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Abstract

Background: Human papillomavirus (HPV) is a common sexually transmitted infection associated with cervical
cancer that frequently occurs as a coinfection of types and subtypes. Highly similar sublineages that show over
100-fold differences in cancer risk are not distinguishable in coinfections with current typing methods.
Results: We describe an efficient set of computational tools, rkmh, for analyzing complex mixed infections of related
viruses based on sequence data. rkmhmakes extensive use of MinHash similarity measures, and includes utilities for
removing host DNA and classifying reads by type, lineage, and sublineage. We show that rkmh is capable of
assigning reads to their HPV type as well as HPV16 lineage and sublineages.
Conclusions: Accurate read classification enables estimates of percent composition when there are multiple
infecting lineages or sublineages. While we demonstrate rkmh for HPV with multiple sequencing technologies, it is
also applicable to other mixtures of related sequences.
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Background
Human papillomavirus (HPV) is a DNA virus responsi-

ble for over half a million cervical cancer cases each year

and an estimated 239,000 deaths worldwide [1]. Persis-

tent infection with one of the carcinogenic HPV types is

necessary for invasive cervical cancer development, and

accounts for a large proportion of other anogenital and

oropharyngeal cancers [2]. There are more than 200 papil-

lomavirus types known to infect humans, with each type

defined on the basis of at least 10% sequence difference

in the L1 gene (major capsid protein) sequence. Not all

HPV types contribute equally to infection or disease risk.

Approximately a dozen of the more than 200 HPV types

are considered carcinogenic, with just two types, HPV16

and HPV18, accounting for approximately 75% of cervical

cancer cases worldwide [3].

HPV infection is not mutually exclusive to a specific

type [4]. Concurrent infection with multiple HPV types is

common, occurring in 20-50% of HPV infections [4–7].
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One study reported nine distinct HPV types simultane-

ously in a single patient [8]. Co-infections appear to be

random assortments of types with no evidence to support

clustering of types or viral interactions between types [5].

Within each HPV type there are variant lineages which

differ by 2-10%, and as little as 1% for sublineages, in their

L1 gene sequence from other variants of the same type,

and these also vary in risk for cervical precancer and can-

cer [9]. For HPV16, the most common and carcinogenic

type, there are four main variant lineages (A, B, C, and D)

and ten sublineages (A1, A2, A3, A4, B1, B2, C, D1, D2,

and D3) that are roughly correlated with their geographic

distribution. HPV16 sublineages show strong differences

in histology-specific cervical precancer and cancer risks,

with relative risks exceeding 100 for specific sublineages

(D2, D3 and A4) associated with adenocarcinoma [10].

Mirabello et al. [10] used phylogenetic methods and

lineage-specific SNP genotyping to detect HPV16 lin-

eages. While able to accurately determine the dominant

lineage, Mirabello et al. were not able to assess whether

samples were infected with multiple lineages. There is lit-

tle known about the epidemiology of co-infections with

multiple HPV16 variant lineages, though this is clinically
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relevant given the significant differences in risk associated

with each lineage.

Here we present a toolkit, rkmh, developed to help char-

acterize HPV coinfections at the type and lineage level.

Our toolkit makes use of the MinHash locality-sensitive

hashing scheme, a technique developed for detecting similarity

in webpages that has been previously applied in metageno-

mics [11].Tools are included for classifying reads and remov-

ing contaminating sequences. A pipeline specifically for

analyzing HPV16 lineage coinfections is also included.

rkmh is written in C++ and can classify a deep-sequenced

HPV16 sample in minutes on a laptop computer. While

applied here to HPV, the tools in rkmh are data agnostic

and could be applied to other genomes of interest and read

technologies without requiring any modifications.

Implementation
Wedevelopedrkmh based onmethods introduced in [11],

extending their algorithm to use various filters at the per-

read level which improve classification performance. We

also maintain information about type and lineage assign-

ment on a per-read basis to enable estimation of relative

abundances in a mixed infection.

rkmh is written in C++ and is threaded with OpenMP.

It is freely available under the MIT open source software

license at github.com/edawson/rkmh.

Hashing reads with rkmh

Much like Mash [11] and sourmash [12], rkmh relies on

MinHash to transform reads for similarity comparison.

Briefly, the algorithm works by generating all consecu-

tive overlapping kmers of the read and hashing them

with MurmurHash3 (Austin Appleby, https://github.com/

aappleby/smhasher) to 64-bit integers. These integers are

then sorted. A subset of size N of these hashes, usually

the lowest N according to standard numerical order-

ing, are then chosen as a signature or ’sketch’ of the

read. This effectively represents a sample of the kmers

present in a read. MinHash is locality-sensitive at the

sketch level: reads which are more similar will share

more kmers. By comparing only N integers, the number

of comparisons per reference is reduced by L − k − N

where L is the length of the genome and k is the kmer size.

Classifying reads

Reads are classified by first generating the MinHash

sketches for the reference sequences. A MinHash sketch

is then generated for each read. All sketches use a sin-

gle, fixed kmer size k and sketch size N. Abundance and

uniqueness filters are optionally applied at this stage. Each

read’s sketch is then compared to each reference sketch.

The intersection of the two sketches is calculated in O(N)

time where N is the sketch size. The read is then labeled

as the reference with which the read shares the largest

number of hashes.

Filtering kmers to improve classifications of individual

reads

To improve specificity we implemented a set of kmer- and

read-level filters in rkmh that are not offered by other

MinHash-based classifiers. Theclassify, stream, and

filter commands support four filters. The first is a

floor for kmer abundance in reads (−M). As the reads

are hashed we store the number of times each hash is

seen. Any hashes that do not meet the threshold for abun-

dance are then excluded from a read’s MinHash sketch.

[11] implemented this filter to remove sequencing errors

in sketches of read sets; here we have simply extended it

to remove them in individual read sketches. The second

available filter is a ceiling on the number of times a hash

may occur in the reference sequence set (−I). This filter

is designed to remove repetitive kmers or those shared

among many references, making them uninformative. We

also implement a minimum difference filter (−D) that

flags read sketches if the difference between the first- and

second-best classifications is less than the desired thresh-

old. This removes reads that cannot be given a unique

classification because they come from genomic regions

shared among references. Finally, a minimum number of

shared hashes may be set so that reads that do not match

well to any reference are flagged (−N).

Filtering reads

We initially tried assessing the performance of our type

classifier on raw data but found that its performance was

very poor, with high rates of supposedly false negatives.

We performed a BLASTN [13] search on some of these

reads to find that many of their top hits were in the human

genome. We implemented a filter to deal with this at the

classification level but realized that such a feature would

also be useful in filtering a FASTQ file to find only reads

which come from the organism of interest. The rkmh

filter command implements the filters used in classifi-

cation to filter reads. The rkmh stream command also

implements an option for this, allowing real-time filtering

of FASTQ reads during analysis.

Quantifying lineage and sublineage prevalence within a

sample

Lineage and sublineage strains are differentiatedmostly by

SNVs and small INDELs. These polymorphisms alter the

kmers of the sequence. If these kmers are unique among

the reference sequence they can be used as a way of quan-

tifying the strain they define. We implement an exact

kmer matching strategy in rkmh by removing all kmers

that appear in multiple references. This creates a mini-

mal sketch that contains kmers unique to each reference

sequence. Each read is kmerized, hashed, and then com-

pared against these reduced sketches. Reads that match

well to a given reference sketch can be used to estimate

https://github.com/edawson/rkmh
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the reference strain’s abundance in that set of reads. This

process has been wrapped in the rkmh hpv16 com-

mand. When run in the rkmh directory, all reads in a

fastq file can be labeled with their HPV type and HPV16

lineage/sublineage by running:

rkmh hpv16 − f < f a s t q . fq > > out . rk

The read classifications can be converted to lineage/sub-

lineage prevalence estimates by running:

python s c r i p t s / s c o r e _ r e a l _ c l a s s i f i c a t i o n

. py < out . rk > out . c l s

This will produce a file that contains a single line listing

the estimated lineage and sublineage frequencies.

rkmh output formats

There are three main output formats produced by rkmh.

The outputs of the stream and classify commands

are a tab-separated classification description similar to

that produced by [11]. This format is easily manipu-

lated using command line tools such as grep, cut,

and sed, making analysis on any Unix system simple

and portable. Additionally, the rkmh hash command

can output sketches in JSON or the vowpal-wabbit vec-

tor format, a tab-separated format used by the vowpal-

wabbit machine learning package [14]. The version used

by rkmh needs only to be labeled with its correct class

by replacing a single sentinel string using sed. Sketches

and vw-vectors may be computed for individual reads in a

FASTA/FASTQ file or for the entire file.

Generation of simulated data

To assess the performance of rkmh we generated sim-

ulated read sets of coinfected and non-coinfected sam-

ples at known mixture proportions. We simulated reads

at extremely high depth from 62 manually-prepared

HPV16 sublineage reference genomes using DWGSIM

(Nils Homer, https://github.com/nh13/DWGSIM). We

set DWGSIM to create 225 basepair reads using the

Ion Torrent error profile and flow order. This pro-

duced a set of large FASTQ files, one for each sub-

lineage. We generated random coinfections using the

scripts at https://github.com/edawson/siminf. Briefly,

siminf randomly selects an overall coverage to sim-

ulate along with a list of infecting strains and their

relative proportion. A minimum of 5% strain abun-

dance is required. siminf then samples our large sub-

lineage FASTQ files to generate a FASTQ containing

reads from the chosen sublineages in the desired propor-

tions. We provide 50 of these simulated coinfections in

https://github.com/edawson/rkmh_sim_data; more can

be generated using the siminf package or by request.

Results

HPV typing performance across sequencing technologies

is sensitive to kmer and sketch size

We assessed the HPV typing performance of rkmh on

three datasets: simulated 100bp paired end Illumina reads

based on the PAVE database of HPV reference genomes

[15]; a real HPV16 sample sequenced on the Ion Torrent

Proton platform (typical read length 250bp); and a set

of 3660 Oxford Nanopore minION reads generated from

two HPV16 reference strains (typical read length over

6500bp). The minION reads typically cover the majority

of the 7-8kb HPV genome, but have a relatively high error

rate of 10% ormore, comparable to the difference between

HPV types and greater than that between lineages (they

were collected in 2015 using the R7 pore).

MinHash-based methods depend on a “sketch” which

is a characteristic subset of kmers from a set of input

sequences. Even at a low sketch size of 1000, rkmh cor-

rectly classifies more than 99% of the short reads andmore

than 90% of the nanopore reads (Fig. 1a). As sketch size

increases to 4000, per-read accuracy approaches 100% for

short reads and 96% for ONT minION reads, with neg-

ligible improvements for sketch sizes higher than 4000.

Sketch sizes below 1000 are not sufficiently sensitive for

classifying HPV types, showing per-read accuracies well

below 90%.

Kmer size is the main determinant of MinHash classi-

fication performance when errors are present. For HPV

type classification we find that performance is diminished

above k = 18 for our Ion Torrent reads and above k = 14

for our ONT minION reads (Fig. 1b). This is due to the

introduction of kmers containing one or more sequencing

errors. The high per-base error rate of the ONT minION

R7.4 pore (12% total per base [16]) means that as kmer size

increases there is a rapid accumulation of kmers that do

not match the reference because of incorporated errors, to

the extent that for some reads no diagnostic kmer is found.

We compared the performance of rkmh to Taxonomer

[17], a tool commonly used for metagenomic classifi-

cation but which is not specifically designed for viral

classification. On the set of 3660 HPV16 minION reads,

Taxonomer reported that 42.4% were of viral origin and

8.3% were from HPV16. It also reported 1177 bacterial

reads and 304 human reads; 398 reads were unclassified.

rkmh reported 3381 (92.4%) as HPV16. When we ran

Taxonomer on a simulated 250bp ION Torrent HPV16

coinfection data set (discussed further below), it reported

that 29.2% of reads were HPV16, whereas rkmh reported

that 94% of reads came from HPV16. In summary, Tax-

onomer has substantially lower sensitivity and specificity

than rkmh for this type of data and analysis – this

is not surprising since taxonomer is a general purpose

metagenomics classification tool, which is not designed

for medium to long read length viral sequence analysis.

https://github.com/edawson/siminf
https://github.com/edawson/rkmh_sim_data
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A B

Fig. 1 Sensitivity of rkmh with respect to sketch size (a) and kmer size (b). There are diminishing returns to increasing sketch size above roughly
4000, regardless of read length. (b) shows that kmers are not sufficiently unique to classify reads with k ≤10. Above k = 18, sensitivity begins to drop,
likely due to the effects of incorporating sequencing errors into kmers. This is especially noticeable for ONT minION reads, which have a much
higher error rate (above 12% per base for the R7.4 pore) compared to ION Torrent and Illumina (< 0.1% per base)

Kmer pruning improves classification performance

We can increase the type classification rate for minION
reads by decreasing the kmer size at the cost of intro-

ducing false positive assignments to other HPV types.
However, this effect can be counteracted by removing
kmers that are rare in the read set or enriching for those
that distinguish between reference genomes. Such filters
have been previously applied across read sets but not for
individual reads. We term this sketch modification pro-
cess “pruning” and describe the individual filters in more
detail in the “Implementation” section. Figure 2 shows the

effect of pruning readset kmers on the ability of rkmh to

classify Ion Torrent and minION reads. Increasing read

pruning via theM parameter has a negligible effect on Ion

Torrent reads as they have a low error rate (<< 1%) and

are relatively short; the majority of information available

in them is acquired using just the default rkmh settings.

MinION reads, while possessing a higher error rate, also

possess many more kmers, meaning that dropping an

erroneous kmer from the read sketch makes room for a

possibly informative one. By dropping the kmer size from

k = 16 to k = 10 and increasing the readset pruning

threshold, we improve both precision and recall of our

read classification by roughly 2% (Fig. 2c).
These results demonstrate that rkmh is suitable for

HPV typing. More than 90% of the individual reads match

their known correct HPV type across Ion Torrent, ONT

minION, and simulated Illumina datasets. Kmer prun-

ing can further improve classification performance for

long, noisy reads. From these per-read classifications one

can determine the proportions of the infecting types by

tallying the number of reads that support each type.

Accurate read classifications enable accurate percent

composition estimates of HPV types

We next simulated a coinfection of HPV16, 18, and 31 by

combining at equal proportions Ion Torrent reads from

known samples of a single HPV type. We also examined

the same sample after removing reads which did not map

to the HPV genome(s), of which there are many (Fig. 3a).

We summed the number of reads classified by rkmh to

each HPV type with more than 5 kmers and divided each

sum by the total number of reads classified to estimate the

percent prevalence. rkmh is able to detect all three HPV

types, though their proportions are off by 5-15% (Fig. 3b).

Most of the reads are unclassified. We expect many of the

unclassified reads may contain bits of human sequence

and that our HPV18 sample appears over-reported sim-

ply because it had the most HPV DNA of the three. When

restricting to reads that map to the HPV16, HPV18 or

HPV31 genomes, rkmh accurately classifies over 99% of

the reads into the correct type at the default settings

(Additional file 1: Figure 1). rkmh produces essentially

perfect estimates of percent composition on this filtered

subset.

We then applied rkmh to ten real samples amplified

using a universal HPV primer scheme, sequenced on the

ION Torrent and annotated with infecting HPV types by

manual review. In eight out of the ten samples, rkmh cor-

rectly identifies all of the manually annotated types using

the default parameters (k = 16, s = 1000, threshold ≥ 1%

or ≥ 1000 reads) (Additional file 1: Table 1). Both the two

samples where the classifications differ involved marginal

decisions. For one sample a type that had not been previ-

ously annotated was reported with 1.4% of reads assigned

to it. For another sample a previously annotated type only

received 942 reads, just below our reporting threshold of

1000. This was still more than 20 times more than the next

highest type (41 reads), so could have been examined as

a borderline case without generating noise. Based on the

performance of rkmh on both our simulated set and our

ten real samples, we believe it is providing reliable type

estimates in line with previous annotations.
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A B C

Fig. 2 Precision/recall plots for type classification of 70,000 Ion Torrent reads from an HPV16 amplicon sequencing reaction (a) and 3660 ONT
minION reads derived from two HPV16 isolates (b, c) at various read sketch pruning levelsM indicated by the label attached to each point. Read
sketch pruning removes rare kmers in the read sketch which might be random sequencing errors. (a, b) were classified using a kmer size of 16 and
(c) was classified using a kmer size of 10. Ion Torrent reads have low substitution error rates, so pruning removes few kmers and the precision boost
is small (<0.001%) (a). ONT minION reads have a much higher error rate approaching 10% per-base. For minION reads, pruning is able to improve
precision to roughly 99.8% when using a kmer size of 16 (b). A smaller kmer size of 10 combined with high levels of pruning lead to an increase in
both precision and recall, with precision and recall increasing from slightly more than 97.0% to over 99% (c)

Classification and quantification of HPV16 lineage

coinfections

HPV16 lineages and sublineages differ by less than 10%

of L1 sequence. HPV16A and HPV16D differ the most

among HPV16’s lineages but still share more than 97%

identity. Within the A lineage the A1, A2, A3, and A4 sub-

lineages differ by less than 1% (Fig. 4). MinHash similarity

estimates and nucleotide similarity are highly correlated

(r = 0.9947), butMinHash estimates show a bigger spread

than nucleotide similarity because a single base change

affects the k adjacent kmers. In essence, MinHash (and

kmer-based methods in general) exaggerate differences

between sequences, compared to direct string comparison.

To assess rkmh’s ability to discriminate coinfecting lin-

eages using sketch pruning, we simulated a coinfection of

HPV16 A4 / C / D3 in a 54:26:20 ratio. We show the per

read performance (Fig. 5a) as well as rkmh’s estimated

percent composition of our sample (Fig. 5b) at various

parameterizations. At the default settings (i.e. the stan-

dard MinHash algorithm, k = 16, s = 1000) there is a

large amount of noise in the lineage classifications and

the estimated percent compositions are similarly affected.

Sublineage A1 is estimated to be the dominant sublineage

even though no reads from sublineage A1 are present.

We applied sketch pruning to remove kmers that

are shared among sublineages, adding a parameter I

that removes kmers seen in more than I references

(see Implementation). At I = 1 each kmer in a refer-

ence sketch will be unique to a single sublineage. This

effectively removes shared portions of the genome and

reduces the MinHash procedure to exact kmer match-

ing. Raising the pruning level to I = 1 is sufficient

to reduce erroneous read classifications from approxi-

mately 30% of reads misclassified to less than 5%; this

comes at the expense of 60-90% of reads from each

sublineage being removed from analysis (Fig. 5c). This

A B

Fig. 3 a The performance of rkmh on a simulated HPV type coinfection. Summing the rows of this matrix gives percent prevalence estimates for
each type b
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Fig. 4 Percent similarity for HPV sublineage; numbers above the diagonal are nucleotide similarity. Numbers under the diagonal are similarity
estimates based on the number of shared hashes from rkmh

leads to much better estimates of sublineage prevalence

(Fig. 5d). Pruning is more effective at removing false

classifications than simply requiring a minimum number

of differences between a read’s two best classifications

(a filter implemented in other MinHash packages) (s =

8000, D = 20; not shown). Sketch pruning at I = 1 does

not meaningfully affect type classification (not shown).

For the HPV16 specific workflow, we use the set dif-

ferences of sublineage hashes to strictly remove kmers

that appear across multiple sublineages. This enforces

A B

C D

Fig. 5 A The percentage of reads from a simulated coinfection classified by rkmh to each of the HPV16 sublineages, at default settings (k = 16, s =
1000, no pruning, no difference filter). Summing each row of a, with the exception of reads that couldn’t be classified, gives the percent prevalence
estimate of each sublineage (b). c The percent of reads classified to each sublineage by rkmh at pruning level M = 100 and I = 1. This significantly
improves the prevalence estimates (d)
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that each kmer appears in only one sublineage sketch;

this provides only a minor improvement over the stan-

dard pruning implementation (Additional file 1: Figure 2),

which is much faster. These results are representative of

repeated tests on simulated coinfections (data available

at https://github.com/edawson/rkmh_sim_data), and we

find that the overall correlation between rkmh estimated

prevalence and the true sublineage prevalence is 0.95.

We next performed a systematic analysis of the effects of

divergence, read length, and error rate on read classifica-

tion performance. We simulated three lineage references

A, B, C with random divergence rates 0.5%, 1%, 2.5% from

the HPV reference. Then we simulated 3 sublineages A1,

A2, A3, B1, B2 etc. at random divergence distances 0.05%,

0.1%, 0.25% from each of their lineage references. Then for

each reference set we simulated a million reads, selected

evenly from these sublineages for each of the following

sequence models, chosen to reflect the range of different

read lengths and error rates available in practice:

75bp 0.1% error (short Illumina)

150bp 0.5% error (long Illumina)

250bp 1% error (IonTorrent)

5000bp 10% error (long read single pass)

5000bp 1% error (long read multi-pass)

The design of three potential references at both lineage

and sublineage level allowed us to evaluate false positive

rates in terms of assignment to the lineage and sublin-

eage not present in the data, as well as sensitivity in

terms of correct assignment. For reads 250bp or longer,

we found that >80% of reads were correctly classified

to their known lineage and pruning could reduce false

positive assignments to almost zero (Additional file 1:

Figure 3). We therefore expect rkmh to produce accurate

lineage quantifications for ION Torrent data. At the sub-

lineage level, we found that rkmh performed poorly at

default parameters across read types (as expected) but that

kmer pruning could reduced the false-positive sublineage

assignments to less than 0.1% of reads (Additional file 1:

Figure 4). Sublineage sensitivity was largely determined by

divergence from the reference, with two-fold differences

in the percentage of reads correctly classified between

0.05% and 0.25% divergence.While this can bias estimated

proportions for sublineages, individual read classifications

using kmer pruning are highly specific, indicating that

rkmh can still detect the presence or absence of sub-

lineages based on the presence of high-confidence read

assignments.

Since rkmh can characterize simulated coinfections

adequately, we assessed its performance on real coinfec-

tions identified in samples from Mirabello et al. 2016

[10]. In roughly 90% of real cases we examined rkmh

agreed with the manually annotated predominant infect-

ing lineage and sublineage (Table 1). We also find good

concordance (70% or more) with manual annotations for

coinfection status, where we consider a sample coinfected

if a second lineages/sublineage is represented in at least

1% of reads. We can identify a coinfected secondary lin-

eage with similar accuracy. However, our performance on

identifying any secondary sublineage(s) is only 35%. Fur-

ther review of samples for which rkmh did not agree

with the manual annotations indicated that many had

characteristics which make them difficult or impossible

to correctly classify. In some samples, the two dominant

sublineages had frequencies that were close to equal and

rkmh correctly predicted the infecting sublineages but

not their order. When a sample possessed a sublineage

not in the reference set, rkmh often predicted the correct

lineage but assigned reads evenly among the sublineages

in the family. This sometimes falsely indicated a coinfec-

tion was present at the sublineage level. Lastly, a small

proportion of samples we examined were of low cover-

age or quality and had no reads that could be used for

classification.

Run time performance of rkmh

rkmh was designed to scale to millions of reads and

genomes megabases in size. Classifying over 400,000 Ion

Torrent reads against all 182 HPV type references in PAVE

requires less than one gigabyte of RAM and runs on a

quad-core Intel desktop in 1 min 16 s. In general, rkmh

can process around 250,000 basepairs per core-second

and scales well to increasing numbers of cores. Run times

are dominated by sketch size and the number of reads

as these two parameters affect the total number of com-

parisons to be made. Memory usage is dominated by the

size and number of the reference genomes, meaning that

there is not a major penalty for using long reads and that

memory usage remains relatively constant over time. We

have tested rkmh on ONT minION reads from genomes

as large as 4.5 Mbp (Escherichia coli strain K-12) in under

16 GB of RAM using sketch sizes in the tens of thousands

(data not shown).

Table 1 Performance of rkmh on samples from [10] which were
manually reviewed for their infecting sublineages and
coinfection status

N = 34 manually
annotated samples

Agrees with
annotations

disagrees
with
annotation

Concordance

Primary Lineage 32 2 95%

Primary Sublineage 31 3 91%

Secondary Lineage 24 10 71%

Secondary Sublineage 12 22 35%

Coinfection status, lin-
eage

27 7 79%

Coinfection status,
sublineage

24 10 70%

https://github.com/edawson/rkmh_sim_data
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Discussion
There are various factors that can lead to biases or

incompleteness in the application of rkmh. In our unique

kmer matching sketches, each sublineage is defined by

between 145 and 440 unique kmers. HPV sublineages with

more available unique kmers may be more detectable,

biasing results toward more divergent sublineages. It

is also important to note that the amplicon sequenc-

ing scheme used to sequence the Ion Torrent samples

does not produce consistent depth across the genome.

If mutations are not randomly distributed, and regions

of diversity are not evenly sequenced, this difference in

depth could reduce the correlation between kmer preva-

lence and strain prevalence. All our data were produced

by amplicon approaches, so should not include fusions

with host DNA; however if such sequences were present

due to other enrichment approaches they might increase

noise and reduce signal for some reads but should not

lead to biases, assuming multiple integration sites. Long

reads from single-molecule sequencing should provide

more specific per-read classifications and therefore better

estimates of sublineage prevalence once the technology

becomes cost efficient. MinHash, while a viable method

when strain prevalences are high, may not be a viable esti-

mator of very low-prevalence (≤5%) coinfecting lineages

and sublineages.

Wemay not expect all HPV16 sublineage isolates to per-

fectly match our reference genomes as the virus continues

to evolve, albeit slowly. Many of our secondary sublineage

classifications which we label “incorrect” may well be iso-

lates harboring mutations present in multiple sublineages.

This highlights the fact that our classifications are only as

good as our reference panel. In an early run of our pipeline

we mistakenly left out the sequence for sublineage A2,

and this had a significant impact on our sensitivity for

non-A lineage reads as many reads were discarded in A2-

infected samples. The upside of this is that future domain

knowledge may yield even better classifications.

We also note that our reference set is based on anno-

tations that were performed by hand in IGV and may

contain mistakes and differences in opinion. In particular,

some of our errors at the level of secondary lineage/sub-

lineage may be affected by variation in reference classifi-

cation. As each read is independently classified we believe

this may indicate that some of our samples require further

manual review.

With respect to possible future improvements to rkmh,

Ondov et al. discuss possible performance improvements

to theMinHash scheme in [11]. Sequence BloomTrees are

data structures that would allowMinHash sketch compar-

ison in logarithmic rather than linear time. An alternative

to the Sequence Bloom Tree would be to use the min-

imizer database described in [18] to assign genus-level

labels to reads in metagenomic samples, though the kmer

sizes we use for HPV16 classification may be too small

to make this sensible. Additionally, many existing pack-

ages support pre-hashing sequences, which amortizes the

expense of this procedure over later comparisons. rkmh

will implement this in a future release. rkmh also removes

the p-value defined in [11], which becomes harder to

interpret on a per-read basis and which is affected in

complex ways by the various filters in rkmh.

Several modifications to the sketching procedure might

improve classification performance. Skip-grams (kmers

generated from genomic substrings length k

2 separated

by a small, fixed distance) would improve classification

if genomes share rearrangement patterns. Using mini-

mizers, where sketches are composed of hashes sampled

from rolling genomic windows (rather than randomly

sampling the entire sequence as in MinHash) would pro-

vide more even coverage of the reference sequences,

possibly improving the chances of a read matching.

Dynamic sketch sizes based on the length of the query

sequence (rather than a fixed sketch size) might pro-

vide a slight improvement in runtime. Classificationmight

be improved by introducing machine learning techniques

trained on full sketches, as our supervised approach

may overlook cryptic but important features. Finally, we

believe that an improvement in data quality from long,

high-quality reads will yield a large improvement in results

when such data becomes available, and could be instru-

mental in advancing scientific inquiry and eventually

developing effective public health measures to address

HPV infection.

Conclusions
HPV is a common sexually-transmitted agent, and a small

subset of HPV infections become chronic and can lead to

cervical, anogenital or oropharyngeal cancer. Twelve of at

least 170 known HPV viral types are currently associated

with cancer risk, and sublineages within these carcino-

genic types are further associated with variable risks.

Confounding proper classification of HPV infections is

the prevalence of multiple types, lineages, and sublineages

in individual infections. Thus, the accurate detection of

HPV types, as well as HPV16 lineages and sublineages,

could have important pleiotropic implications for public

health measures.

We developed a computational toolkit to classify coin-

fected HPV samples, as in [10]. Our method, rkmh, is

a collection of tools that addresses some of the chal-

lenges associated with analyzing mixtures of biological

sequences. To implement rkmh we extended existing

work utilizing the MinHash locality-sensitive hashing

scheme [11], resulting in a tool that provides accurate clas-

sifications of individual reads. Accurate classification of

the infecting viral types, lineages and sublineages is criti-

cal given the vast differences in disease risk between HPV



Dawson et al. BMC Bioinformatics          (2019) 20:389 Page 9 of 10

types and even closely related HPV16 sublineages. Our

toolset demonstrates that accurate classification of indi-

vidual reads and estimation of type and lineage prevalence

is possible with current sequencing practices, but that sen-

sitive sublineage detection may require improvements in

technique.

While applied here to HPV, rkmh could be used in any

context where quantification of specific sequences within

a mixture and selection for or removal of such sequences

might be useful. MinHash has previously been applied to

larger metagenomic datasets with striking success. Ondov

et al. demonstrate MinHash’s ability to work on genomes

several megabases in size and scale to billions of reads

in [11]. Other viruses show significantly more intra-host

variation than HPV; notably, Human Immunodeficiency

Virus (HIV) evolves during infection and in response to

treatment [19]. Zika and Ebola are urgent public health

threats, have been shown to evolve over the course of out-

breaks, and have been successfully sequenced in the field

on the ONTminION [20–22]. The ability to generate per-

read classifications using rkmh on a standard laptop could

be a useful addition to the current pipelines employed by

these studies. Lightweight algorithms such as rkmh may

also be of interest in areas with strict computing power

limitations such as space genomics.
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