-UL128stopREV were described previously [49]. For
the sake of clarity, this revertant was denoted as Merlin-RL13tetO-UL74stopREV in this
manuscript. BAC-DNA was isolated using the NucleoBond Xtra Midi Kit (Macherey-
Nagel, Düren, Germany), and the virus was reconstituted in HFFs by lipofection with the
K2 Transfection System (Biontex Laboratories, München, Germany). Infected cells were
cultured until 25 d post-transfection and then frozen into aliquots at −80 ◦C. From each
culture, 15,000 cells were seeded into 96-well plates for 3 h, fixed, and stained for viral
immediate early (IE) antigen (Ag)-positive cells to determine the individual infection rate
for subsequent experiments.

Recent HCMV isolates were provided by the diagnostic laboratory of the Institute for
Virology in Ulm and were propagated to infection rates of about 50–80% in HFFs. Until
use in experiments, the infected cells were stored in aliquots at −80 ◦C. In each individual
experiment, the isolates were analyzed for the cell-associated phenotype: The cell-free
supernatant of the respective isolate was centrifuged at 2790× g for 10 min and incubated
with 15,000 HFFs/well in a 96-well plate. After incubation overnight, the cells were fixed
and stained for viral IE Ag via indirect immunofluorescence. An isolate was considered to
grow in a strictly cell-associated manner if no more than 10 IE Ag-positive cells per well
were detected.

2.3. Generation of HCMV Mutants

Mutant BACs were generated using the markerless mutagenesis protocol developed
by Tischer et al. [50] with primer sets as depicted in Table 1 or as described previously [49].
Plasmid pEP-Kan-S served as a template to obtain fragments that consisted of the 18-bp
I-Sce I restriction site and a kanamycin resistance cassette flanked by repeated HCMV
sequences containing homology to the desired site of insertion in the genome. A two-step
PCR was performed as follows: In the first round of amplification, the respective long
forward primer was used in combination with a short universal kanamycin reverse primer.
After purification of products by Nucleospin PCR Clean-up Kit (Macherey Nagel, Düren,
Germany), a second amplification was performed with the respective short forward and
long reverse primers to obtain the final recombination fragment.

In the particular case of repairing the silent mutations of potential hairpin sites, a
sequential amplification with several steps was applied, each with purification of products
in between. For the recombination fragment of mutant repMerlin-UL83stop, an initial
fragment was generated with primers repMerlin-UL83stop for and Kanamycin universal rev,
followed by two consecutive rounds of amplification with primer pairs Merlin-UL83stop
short for together with repMerlin-UL83stop1 rev and Merlin-UL83stop short for together with
repMerlin-UL83stop2 rev. The generation of the recombination fragment for BAC repMerlin-
UL83stopREV required four sequential rounds of amplification with the following primer
pairs in the order listed: repMerlin-UL83stopREV1 for together with Kanamycin universal rev,
repMerlin-UL83stopREV2 for together with Kanamycin universal rev, Merlin-UL83stop short
for together with repMerlin-UL83stopREV1 rev and Merlin-UL83stop short for together with
repMerlin-UL83stopREV2 rev.

The final products were again purified and then electroporated into recombination-
activated GS1783 bacteria harboring either the Merlin-RL13tetO or the respective mutant
BAC. After selection for kanamycin-resistant clones, all non-HCMV sequences were re-
moved by intrabacterial I-Sce I digestion and a subsequent red recombination step. Each
mutant was verified by restriction fragment length analysis, and Sanger sequencing and
virus were reconstituted as described above. There was a report on the stability of HCMV
BACs [51], in which random mutations were detected in only a few passages after reconsti-
tution. To reduce the possibility that the effects on PMN-mediated transmission were due
to such random unwanted side mutations, we used four fresh reconstitutions per mutant
or revertant for our experiments.
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Table 1. Primers used for the generation of mutant BAC genomes.

Primer Sequence (5′-3′)

Merlin-UL82stop for GTCTCAGGCATCGTCCTCGCCCGGTGAGGGACCCTCGTCGTAAGCAGCAGCAATTAG
TTAAGCCGAAGCCGCCAGCGGAAGaggatgacgacgataagt

Merlin-UL82stop rev GGCAGTGCAGGCGACCAAAGCTTCCGCTGGCGGCTTCGGCTTAACTAATTGCTGCTG
CTTACGACGAGGGTCCCTCACCGGcaaccaattaaccaattctga

Merlin-UL82stop-REV for GTCTCAGGCATCGTCCTCGCCCGGTGAGGGACCCTCGTCAGAAGCAGCAGCAATTAG
TGAAGCAGAAGCCGCCAGCGGAAGaggatgacgacgataagt

Merlin-UL82stop-REV rev GGCAGTGCAGGCGACCAAAGCTTCCGCTGGCGGCTTCTGCTTCACTAATTGCTGCTG
CTTCTGACGAGGGTCCCTCACCGGcaaccaattaaccaattctga

Merlin-UL82stop short for GTCTCAGGCATCGTCCTCGC

Merlin-UL83stop for CGCAGGCAGCATGGAGTCGCGCGGTCGCCGTTGTCCAGAATAGATATCCGTACT
GTGACCCATTTCGGGGCACGTGCTaggatgacgacgataagtaggg

Merlin-UL83stop rev CGCGACTAAACACTGCTTTCAGCACGTGCCCCGAAATGGGTCACAGTACGGATA
TCTATTCTGGACAACGGCGACCGCcaaccaattaaccaattctgattag

Merlin-UL83stop-REV for CGCAGGCAGCATGGAGTCGCGCGGTCGCCGTTGTCCAGAAATGATATCCGTAC
TTGGTCCTATTTCGGGGCACGTGCTaggatgacgacgataagtaggg

Merlin-UL83stop-REV rev CGCGACTAAACACGGCTTTCAGCACGTGCCCCGAAATAGGACCAAGTACGGATA
TCATTTCTGGACAACGGCGACCGCcaaccaattaaccaattctgattag

Merlin-UL83stop short for CGCAGGCAGCATGGAGTCGC

repMerlin-UL83stop for CGCAGGCAGCATGGAGTCGCGCGGTCGCCGTTGTCCCGAATAGATATCCGTACT
GTGACCCATTTCGGGGCACGTGCTaggatgacgacgataagt

repMerlin-UL83stop1 rev TCACAGTACGGATA
TCTATTCGGGACAACGGCGACCGCcaaccaattaaccaattctga

repMerlin-UL83stop2 rev CGCGACTAAACACGGCTTTCAGCACGTGCCCCGAAATGG
GTCACAGTACGGATATCTA

repMerlin-UL83stopREV1 for ATGATATCCGTACTGGGTCCCATTTCGGGGCACGTGCTaggatgacgacgataagt

repMerlin-UL83stopREV2 for CGCAGGCAGCATGGAGTCGCGCGGTCGCCGTTGTCCCGAAATGATATCCGTACTG
GGT

repMerlin-UL83stopREV1 rev ACCCAGTACGGATATCATTTCGGGACAACGGCGACCGCcaaccaattaaccaattctga

repMerlin-UL83stopREV2 rev CGCGACTAAACACGGCTTTCAGCACGTGCCCCGAAATGGGACCCAGTACGGATAT
CAT

Kanamycin universal rev CAACCAATTAACCAATTCTGA

Note: primer sites encoding mutated codons are underlined; uppercase letters: HCMV sequence; lowercase letters:
Kanamycin cassette; grey letters: silent mutations to overcome potential hairpin formation; bold: repair of silent
mutations at potential hairpin sites.

2.4. PMN-Mediated Transmission of Cell-Associated HCMV Mutants

HFFs infected with Merlin-RL13tetO wild-type, mutants, or revertants in 24-well
plates were used as donor cultures for PMN-mediated transmission. To equalize the
number of infected cells in the different donor cultures, uninfected fibroblasts were added
as required during seeding, and experiments were performed immediately the next day.
Freshly isolated PMNs were incubated with the donor cultures at a 10:1 ratio for 3 h at
37 ◦C and then collected, taking care not to detach cells from the donor culture layer. One
fraction of the collected PMNs was added at a ratio of 10:1 to uninfected HEC-LTTs seeded
the day before on 96-well plates coated with 0.1% gelatin. These recipient cultures were
incubated together with the PMNs for 3 h at 37 ◦C.

During this incubation, the donor cultures were fixed and stained for viral IE Ag by
indirect immunofluorescence to precisely determine the number of infected donor cells.
In addition, the remaining fraction of the collected PMNs was prepared for immunofluo-
rescence staining by centrifugation in a StatSpin Cytofuge for 5 min at 395× g and drying
for 1 h in front of a blower. These cytospot preparations served for quantification of pp65
uptake during the previous incubation of the PMNs with donor cultures.

After the 3 h incubation, PMNs were removed, and recipient cultures were incubated
overnight. The next day, cells were fixed and stained for viral IE Ag or pp65 by indirect im-
munofluorescence. Nuclei were counterstained, and transfer efficiencies were determined
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as the ratio between the number of viral IE Ag- or pp65-positive nuclei and the total number
of cells. The uptake/transfer efficiencies for each mutant/revertant were normalized to the
infection rate of the respective donor culture to ensure that initial variation between donor
cultures was eliminated and differences between viruses could be attributed solely to the
PMN-mediated steps of the transmission.

2.5. Blocking of Cellular Adhesion Molecules during PMN-Mediated Transfer of HCMV Isolates

PMN-mediated transfer of clinical isolates in 6-well plates was conducted as described
before with the following modification: After PMNs were collected from the donor cultures,
they were preincubated for 30 min at 37 ◦C with function-blocking antibodies against the
cellular adhesion molecules L-selectin, very late antigen-4 (VLA-4) or lymphocyte function-
associated antigen 1 (LFA-1). Similarly, recipient cultures were preincubated for 30 min
at 37 ◦C with antibodies against the adhesion molecules E-selectin, vascular cell adhesion
protein 1 (VCAM-1), or intercellular adhesion molecule 1 (ICAM-1). Therefore, PMNs
were either left untreated or were treated with 10 µg/mL anti-integrin αL (hu1124; Novus
Biologicals, Littleton, CO, USA) or 20 µg/mL anti-integrin β2 (R&D Systems, Minneapolis,
MN, USA) (both subunits of LFA-1), 5 µg/mL anti-integrin α4 (subunit of VLA-4, R&D
Systems) or 25 µg/mL L-selectin (R&D Systems). HEC-LTTs were either left untreated
or were treated with 25 µg/mL anti-E-selectin, 25 µg/mL anti-VCAM-1 or 10 µg/mL
anti-ICAM-1 (all R&D Systems). Concentrations were chosen as described in the literature
or by the manufacturer to induce inhibitory effects. PMNs and recipient cultures were
then incubated as described, and cultures were incubated overnight before fixation and
immunofluorescence staining.

2.6. Effects of HCMV Entry Inhibitors on PMN-Mediated Spread

The effect of HCMV entry inhibitors on PMN-mediated transfer of clinical isolates
should be evaluated in comparison with or without preincubation of PMNs with anti-
integrin β2. As described, PMNs were recollected from the donor cultures (clinical HCMV
isolates) and were preincubated with 20 µg/mL anti-integrin β2 for 30 min at 37 ◦C or
left untreated. This incubation was chosen as previous experiments showed that PMN-
mediated transmission of HCMV was inhibited by 50% under these conditions. Thus,
a sufficient number of recipient endothelial cells were infected to allow the detection of
stronger inhibitory effects that would be caused by the entry inhibitors. HCMV-specific
hyperimmunoglobulin (Cytotect, CP Biotest, Dreieich, Germany), recombinant PDGFRα-Fc
and Nrp2-Fc (R&D Systems), and the PDGFRα-derived 30- and 40-mer peptides GD30,
GT40 and IK40 [20,33,52] (Phtdpeptides, Shanghai, China) were added during incubation
of either anti-integrin β2-treated or untreated PMNs with recipient HEC-LTTs at a concen-
tration to achieve complete inhibition of cell-free virus (at least 10 × EC50). This resulted in
concentrations of 0.5 mg/mL for hyperimmunoglobulin, 120 ng/mL for PDGFRα-Fc and
590 ng/mL for Nrp2-Fc. To exclude that the results are primarily determined by the amount
of substance, the three PDGFRα-derived peptides were used at the same concentration
of 0.45 mg/mL. A 0.4% dimethyl sulfoxide solution was used as an untreated control for
the peptide dilutions, corresponding to the concentration of this solvent in the peptide
treatments. For the other antiviral agents, DMEM10 was used as untreated control. The
transfer efficiencies in the presence of HCMV inhibitors without anti-integrin β2 treatment
were then normalized to the untreated controls. Transfer efficiencies in the presence of
inhibitors and anti-integrin β2 were normalized to anti-integrin β2 treatment only.

2.7. Indirect Immunofluorescence

HFFs and HEC-LTTs were fixed for 5 min at room temperature (RT) with 80% ace-
tone. Viral IE Ag was detected by incubation with monoclonal mouse antibody CH160
(antibodies-online Inc., Limerick, PA, USA) for 90 min and incubation with Cy3-goat-anti-
mouse Ig F(ab’)2 (Jackson ImmunoResearch, West Grove, PA, USA) for 60 min at 37 ◦C.
Staining revealed a red nuclear fluorescence pattern. When viral pp65 was detected using
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monoclonal mouse antibody 28–77 ([53] kindly provided by W. Britt, Birmingham, AL,
USA) for 90 min and Cy3-goat-anti-mouse Ig F(ab’)2 for 60 min at 37 ◦C, IE Ag was in-
stead detected by incubation with polyclonal rabbit antiserum against IE2-p86 [54] (kindly
provided by T. Stamminger, Ulm, Germany) for 90 min and Alexa488-goat-anti-rabbit IgG
H&L for 60 min. Staining revealed a red nuclear fluorescence pattern for pp65 and a green
one for IE Ag. The nuclei were counterstained with 4′,6-diamidino-2-phenylindole (DAPI;
Sigma-Aldrich) for 8 min at RT. Cells were washed with phosphate-buffered saline (PBS)
after each incubation step.

Cytocentrifuged PMN preparations were fixed with 1% paraformaldehyde (Sigma-
Aldrich) for 10 min at RT, permeabilized with 10% sucrose (Sigma-Aldrich), 1% FBS,
and 0.5% Nonidet P40 (Sigma-Aldrich) for 10 min at RT and then blocked with 5% FBS
for 30 min at 37 ◦C. Viral pp65 was detected using monoclonal mouse antibody 28-77
and Alexa488-goat-anti-mouse Ig F(ab’)2 (Thermo Fisher Scientific, Waltham, MA, USA).
Staining resulted in a green nuclear fluorescence signal. Nuclei were counterstained with
DAPI for 30 s at RT. PMNs were washed with PBS after each incubation step.

2.8. Immunoblotting

Cells were harvested and lysed for 10 min at 95 ◦C in lysis sample buffer (0.5 M
Tris HCl pH 6.8, 10% glycerin, 2% sodium dodecyl sulfate, 5% β-mercaptoethanol, 0.05%
bromphenol blue). Lysates were loaded onto 10% polyacrylamide gels, and electrophoresis
was performed. Proteins were then transferred onto PVDF membranes (Bio-Rad, Hercules,
CA, USA) in Trans-Blot Turbo Transfer Buffer (Bio-Rad). Membranes were blocked with
5% milk powder in PBS + 0.1% Tween for 1 h at RT and incubated overnight at 4 ◦C with
primary antibodies against viral pp71 (2H10-9 [55], kindly provided by Giada Frascaroli
and Wolfram Brune, Hamburg, Germany), pp65 (28–77 [53], kindly provided by W. Britt),
IE1 (63–27 [56], kindly provided by W. Britt), MCP (28–4 [57], kindly provided by W.
Britt) and cellular β-actin (AC-15; Sigma-Aldrich). Membranes were washed with PBS +
0.1% Tween and incubated for 1 h at RT with secondary antibody horseradish peroxidase-
conjugated goat IgG anti-mouse IgG (H + L) (Dianova, Hamburg, Germany). After washing,
chemiluminescence detection and quantification were performed using Fusion FX Spectra
(Vilber Lourmat Deutschland GmbH, Eberhardzell, Germany) and Fusion SL (Peqlab,
Erlangen, Germany) imaging systems.

2.9. Statistical Analysis

Data sets were analyzed with a one-way ANOVA for differences between the different
groups. When significant differences were found, appropriate post hoc analysis was
performed. Depending on whether the data set was balanced or not, either Bonferroni’s
comparison test or Fisher’s LSD test was chosen. p-values < 0.05 were considered marginally
significant, <0.01 significant, and <0.001 highly significant.

3. Results

Recently, we have established a cell culture model in which we used cell-associated
HCMV isolates as donor cultures and transferred them to uninfected fibroblast, epithelial,
and endothelial recipient cultures using leukocytes as vehicles [20]. In the present study, we
wanted to apply this model to identify viral proteins critical for PMN-mediated hematoge-
nous dissemination and to examine the hypothesis that cellular adhesion molecules form a
reaction space between PMN and endothelial cell, a so-called virological synapse, which
promotes virus transfer by shielding transmission sites against neutralizing antibodies.

Although hematogenous spread in the infected host might be best simulated by
using endothelial cells both as donor cultures and recipient cultures for PMN-mediated
transmission, we preferred to use infected fibroblasts as donor cultures for practical reasons.
Focal spread of HCMV isolates was less efficient in endothelial cells as compared to
fibroblasts [20], and the uptake of virus into PMNs was hence more reliable and easier
to standardize if fibroblasts were used. This was an important prerequisite for this study
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that was more focused on the subsequent transfer step from infected PMNs to uninfected
endothelial cells.

3.1. Generation of HCMV Mutants and Revertants Thereof

The trimeric and the pentameric glycoprotein complex of HCMV govern the entry
into various cell types such as fibroblasts, endothelial and epithelial cells. We aimed to
investigate their contribution to PMN-mediated uptake and transfer of cell-associated
HCMV. Representing the pentameric complex, we focused on pUL128 as one of its three
accessory proteins. The impact of pUL128 and the other accessory pentamer proteins,
pUL130 and pUL131A, on the uptake of HCMV in PMNs have been studied before using
knockout mutants in the background of another HCMV strain. This demonstrated their
importance, as the virus was not taken up into PMNs if any of the three genes were
mutated [25]. However, the subsequent step of virus transfer to endothelial cells remains
to be investigated. Studies with regard to the contribution of the trimeric glycoprotein
complex of HCMV to uptake and transfer via PMNs are lacking so far. Here, we focused on
pUL74 to represent the trimeric complex. While uptake of the tegument protein pp65 into
PMNs is commonly used as a diagnostic marker for HCMV infection, it is not yet known
whether this protein is actually required for virus uptake into these cells and transfer
to endothelial cells. The gene encoding pp65, UL83, is reported to be transcribed into a
bicistronic RNA together with the upstream gene UL82 [16], which encodes the tegument
protein pp71. Given this shared transcription unit, it is reasonable to speculate that if pp65
contributes to PMN-mediated spread of HCMV, pp71 may also be involved, and recent
data from an animal model support this assumption to some extent [18].

We have knocked out the genes of interest, UL128, UL74, UL83, and UL82, in the BAC
Merlin-RL13tetO by introducing two stop codons in each gene via markerless mutagene-
sis [50]. To control for the effects of unwanted side mutations, a revertant was generated
for each stop mutant, using the mutant BAC as the parental sequence and exchanging the
introduced stop codons for the original wild-type nucleotide sequence. The initial aim was
to assess whether the four revertants behaved similarly to the wild-type Merlin-RL13tetO
regarding PMN-mediated uptake and transfer to endothelial cells. PMNs were freshly
isolated from EDTA blood of HCMV-seronegative donors by density centrifugation, col-
lected from the gradient, and immediately applied to the donor cultures for 3 h at 37 ◦C.
After incubation with wild-type Merlin or the revertants, PMNs were applied to uninfected
HEC-LTT recipient cultures for 3 h at 37 ◦C. Aliquots were used to prepare cytospots that
were stained for viral pp65 to determine how efficient the uptake of virus into PMNs
was (Figure 1). As automatic counting of PMN nuclei was not feasible, the pp65-positive
area was compared to the overall nuclear area. PMNs were removed, and the recipient
cultures were incubated overnight. The next day, HEC-LTTs were fixed and stained for
viral IE Ag via indirect immunofluorescence. Nuclei were counterstained with DAPI. To
determine how efficiently the virus was transferred from the PMNs to endothelial cells,
transfer efficiencies were calculated as the percentage of IE Ag-positive cells compared
with the total cell number and normalized to wild-type transfer (Figure 1).
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Figure 1. Comparison of Merlin-RL13tetO wild-type and the revertants used in this study during
PMN-mediated transmission. (A) PMNs were isolated from EDTA blood of HCMV-seronegative
donors and incubated for 3 h at 37 ◦C with Merlin-RL13tetO, Merlin-RL13tetO-UL74stop-REV, Merlin-
RL13tetO-UL128stop-REV, Merlin-RL13tetO-UL82stop-REV or repMerlin-RL13tetO-UL83stop-REV.
PMNs were recollected, and a fraction was used for the preparation of cytospots. Donor cultures
were fixed and stained via indirect immunofluorescence for viral IE Ag (pink nuclei). PMNs were
fixed and stained for viral pp65 (green nuclei). The remaining PMNs were incubated with uninfected
recipient HEC-LTTs for 3 h at 37 ◦C. After incubation, PMNs were removed. On the next day, cultures
were fixed and stained for viral IE Ag via indirect immunofluorescence (green nuclei). Cell nuclei
were counterstained with DAPI (purple nuclei). (B) The uptake efficiency was calculated as the
fraction of pp65-positive PMNs compared to all PMNs and was normalized to the uptake of wild-type
Merlin-RL13tetO. Bars indicate mean values of four individual experiments, and error bars represent
the standard error of the mean (SEM). (C) The transfer efficiency was calculated as the fraction of IE
Ag-positive cells compared to the overall cell count and was normalized to PMN-mediated transfer
of wild-type Merlin-RL13tetO. Bars indicate mean values of four individual experiments, and error
bars represent the SEM.
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Viral pp65 was detected in about 5% of the PMNs that had been incubated with wild-
type virus or the revertants Merlin-RL13tetO-UL74stop-REV, Merlin-RL13tetO-UL128stop-
REV, and Merlin-RL13tetO-UL82stop-REV. The transfer step of HCMV from the infected
PMNs to the endothelial cells was also similar for wild-type Merlin-RL13tetO and these
three revertants. In initial experiments, the uptake of virus from Merlin-RL13tetO-UL83stop-
REV to PMNs was significantly reduced by almost 75% compared to the wild-type
(Supplementary Figure S1). The subsequent step of transfer from infected PMNs to en-
dothelial cells was significantly reduced by 98% compared to the wild-type. This was
surprising, as Merlin-RL13tetO-UL83stop-REV grew like wild-type virus in fibroblast cul-
tures, excluding a general replication defect (Supplementary Figure S2). The only genetic
difference between the two viruses are silent mutations in codons 9, 15, and 17 that ap-
peared inevitable during the introduction of the stop mutations to avoid deleterious hairpin
formation by the respective primers. Whole genome sequencing confirmed the absence of
any other second site mutation (Supplementary Table S1).

As our initial strategy had failed, in that the phenotype of Merlin-RL13tetO-UL83stop-
REV was not completely restored to wild-type levels, we made an additional attempt to
repair the silent mutations in this revertant to generate a viral genome identical to that of the
wild-type. Using Merlin-RL13tetO-UL83stop-REV as the parental BAC, the silent mutations
in codons 9, 15, and 17 were repaired to the original nucleotide sequence as in Merlin-
RL13tetO wild-type. For that, the mutagenesis protocol after Tischer et al. was modified by
sequential amplification with several steps in order to generate the recombination fragment.
When using cells infected with the reconstituted virus repMerlin-RL13tetO-UL83stop-
REV as a donor culture, virus uptake and transfer were not altered in comparison to the
wild-type (Figure 1), as expected. A similar cloning strategy was then applied to Merlin-
RL13tetO-UL83stop to repair the silent mutation also in this background and generate a
mutant that differed from wild-type and revertant only by the two introduced stop codons
at positions 11 and 16. The following experiments were hence conducted with repMerlin-
RL13tetO-UL83stop-REV and repMerlin-RL13tetO-UL83stop. Each mutant was compared
to the respective revertant throughout the study.

3.2. While pUL128 Is Essential for Uptake of HCMV by PMNs, Glycoprotein O Is Dispensable for
Uptake and Transfer

To investigate the contribution of the pentameric and trimeric glycoprotein complex
to PMN-mediated dissemination of HCMV, Merlin-RL13tetO-UL128stop, and Merlin-
RL13tetO-UL74stop or their respective revertants were used as donor cultures. The transfer
was performed as described in the previous section. The uptake and transfer efficiencies of
the mutants were normalized to those of the respective revertants.

Pp65 was not detected in any of the PMNs that were incubated with Merlin-RL13tetO-
UL128stop (Figure 2A). In contrast, about 5% of the PMNs that were incubated with
Merlin-RL13tetO-UL128stop-REV were pp65-positive (Figure 2B). This difference was
highly significant (p-value < 0.001). Consistent with the absence of pp65 in PMNs after
incubation with Merlin-RL13tetO-UL128stop, no pp65 was detected in endothelial cells after
incubation with these PMNs. This contrasted again with the revertant, where numerous
pp65-positive and IE Ag-positive cells were found. As expected from the complete lack of
detectable pp65-uptake in the first step with the stop mutant, the number of infected cells in
the recipient cultures was significantly reduced by 99% (p-values < 0.001, Figure 2C). After
incubation with Merlin-RL13tetO-UL74stop (Figure 3A) or Merlin-RL13tetO-UL74stop-
REV, about 5% of PMNs were pp65-positive (Figure 3B). There was no significant difference
in the uptake efficiency between mutant and revertant. The virus transfer step from PMNs
to endothelial cells also resulted in similar transfer efficiencies: The fraction of pp65 or
IE Ag-positive cells was similar for mutant and revertant and did not show significant
differences (Figure 3C). Taken together, these results support the idea that the pentameric
complex is necessary for uptake of HCMV into PMNs and hence for transmission to
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uninfected endothelial cells. In contrast, the trimeric complex seems to be neglectable for
this mode of virus dissemination.
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Figure 2. The pentameric HCMV complex is essential for PMN-mediated transmission to endothelial
cells as it is critical for virus uptake into PMNs. (A) Genomic overview of the generated Merlin
mutant representing the unique long (UL) and short (US) sections: the mutant carries the tet operator
upstream of RL13. In comparison to the wild-type, two consecutive stop codons (**) were introduced
into the ORF of the UL128 gene of the UL128-131A locus, as indicated. (B) Characterization of
the uptake step to PMNs. PMNs were isolated from EDTA blood of HCMV-seronegative donors
and incubated for 3 h at 37 ◦C with Merlin-RL13tetO-UL128stop or its revertant Merlin-RL13tetO-
UL128stop-REV. PMNs were recollected, and a fraction was used for the preparation of cytospots.
Donor cultures were fixed and stained via indirect immunofluorescence for viral IE Ag (pink nuclei).
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PMNs were fixed and stained for viral pp65 (green nuclei). Nuclei were counterstained with DAPI
(purple nuclei). The uptake efficiency was calculated as the fraction of pp65-positive PMNs compared
to all PMNs and is shown relative to that of the revertant. Bars indicate mean values of four
individual experiments, and error bars represent the standard error of the mean (SEM). Asterisks
indicate significant differences as compared to the revertant (*** p-value < 0.001). (C) Characterization
of the transfer step from PMNs to recipient endothelial cells. The remaining PMNs were incubated
with uninfected recipient HEC-LTTs for 3 h at 37 ◦C. After incubation, PMNs were removed. On
the next day, cultures were fixed and stained for viral IE Ag (green nuclei) and pp65 (red nuclei) via
indirect immunofluorescence. Cell nuclei were counterstained with DAPI (purple nuclei). The transfer
efficiency was calculated as the fraction of pp65- or IE Ag-positive cells compared to the overall
cell count and is shown relative to that of the revertant. Bars indicate mean values of 4 individual
experiments, the error bars represent the SEM. Asterisks indicate significant differences as compared
to the revertant (*** p-value < 0.001).
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wild-type, two consecutive stop codons (**) were introduced into the ORF of UL74 as indicated.
(B) Characterization of the uptake step to PMNs. PMNs were isolated from EDTA blood of HCMV-
seronegative donors and incubated for 3 h at 37 ◦C with Merlin-RL13tetO-UL74stop or its revertant
Merlin-RL13tetO-UL74stop-REV. PMNs were recollected, and a fraction was used for the preparation
of cytospots. Donor cultures were fixed and stained via indirect immunofluorescence for viral IE Ag
(pink nuclei). PMNs were fixed and stained for viral pp65 (green nuclei). Nuclei were counterstained
with DAPI (purple nuclei). The uptake efficiency was calculated as the fraction of pp65-positive PMNs
compared to all PMNs and is shown relative to that of the revertant. Bars indicate mean values of four
individual experiments, the error bars represent the standard error of the mean (SEM). Ns indicates
that were no significant differences as compared to the revertant (p-value > 0.05). (C) Characterization
of the transfer step from PMNs to recipient endothelial cells. The remaining PMNs were incubated
with uninfected recipient HEC-LTTs for 3 h at 37 ◦C. After incubation, PMNs were removed. On
the next day, cultures were fixed and stained for viral IE Ag (green nuclei) and pp65 (red nuclei)
via indirect immunofluorescence. Cell nuclei were counterstained with DAPI (purple nuclei). The
transfer efficiency was calculated as the fraction of pp65- or IE Ag-positive cells compared to the
overall cell count and is shown relative to that of the revertant. Bars indicate mean values of four
individual experiments, the error bars represent the SEM. Ns indicates that were no significant
differences as compared to the revertant (p-values > 0.05).

3.3. The Tegument Proteins pp65 and pp71 Contribute to PMN-Mediated Transmission of HCMV

It is unknown whether pp65 or pp71 are required for efficient uptake and transfer of
HCMV via PMNs. To investigate their impact on this mode of spread, we used repMerlin-
RL13tetO-UL83stop and Merlin-RL13tetO-UL82stop or their respective revertants as donor
cultures. The mutants were analyzed regarding the expression of pp65 and pp71 via
quantitative western blot analyses with cells from four independent virus reconstitutions
(Supplementary Figure S3). As expected, the pp65-specific band was missing in repMerlin-
RL13tetO-UL83stop, which was also reflected in an almost complete reduction in the signal
intensity in the quantitative analysis. Similarly, the pp71-specific band was absent in Merlin-
RL13tetO-UL82stop, and the signal intensity was significantly reduced compared with
Merlin-RL13tetO-UL82stop-REV and Merlin-RL13tetO-wild type. The residual intensity
of the pUL82stop mutant in the analyses with the anti-pp71 antibody is likely due to an
additional band detected slightly below the pp71-specific band. This lower nonspecific
band is most probably due to pp65, as it is not detected in repMerlin-RL13tetO-UL83stop.

The experimental procedure to investigate the contribution of pp65 and pp71 to
PMN-mediated transmission of HCMV was performed as described in the previous sec-
tions. As expected, we did not detect fluorescence signals in PMNs after incubation with
repMerlin-RL13tetO-UL83stop (Figure 4A) (p-value < 0.001), whereas pp65-positive PMNs
were detectable after incubation with the revertant repMerlin-RL13tetO-UL83stop-REV
(Figure 4B). Similarly, pp65-positive nuclei could not be detected in the endothelial cells
after incubation with the PMNs for repMerlin-RL13tetO-UL83stop (p-value < 0.001), but for
the revertant (Figure 4C). In contrast, IE Ag-positive cells were also detected in the recipient
cells after incubation with the mutant-treated PMNs. However, compared to the revertant,
the fraction was significantly reduced to only 14% (p-value < 0.001). After incubation with
Merlin-RL13tetO-UL82stop (Figure 5A) or Merlin-RL13tetO-UL82stop-REV, pp65-positive
PMNs were detected in the cytospots (Figure 5B). In comparison to the revertant, the
number was significantly reduced by 28% for PMNs that had been incubated with the
mutant (p-value < 0.01). The transfer to endothelial cells was also less efficient: The transfer
efficiency measured as the fraction of IE Ag-positive cells was significantly reduced by 91%
(p values < 0.001, Figure 5C). Pp71 is a major regulator of viral gene expression [58]. It
counteracts intrinsic cellular factors such as Daxx. The use of an HCMV mutant lacking
pp71 might bias the transfer efficiency measured by IE Ag expression, as the transactivating
role of pp71 in viral gene expression would not be given. Therefore, detection of pp65 in
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recipient endothelial cells was particularly important as a surrogate marker for evaluating
the effects of Merlin-RL13tetO-UL82stop on the transfer step. Transfer of mutant-infected
PMNs to endothelial cells, as measured by pp65-positive recipient cells, was reduced by
95% compared with the revertant (p-values < 0.001, Figure 5C). Thus, the mutant showed a
similar effect on transfer efficiency compared with the revertant for both readouts.

Viruses 2022, 14, 1561 14 of 28 
 

 

surrogate marker for evaluating the effects of Merlin-RL13tetO-UL82stop on the transfer 
step. Transfer of mutant-infected PMNs to endothelial cells, as measured by pp65-positive 
recipient cells, was reduced by 95% compared with the revertant (p-values < 0.001, Figure 
5C). Thus, the mutant showed a similar effect on transfer efficiency compared with the 
revertant for both readouts. 

 
Figure 4. The tegument protein pp65 of HCMV is required for PMN-mediated transfer to 
endothelial cells. (A) Genomic overview of the generated Merlin mutant representing the unique 
long (UL) and short (US) sections: the mutant carries the tet operator upstream of RL13. In 
comparison to the wild-type, two consecutive stop codons (**) were introduced into the ORF of 
UL83 as indicated. (B) Characterization of the uptake step to PMNs. PMNs were isolated from 
EDTA blood of HCMV-seronegative donors and incubated for 3 h at 37 °C with repMerlin-
RL13tetO-UL83stop or its revertant repMerlin-RL13tetO-UL83stop-REV. PMNs were recollected, 
and a fraction was used for the preparation of cytospots. Donor cultures were fixed and stained via 
indirect immunofluorescence for viral IE Ag (pink nuclei). PMNs were fixed and stained for viral 
pp65 (green nuclei). Nuclei were counterstained with DAPI (purple nuclei). The uptake efficiency 
was calculated as the fraction of pp65-positive PMNs compared to all PMNs and is shown relative 

Figure 4. The tegument protein pp65 of HCMV is required for PMN-mediated transfer to endothelial
cells. (A) Genomic overview of the generated Merlin mutant representing the unique long (UL) and short
(US) sections: the mutant carries the tet operator upstream of RL13. In comparison to the wild-type, two
consecutive stop codons (**) were introduced into the ORF of UL83 as indicated. (B) Characterization
of the uptake step to PMNs. PMNs were isolated from EDTA blood of HCMV-seronegative donors
and incubated for 3 h at 37 ◦C with repMerlin-RL13tetO-UL83stop or its revertant repMerlin-RL13tetO-
UL83stop-REV. PMNs were recollected, and a fraction was used for the preparation of cytospots. Donor
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cultures were fixed and stained via indirect immunofluorescence for viral IE Ag (pink nuclei). PMNs
were fixed and stained for viral pp65 (green nuclei). Nuclei were counterstained with DAPI (purple
nuclei). The uptake efficiency was calculated as the fraction of pp65-positive PMNs compared to all
PMNs and is shown relative to that of the revertant. Bars indicate mean values of four individual
experiments, and the error bars represent the standard error of the mean (SEM). Asterisks indicate
significant differences as compared to the revertant (*** p-value < 0.001). (C) Characterization of the
transfer step from PMNs to recipient endothelial cells. The remaining PMNs were incubated with
uninfected recipient HEC-LTTs for 3 h at 37 ◦C. After incubation, PMNs were removed. On the next
day, cultures were fixed and stained for viral IE Ag (green nuclei) and pp65 (red nuclei) via indirect
immunofluorescence. Cell nuclei were counterstained with DAPI (purple nuclei). The transfer
efficiency was calculated as the fraction of pp65- or IE Ag-positive cells compared to the overall cell
count and is shown relative to that of the revertant. Bars indicate mean values of four individual
experiments, and the error bars represent the SEM. Asterisks indicate significant differences as
compared to the revertant (*** p-value < 0.001).
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unique long (UL) and short (US) sections: the mutant carries the tet operator upstream of RL13. In
comparison to the wild-type, two consecutive stop codons (**) were introduced into the ORF of UL82
as indicated. (B) Characterization of the uptake step to PMNs. PMNs were isolated from EDTA blood
of HCMV-seronegative donors and incubated for 3 h at 37 ◦C with Merlin-RL13tetO-UL82stop or
its revertant Merlin-RL13tetO-UL82stop-REV. PMNs were recollected, and a fraction was used for
preparation of cytospots. Donor cultures were fixed and stained via indirect immunofluorescence
for viral IE Ag (pink nuclei). PMNs were fixed and stained for viral pp65 (green nuclei). Nuclei
were counterstained with DAPI (purple nuclei). The uptake efficiency was calculated as the fraction
of pp65-positive PMNs compared to all PMNs and is shown relative to that of the revertant. Bars
indicate mean values of four individual experiments, the error bars represent the standard error of the
mean (SEM). Asterisks indicate significant differences as compared to the revertant (** p-value < 0.01).
(C) Characterization of the transfer step from PMNs to recipient endothelial cells. The remaining
PMNs were incubated with uninfected recipient HEC-LTTs for 3 h at 37 ◦C. After incubation, PMNs
were removed. On the next day, cultures were fixed and stained for viral IE Ag (green nuclei) and
pp65 (red nuclei) via indirect immunofluorescence. Cell nuclei were counterstained with DAPI
(purple nuclei). The transfer efficiency was calculated as the fraction of pp65- or IE Ag-positive
cells compared to the overall cell count and is shown relative to that of the revertant. Bars indicate
mean values of four individual experiments, and the error bars represent the SEM. Asterisks indicate
significant differences as compared to the revertant (*** p-value < 0.001).

In summary, the PMN-mediated transmission was significantly reduced for both tegu-
ment protein mutants compared with the respective revertant. These inhibitory effects sug-
gest that pp65 and pp71 are required for efficient dissemination of HCMV via leukocytes.

3.4. LFA-1 Is Required for Efficient Transfer of Cell-Associated HCMV Isolates via PMNs

Previous studies suggest that cell-cell contacts between leukocytes and endothelial cells
are required for uptake of HCMV into PMNs and subsequent transfer of virus from PMNs
to recipient cells [13,19,46]. Therefore, the contribution of the following cellular adhesion
molecules to the hematogenous spread of HCMV was investigated: LFA-1 subunits αL and
β2, VLA-4 subunit α4, L-selectin (all expressed on PMNs); ICAM-1, VCAM-1, E-selectin
(all expressed on endothelial cells). These receptors and ligands enable cell-cell contacts
through binding and could thus allow the formation of virological synapses between the
cell types (Figure 6). HFFs infected with eight different clinical HCMV isolates were used as
donor cultures for the transfer experiments. The cell-associated character of each isolate was
verified by incubating the cell culture supernatant overnight with uninfected HFFs. The
next day, cultures were fixed and stained for viral IE Ag by indirect immunofluorescence.
Isolates were considered to grow strictly cell-associated if no more than 10 IE Ag-positive
cells per 15,000 cells were detected (Figure 7). PMNs were freshly isolated as described
before and applied to the clinical isolates for 3 h at 37 ◦C. After recollecting, PMNs were
either left untreated or were treated with antibodies against LFA-1 subunits αL or β2, VLA-
4 subunit α4 or L-selectin for 30 min at 37 ◦C. At the same time, the cell culture medium of
the recipient endothelial cells was replaced by either fresh medium or medium containing
antibodies against ICAM-1, VCAM-1, or E-selectin. Following preincubation, PMNs were
applied to the recipient cells for 3 h at 37 ◦C to allow for virus transfer. PMNs were removed,
and the recipient cultures were incubated overnight. Cells were fixed on the next day and
stained for viral IE Ag via indirect immunofluorescence. Nuclei were counterstained with
DAPI (Figure 8A). Transfer efficiency in the presence of each function-blocking antibody
was determined as the percentage of IE Ag-positive cells compared with the total cell count
and normalized to untreated transfer (Figure 8B). Each antibody was tested regarding
its effect on three different clinical isolates. Blocking of the LFA-1 subunits αL and β2
reduced the transfer efficiency significantly by 40% and 50% (p-values < 0.05). Blocking
of the VLA-4 subunit α4 and L-selectin did not significantly reduce the transfer. None of
the antibodies directed against the adhesion molecules ICAM-1, VCAM-1, or E-selectin on
endothelial cells reduced PMN-mediated transfer of HCMV isolates. These results suggest
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that both subunits of LFA-1 are required for an efficient transfer of cell-associated HCMV
from infected PMNs to endothelial cells.
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Figure 6. Hypothetical scheme of binding of PMNs to endothelial cells in the vascular lumen with the
formation of virological synapses. PMNs can bind to receptors on endothelial cells such as ICAM-1,
VCAM-1, and E-selectin via adhesion molecules such as LFA-1, VLA-4, and E-selectin ligand. The
binding creates a spatial proximity between PMN and endothelial cells. This reaction space can
serve for virus transmission and is often referred to as the virological synapse by analogy with the
immunological synapse. Cell and receptor size as well as expression ratios are not shown realistically
but are simplified to highlight predicted interactions.
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different clinical isolates. These cultures were used as donor cultures for transfer experiments 5 d
post-seeding (the respective upper panels). The cell culture supernatant of each isolate was examined
on the day of the individual experiment for cell-free infectivity in uninfected HFFs (the respective
lower panels). Cells were fixed on the next day and stained via indirect immunofluorescence for viral
IE Ag (pink nuclei). Cell nuclei were counterstained with DAPI (purple nuclei).

Viruses 2022, 14, 1561 18 of 28 
 

 

examined on the day of the individual experiment for cell-free infectivity in uninfected HFFs (the 
respective lower panels). Cells were fixed on the next day and stained via indirect 
immunofluorescence for viral IE Ag (pink nuclei). Cell nuclei were counterstained with DAPI 
(purple nuclei). 

 
Figure 8. Blocking of LFA-1 subunits αL or β2 reduces the efficiency of HCMV transfer via PMNs. 
PMNs were isolated from EDTA blood of HCMV-seronegative donors and incubated for 3 h at 37 
°C with clinical isolates. PMNs were recollected and either left untreated or were treated for 30 min 
at 37 °C with 10 μg/mL anti-integrin αL, 20 μg/mL anti-integrin β2 (both are subunits of LFA-1), 5 
μg/mL anti-integrin α4 (subunit of VLA-4) or 25 μg/mL L-selectin. Simultaneously, the recipient 
HEC-LTTs were either left untreated or were treated with 25 μg/mL anti-E-selectin, 25 μg/mL anti-

Figure 8. Blocking of LFA-1 subunits αL or β2 reduces the efficiency of HCMV transfer via PMNs.
PMNs were isolated from EDTA blood of HCMV-seronegative donors and incubated for 3 h at 37 ◦C



Viruses 2022, 14, 1561 19 of 28

with clinical isolates. PMNs were recollected and either left untreated or were treated for 30 min
at 37 ◦C with 10 µg/mL anti-integrin αL, 20 µg/mL anti-integrin β2 (both are subunits of LFA-1),
5 µg/mL anti-integrin α4 (subunit of VLA-4) or 25 µg/mL L-selectin. Simultaneously, the recipient
HEC-LTTs were either left untreated or were treated with 25 µg/mL anti-E-selectin, 25 µg/mL anti-
VCAM-1 or 10 µg/mL anti-ICAM-1. Pretreated PMNs were then incubated with untreated HEC-LTTs,
and untreated PMNs were incubated with pretreated HEC-LTTs for 3 h at 37 ◦C so that the effect of
each antibody against an adhesion molecule was addressed individually. After incubation, PMNs
were removed from the recipient cells. On the next day, cultures were fixed and stained for viral
IE Ag via indirect immunofluorescence (pink nuclei). Cell nuclei were counterstained with DAPI
(purple nuclei). (A) Representative exemplary images for recipient HEC-LTTs after PMN-mediated
transfer in the presence of function-blocking antibodies. (B) The transfer efficiency in the presence of
each antibody was calculated and is shown relative to the transfer efficiency of untreated cells. Error
bars represent the standard error of the mean of three individual experiments. Asterisks indicate
significant differences as compared to the untreated control (* p-value < 0.05).

3.5. Large Entry Inhibitors Can Reduce PMN-Mediated Transfer of HCMV Clinical Isolates When
the LFA-1 Subunit β2 Is Blocked

In previous experiments, large entry inhibitors such as neutralizing antibodies or
PDGFRα-Fc were ineffective against PMN-mediated transmission of HCMV isolates,
whereas smaller 30- and 40-mer peptides inhibited transmission [20]. Virus particles
are assumed to be transmitted at reaction spaces created by proximity upon close cell-cell
contacts between PMN and endothelial cell, often referred to as a virological synapse.
Large entry inhibitors might fail to restrict cell-cell transmission of HCMV as they are
hindered from accessing viral particles here (Figure 9A). To test this hypothesis that a
virological synapse is formed during PMN-mediated transfer of HCMV, we applied large
entry inhibitors (neutralizing antibodies and the soluble receptors PDGFRα-Fc and Nrp2-
Fc) or small entry inhibitors (PDGFRα-derived peptides GD30, GT40, and IK40) during
incubation of infected PMNs and recipient endothelial cells. In a second approach, the
most potent function-blocking antibody from the previous experiments, which targets
the LFA-1 subunit β2, was added to the PMNs for a preincubation of 30 min at 37 ◦C.
Then, the same entry inhibitors as before were applied during the incubation of PMNs
and endothelial cells. If the hypothetical formation of virological synapses between ve-
hicle PMNs and recipient cells is at least partially reduced by anti-β2, also large entry
inhibitors should reduce transfer under this condition (Figure 9B). The next day, cultures
were fixed and stained for viral IE Ag via indirect immunofluorescence. Nuclei were
counterstained with DAPI (Figure 10A). The transfer efficiency for each treatment with an
inhibitor was determined compared to untreated transfer. All inhibitory molecules were
evaluated regarding their effect on the same three clinical isolates. As observed in previous
experiments [20], neither neutralizing antibodies, PDGFRα-Fc, nor the peptide GT40 were
able to inhibit the transfer of cell-associated HCMV via PMNs (Figure 10B). Nrp2-Fc and
the 30-mer peptide GD30 also proved ineffective. Hence, IK40 was the only inhibitor that
could significantly reduce transfer (p-value < 0.01). Incubation of PMNs with only anti-β2
significantly reduced the transfer efficiency by approximately 50% (p-value < 0.05), as in the
previous experiment. To evaluate the efficacy of the compounds in the presence of anti-β2,
the transfer efficiencies of these approaches were normalized to the transfer efficiency of
anti-β2 treatment alone. Interestingly, when applied in addition to the function-blocking
antibody against β2, all inhibitors showed a reduction of 25% to 30% in addition to the
inhibitory effect of anti-β2 alone (Figure 10B). Effects were significant for neutralizing
antibodies, Nrp2-Fc, GD30 (p-values < 0.05) and IK40 (p-value < 0.01). These results suggest
that the formation of a virological synapse during PMN-mediated transfer of HCMV may
prevent particularly large entry inhibitors from reaching the site of virus transfer between
PMN and endothelial cells.
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Figure 9. Hypothetical scheme of steric hindrance of neutralizing antibodies by virological synapses
and enabled access by the prevented formation of virological synapses. The reaction space between
PMN and endothelial cells formed by the binding of cellular adhesion molecules is referred to as a
virological synapse. (A) As a result of this steric hindrance, large HCMV entry inhibitors such as
neutralizing antibodies cannot bind to viral particles that are transferred from PMNs to the endothelial
cells and thus cannot prevent infection. (B) If the formation of the virological synapse is prevented
by function-blocking antibodies to adhesion molecules, the inhibitors can bind to transmitted viral
particles and thus reduce infection. Cell and receptor size as well as expression ratios are not shown
realistically but are simplified to highlight predicted interactions.
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Figure 10. Entry inhibitors reduce PMN-mediated transfer of HCMV isolates to endothelial cells when
the β2 subunit of LFA-1 is blocked. PMNs were isolated from EDTA blood of HCMV-seronegative
donors and incubated for 3 h at 37 ◦C with clinical isolate donor cultures. PMNs were recollected and
either left untreated or were treated for 30 min at 37 ◦C with 20 µg/mL anti-integrin β2 (subunit of
LFA-1). Then, they were incubated with uninfected recipient HEC-LTTs and HCMV inhibitors for 3 h
at 37 ◦C. HCMV-specific hyperimmunoglobulin (nAbs), recombinant PDGFRα-Fc, recombinant Nrp2-
Fc, or the PDGFRα-derived peptides GD30, GT40 and IK40 were added at 0.5 mg/mL, 120 ng/mL,
590 ng/mL or 0.45 mg/mL, respectively. PMNs were removed, and HEC-LTTs were incubated
overnight. On the next day, cells were fixed and stained for viral IE Ag via indirect immunofluores-
cence (pink nuclei). Cell nuclei were counterstained with DAPI (purple nuclei). (A) Representative
exemplary images for recipient HEC-LTTs after PMN-mediated transfer in the presence of HCMV
inhibitors with or without anti-integrin β2 treatment. (B) The transfer efficiency in the presence of each
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inhibitor was calculated and is shown relative to the transfer efficiency of untreated cells (upper
graph) or cells treated with anti-integrin β2 only (lower graph). Error bars represent the standard
error of the mean of 3 individual experiments. Asterisks indicate significant differences as compared
to the untreated control (* p-value < 0.05, ** p-value < 0.01).

4. Discussion

One possible scenario for the spread of HCMV is as follows [59–64]: During primary
infection, cell-free virus particles initially enter epithelial cells in mucous membranes such
as the mouth or gastrointestinal tract. In these tissues, the virus presumably spreads
in a cell-associated manner to surrounding cell types such as fibroblasts in connective
tissue until it encounters endothelial cells in the blood vessel. There, PMNs take up virus
particles from infected endothelial cells and transfer them throughout the bloodstream
to uninfected endothelial cells, which then produce progeny of the virus themselves and
infect surrounding cell types. Alternatively, dendritic cells are proposed to spread the virus
in a cell-associated manner to lymph nodes, which may also promote systemic infection.
Glandular tissue might finally secrete cell-free virus particles into body fluids such as breast
milk or saliva, transmitting the virus to a new host. While the entry of cell-free HCMV
into epithelial and endothelial cells or fibroblasts is quite well understood, it is mostly
unclear how PMNs take up the virus and subsequently transfer it to endothelial cells. The
gH/gL/gO complex (trimer) and the gH/gL/pUL128-131A complex (pentamer) mediate
entry of cell-free virus together with the fusion protein gB [25–28,65,66]. The trimer binds
its cellular receptor PDGFRα on fibroblasts and also appears to be required for infection
of other cell types [32–34,67]. Recently, Nrp2 was identified as a cellular receptor of the
pentamer on endothelial and epithelial cells [29,31]. Although hematogenous spread is
assumed to contribute markedly to the pathogenesis of HCMV, molecular mechanisms
underlying this type of spread are not as well understood as for entry of cell-free virus.
In addition to the time factor and the variety of target tissues that can be subsequently
infected, PMN-mediated transmission might offer even more advantages for the virus: On
the one hand, the spatial proximity created by rolling adhesion of PMNs to endothelial
cells and tight binding of adhesion molecules between the two cell types might offer the
possibility that a high dose of infectious virus particles is transmitted. On the other hand, it
can be assumed that the virus spreads at shielded sites between PMN and endothelial cells.
So far, such a kind of virological synapse has been proposed mainly for the transmission of
HIV-1 [40,41]. There is evidence that such a synapse is also formed during hematogenous
dissemination of HCMV. Blocking LFA-1 subunits was reported to reduce HCMV uptake
to PMNs and subsequent transfer to fibroblasts [19,46]. In addition, HCMV entry inhibitors
such as neutralizing antibodies or the soluble decoy receptor PDGFRα-Fc proved ineffective
against PMN-mediated transmission, whereas a smaller PDGFRα-derived peptide reduced
the uptake and transfer [20]. Assuming that access to sites of virus transmission is denied for
large inhibitors, we hypothesized that if blocking LFA-1 would disrupt synapse formation,
also large entry inhibitors should neutralize transferred viral particles. The reduced binding
between PMN and endothelial cell should allow also neutralizing antibodies or soluble
receptor derivatives to reach the transmitted viral particles and thus interfere with transfer
of HCMV. Indeed, when LFA-1 was blocked, the large entry inhibitors reduced transfer
to a similar extent as the smaller peptides. Considering these findings, inhibitors that are
smaller than neutralizing antibodies could be of particular importance for possible antiviral
strategies specifically against the hematogenous spread of HCMV. Blocking cellular key
players such as adhesion molecules as targets would rather harm the patient, as they
play a central and crucial role in a variety of physiological reactions, such as cell-cell
stability in tissues or communication between cells in immunological processes such as
antigen presentation. The use of small molecule inhibitors, on the other hand, to target
PMN-mediated transmission may be considered. Single chain variable fragment (scFv)
antibodies may have the advantage over conventional neutralizing antibodies of being
able to achieve viral transmission between PMN and endothelial cell. Such antibodies
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have recently been increasingly tested against various viruses such as hepatitis C virus or
measles virus [68,69] and there are reports that they can inhibit the cell-associated spread of
HIV-1 in contrast to conventional neutralizing antibodies [70]. scFv have also been studied
in the context of HCMV, for example against subunits of gB or the pentamer [71,72], and
their use may thus also be promising against PMN-mediated transmission.

Hematogenous dissemination within leukocytes is likely an efficient mode of spread
for HCMV: The virus is assumed to spread rapidly throughout the body via blood vessels,
infect various cell types starting from endothelial cells, and escape neutralizing antibodies.
Our cell culture model offers the opportunity to investigate the dissemination of HCMV
via PMNs in detail, with respect to both uptakes into PMNs and entry into the recipient
endothelial cells and to identify individual interaction partners. We used stop mutants of
individual viral genes in the background of the cell-associated strain Merlin to investigate
their contribution to transfer. The pentamer seems to be essential for HCMV uptake into
PMNs, as no pp65 was detected in PMNs after incubation with Merlin-RL13tetO-UL128stop.
Similar observations were obtained with another HCMV strain [25]. The conclusion that the
lack of pp65 signals indicates greatly reduced virus uptake is supported by the finding that
transfer of infection by these PMNs was reduced to a similar extent. Whether the trimer
also contributes to hematogenous spread has not yet been addressed before, although it is
proposed to play a central role in entry into various other cell types, including fibroblasts,
epithelial and endothelial cells [67]. Both virus uptake into PMNs and the subsequent
infection of endothelial cells was not altered in the absence of gO. Of note, the same stop
mutant also showed unaltered focal growth in fibroblast monolayer cultures as long as the
pentameric complex was expressed [49], whereas knockdown of UL74 in recent clinical
HCMV isolates significantly reduced focus size in this cell type [73]. Hence, we cannot
exclude the possibility that the knockout of UL74 in the context of other virus strains may
also affect PMN-mediated HCMV transmission. On the other hand, the assumption that
the pentamer but not the trimer is involved in PMN-mediated transmission is further
supported by the observation that Nrp2-Fc but not PDGFRα-Fc significantly reduced
transfer of recent isolates when LFA-1 was blocked.

From a pathophysiologic perspective, cell-associated transmission, whether within
a tissue type or via the bloodstream, can greatly facilitate viral spread within the patient,
particularly when cell-free virus is neutralized by antibodies. The assumption that HCMV
requires the cell-free transmission route primarily to infect a new host, whereas spread
within the host occurs mainly in a cell-associated manner, is also supported by studies in the
murine cytomegalovirus (MCMV) model, where gO was required for primary replication
after virus injection but dispensable for the subsequent spread in most tissues [64,74].
In a similar study with a more physiological route of infection via the respiratory tract,
slight variations of this theme were observed [75]. Primary infection of lung epithelial
cells also depended on gO, whereas systemic cell-associated spread via infected myeloid
cells was initially intact in the MCMV mutant without gO. However, over time, cell-
associated transmission via myeloid cells also decreased, probably because lung epithelial
cells inefficiently replicated the virus and could not serve as a source for further uptake
by myeloid cells. If this also applies to HCMV, gO-mediated enhancement of replication
in fibroblasts may indirectly contribute to PMN-mediated dissemination. To address this
hypothesis in the future, BAC-clones of those recent HCMV isolates are desirable, in which
a contribution of gO to cell-associated spread in fibroblasts has been found.

The mutational approach provided insights into a possible role of tegument proteins
pp65 and pp71 in hematogenous spread. While already the uptake of HCMV into PMNs
was significantly reduced for the pp71 stop mutant, the effect was even more pronounced
for the subsequent transfer to endothelial cells. Strong growth deficits have been reported
for cell-free growth of pp71-deleted viruses [76–78]. This protein is assumed to have a
functional role besides the transactivation of the IE proteins 1 and 2, as co-transfection
experiments demonstrated its involvement in efficient infection of surrounding cells [79].
Consistent with this, our pp71 stop mutant showed a reduced focus size in fibroblast
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monolayers (Supplementary Figure S2). Significantly less virus was also transferred to
endothelial cells from PMNs that have been infected with the pp65 stop mutant. In previous
experiments with a pp65-deleted virus, this protein was attributed the role of a scaffold
protein responsible for the proper packaging of viral proteins into the outer tegument and
thus for the assembly of functional virions [80]. This function could be responsible for the
observed phenotypes in the stop mutants. Although such data have not been collected for
pp71, it is tempting to speculate that this abundant tegument protein also either has a direct
effect on virion packaging or, at least, its absence might result in improperly packaged virus
particles. Thus, the strong effect on PMN-mediated transmission of HCMV could be due
to the fact that in the absence of pp65 or pp71, virions are either more poorly packaged or
even released in lower numbers as mature virus particles from the infected donor cultures.
During focal growth of the mutants in fibroblast monolayers, this circumstance might be
overcome by the high multiplicity of infection that is observed for the cell-associated spread
of HCMV [35,37]. Since we have demonstrated that the tegument proteins pp65 and pp71
contribute to the pathophysiologically relevant dissemination via leukocytes, the use of one
of these proteins as a potential candidate for a future HCMV vaccine might be even more
approachable. A pp65- or pp71-deleted virus as a candidate for vaccine development could
offer the advantage of still being able to spread locally and slow in tissues but having a
major deficit in terms of fast and efficient transmission via the bloodstream. Initial attempts
to develop such vaccines have already been reported for other CMVs: An attenuated
deletion vaccine of the pp65 homolog GP83 was tested in the guinea pig model and showed
significantly reduced placental infection as well as reduced neonatal mortality compared
to the placebo-treated cohort [81]. Concerning RhCMV, an Rh100-deleted vector vaccine
prevented transmission from mother to child and via leukocyte transfusion. This protein
shows a homology of 41% to pp71 of HCMV [18].

In summary, our mutational approach indicates that the trimer does not contribute
to the uptake of HCMV into PMNs and further transfer to endothelial cells, whereas
the pentamer is required for this transmission process which is regarded as crucial for
hematogenous dissemination. The viral tegument protein pp65 appears to be critically
involved in virus spread via leukocytes, which may be exploited for developing an HCMV
vaccine that is specifically attenuated concerning systemic spread. In comparison, the loss
of pp71 obviously causes a more general attenuation. In addition, our data support the idea
that the binding of adhesion molecules between PMNs and endothelial cells establishes
a virological synapse that presumably shields large entry inhibitors from sites of HCMV
transmission. Therefore, small compound inhibitors may be promising candidates to
interfere with this step during hematogenous spread.
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RL13tetO-UL83stop-REV, and Merlin-RL13tetO-UL82stop and Merlin-RL13tetO-UL82stop-REV in
fibroblast monolayers. Table S1: Sequence analysis of mutants Merlin-RL13tetO-UL83stop and
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