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Viral infections are an important cause of pediatric acute respiratory distress syndrome 
(ARDS). Numerous viruses, including respiratory syncytial virus (RSV) and influenza 
A (H1N1) virus, have been implicated in the progression of pneumonia to ARDS; yet the 
incidence of progression is unknown. Despite acute and chronic morbidity associated 
with respiratory viral infections, particularly in “at risk” populations, treatment options are 
limited. Thus, with few exceptions, care is symptomatic. In addition, mortality rates for 
viral-related ARDS have yet to be determined. This review outlines what is known about 
ARDS secondary to viral infections including the epidemiology, the pathophysiology, and 
diagnosis. In addition, emerging treatment options to prevent infection, and to decrease 
disease burden will be outlined. We focused on RSV and influenza A (H1N1) viral-in-
duced ARDS, as these are the most common viruses leading to pediatric ARDS, and 
have specific prophylactic and definitive treatment options.

Keywords: RSv, influenza A virus, H1N1 subtype, ARDS, pediatrics, viral infections

iNTRODUCTiON

Acute respiratory distress syndrome (ARDS) was first described in 1967 in adults presenting with 
tachypnea, hypoxemia, and decreased pulmonary compliance (1). Since then, the understanding, 
diagnosis, and management of ARDS has advanced greatly, with most research performed in adults. 
For more than two decades, pediatric health-care providers have relied heavily on adult-derived 
diagnostic criteria (2, 3). In recent years, the Pediatric Acute Lung Injury Consensus Conference 
(PALICC) has provided age-specific diagnostic and management guidelines for pediatric ARDS 
(4, 5). With these new pediatric-specific recommendations, future research in pediatric ARDS looks 
promising, as new areas for investigation have been identified (5).

One area of interest warranting further exploration is the role of viral infection in the develop-
ment and progression of pediatric ARDS. While some information is available specific to pediatrics, 
much of our understanding continues to be derivative from adult data. This review outlines what is 
known about ARDS attributable to viral infections, specifically respiratory syncytial virus (RSV) and 
influenza A (H1N1) virus, as well as viral-specific treatment options.

ePiDeMiOLOGY OF RSv AND iNFLUeNZA-iNDUCeD ARDS

Accurate incidence outcomes reporting for pediatric ARDS are limited by the changing definition 
for ARDS. Studies using the 1994 American European Consensus Conference (AECC) definition 
(2) outlined epidemiology and outcomes for both acute lung injury (ALI) and ARDS as separate 
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entities  (6). However, both the Berlin definition (3) and the 
PALICC recommendations (5) no longer identify ALI as a 
separate entity, instead categorizing ARDS as mild, moderate, or 
severe. Since these guidelines are recent, few studies have been 
conducted to determine the incidence of ARDS utilizing these 
new criteria (7, 8). In addition, management for ARDS has also 
changed over the years, with improved outcomes demonstrated 
with lung-protective mechanical ventilation strategies (9, 10).

Pediatric studies conducted using the AECC definition define 
an incidence ranging from 2.96 to 12.8 per 100,000 children for 
all causes of ALI/ARDS, with the predominant etiology reported 
to be secondary to pneumonia, with or without systemic infection 
(11). In a more recent study, using the Berlin definition, Barreira 
et al. reported that ARDS accounts for 10% of all PICU admis-
sions, and was associated with a high mortality rate of 24.5% 
(7). While the overall incidence of respiratory virus infection, in 
particular RSV and influenza A (H1N1) virus, leading to lower 
respiratory tract disease is widely studied (12, 13), the frequency 
of progression to pediatric ARDS has yet to be clearly determined.

Respiratory syncytial virus infection has been recognized as 
an important cause of lower lung disease. In an earlier study, 
Dahlem et al. reported 15.9% of ARDS cases due to RSV-related 
infection, but specific mortality for this group was not reported 
(14). In a more recent study by Lopez-Fernandez et al., 19.8% of 
patients admitted to the PICU with ARDS tested positive for RSV, 
with a reported mortality of 13.7% (15). A 12-year study in the 
Netherlands by Schene et al. analyzed 155 patients mechanically 
ventilated for RSV with 129 (83%) patients progressing to ARDS 
(16). Of those with ARDS, 38% were found to have a bacterial 
coinfection. The mortality rate was not used as a measure of 
outcome and therefore not reported.

Since the beginning of the influenza A (H1N1) virus pan-
demic of 2009, influenza-related respiratory failure has become 
a notable cause of ARDS (17). During the pandemic and post-
pandemic era, it is clear that children are particularly vulnerable 
to disease even if they had been previously healthy (18). In 2009 
alone, more than 43,000 cases were reported, with an estimated 
73% of cases occurring in patients less than 24 years of age (13). 
In previous years, influenza-related pediatric deaths averaged 82 
annually but increased to 317 during the 2009 pandemic (19). 
While post-pandemic studies suggest a decrease in influenza 
A  (H1N1) virus disease severity and burden (20, 21), it con-
tinues to be a significant cause of severe illness and pediatric 
ARDS (22).

In a retrospective analysis of adult patients within the German 
ARDS network, investigators reported that 32% of ARDS patients 
were influenza A (H1N1) virus positive (23). In another pedi-
atric study in India, Kinikar et al. reported that 18% of patients 
hospitalized with confirmed influenza A (H1N1) virus developed 
ARDS (24). In this study, 9 of the 15 children who died were 
found to have histologic pulmonary findings reflective of ARDS 
at autopsy. In Argentina, Farias et al. studied 147 patients admit-
ted with respiratory failure due to influenza A (H1N1) virus and 
found 118 (80%) met criteria for pediatric ARDS, 45% of whom 
died within 28 days after PICU admission (25).

The second, less common novel influenza virus, avian influ-
enza A (H5N1) virus, was first identified in 1998 (26) and remains 

a common cause of severe respiratory disease (27). Kawachi et al. 
reviewed pediatric patients with ARDS over a 4½-year period in 
Vietnam and found 12 (32.4%) of the 37 patients to have con-
firmed infection with the highly pathogenic influenza A (H5N1) 
virus (28). They described rapid progression of disease to ARDS 
with nine (75%) resulting in death. Further investigation has 
led to improved understanding of transmission, predominantly 
direct avian-to-human transmission with significant risk in han-
dling sick or dead poultry. Type 2 pneumocytes and macrophages 
are the primary lung target (29).

Together, these studies demonstrate that RSV and influenza 
virus infection play a role in the development of pediatric ARDS. 
However, to better understand the disease burden, future studies 
should seek to more clearly identify the rate of occurrence of 
primary viral-induced ARDS, as well as incidence of secondary 
viral-induced lung injury. Furthermore, in patients who have a 
coinfection with a bacterial pathogen, it may be hard to deter-
mine whether the virus or bacteria played the inciting role in the 
development and progression of pediatric ARDS.

Taken together, the overall mortality attributable to either 
RSV or influenza is relatively similar; thus, it is more likely the 
syndrome of ARDS and associated pathology that is responsible 
for outcome.

OTHeR viRUSeS LeADiNG TO ARDS

While RSV and influenza A (H1N1) virus are the most commonly 
reported viruses leading to pediatric ARDS, other viral pathogens 
are worth mentioning. Typically viral infections leading to res-
piratory failure in the ICU are separated as community acquired 
and nosocomial (30).

Community acquired viral infections include both seasonal 
and pandemic pathogens (31). Seasonal viruses most commonly 
include RSV, non-pandemic influenza, rhinoviruses, parainflu-
enza, adenovirus, coronaviruses, and human metapneumovirus 
(hMPV). Seasonal viruses remain the most frequent cause of 
childhood community acquired pneumonia (32). The most com-
mon etiology of pediatric ARDS is primary pneumonia, with or 
without systemic infection (15). It can then be assumed that viral 
infections may play an important role in development of pediatric 
ARDS. However, determining an accurate estimate of the disease 
burden of viral-induced pediatric ARDS will be difficult, as 
many simple viral infections can progress to coinfection with the 
second virus or a bacterial pathogen. As will be detailed below, 
with the development of multiplex PCR diagnostic platforms that 
identify multiple viral agents, further insight into coinfections 
will develop.

A single-center adult study reported seven patients developing 
ARDS from adenovirus, four of whom died (33). Hung and Lin 
described a case of a 9-month-old male with adenoviral ARDS 
requiring extracorporeal membrane oxygenation (ECMO) (34). 
Hasvold et al. studied adult patients hospitalized with hMPV and 
discovered progression to ARDS in 19 (14.8%) patients (35). In 
2014, an outbreak of enterovirus D68 in the United States led to 
symptoms of respiratory failure similar to influenza A (H1N1) 
virus, although less severe (36). While seasonal viruses typically 
cause severe infection in immunocompromised patients (37), 
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cases of severe disease in immunocompetent patients are becom-
ing increasingly reported (38).

At an international level, community acquired, novel patho-
gens have been recognized as a significant cause of ARDS in the 
last 15–20  years (31). In 2015, the World Health Organization 
(WHO) developed a panel of experts to prioritize emerging 
pathogens to likely cause severe outbreaks in the near future, 
and for which little or no preventative or curative treatments are 
available (39). The list includes two novel coronaviruses, severe 
acute respiratory syndrome (SARS)-CoV and MERS-CoV, which 
are widely recognized as noteworthy causes of ARDS.

In 2002, SARS-CoV led to the development of SARS in 
China (40). Affecting patients of all ages, SARS led to significant 
mortality worldwide within a few months (41). A large number 
of infected patients developed severe complications, with 20% 
developing ARDS (42). However, reported SARS cases have 
ceased since 2004 as the spread of infection has subsided (43). 
More recently, the second novel coronavirus, MERS-CoV, led to 
the Middle East respiratory syndrome (44). Clinical symptoms 
range from mild upper respiratory symptoms to severe pneu-
monia and ARDS, septic shock, and multi-organ failure (45) and 
carry an estimated mortality of 40% (46). This virus continues 
to be a substantial etiology of ARDS with high mortality as no 
definitive prevention or treatment other than supportive care has 
been identified (47).

With the unpredictable nature of epidemics and pandemics, 
these novel viruses illustrate the need to improve our understand-
ing of viral progression to ARDS in order to advance management 
and reduce mortality.

Aside from community acquired viral infections, nosocomial 
infections are an important cause of respiratory illness, and can 
lead to ARDS in both adults and children. In mechanically ven-
tilated adults, reactivation of latent herpes simplex virus (HSV) 
in the oropharynx can potentially lead to lower respiratory tract 
infection and ARDS (48, 49). However, the pathogenicity of 
reactivated HSV lower respiratory tract infection may not be that 
straightforward as it remains unclear whether HSV contributes 
to worsening illness or whether reactivation occurs due to the 
underlying critical illness (50). Schuller et al. found higher levels of 
clinical severity and mortality in critically ill immunocompetent 
adults with HSV-1 infection compared to immunocompromised 
patients with HSV-1 (51). The true extent of HSV reactivation in 
critically ill children leading to respiratory illness has yet to be 
studied. Hennus et al. described two previously healthy children 
presenting with respiratory failure due to human herpes virus 
6 (HHV-6), and later workup revealed an immunodeficiency 
in both patients (52). A separate pediatric case reported a child 
with HSV ARDS resulting in need of extracorporeal support (53). 
These cases illustrate the rare, but possible severe infection and 
progression to ARDS from HSV-1.

Finally, many seasonal and pandemic viruses are a potential 
nosocomial infectious risk secondary to either a health-care pro-
vider or air-ventilation transmission. In a study over two influenza 
seasons in Germany, Huzly et al. reported a rate of nosocomial 
transmission of 24% (2012–2013) and 20% (2013–2014) (54). 
Specific guidelines are available to help prevent transmission 
of infectious pathogens through isolation precautions (55). 

However, Dhar et al. found that an increased number in patients 
placed on contact isolation led to a decrease in compliance with 
isolation precautions (56). Decreasing nosocomial transmission 
within care areas for critically ill patients is an important area for 
improvement.

DiAGNOSiS OF viRAL-iNDUCeD ARDS

The PALICC has recently provided guidelines for diagnosing pedi-
atric ARDS (5). The new guidelines define important diagnostic 
criteria, including age, timing, origin of edema, imaging, and oxy-
genation. Patients with perinatal lung disease are excluded, and 
pARDS criteria must be met within 7 days of a clinical insult. The 
cause of respiratory failure must not be explained by heart failure 
or fluid overload, and must be evidenced by new pulmonary 
infiltrate(s) on chest radiograph consistent with parenchymal 
disease. Finally, the use of oxygenation index is preferred over 
the PaO2:FiO2 (PF) ratio in determining the severity of pARDS in 
mechanically ventilated patients, while the PF ratio or SpO2:FiO2 
(SF) ratio may be used in patients requiring non-invasive ventila-
tion (5). The same clinical guideline is used in the diagnosis of 
viral-induced pediatric ARDS. Currently, there are several dif-
ferent types of laboratory tests that are commercially available 
for diagnosis. Most clinical laboratories utilize antigen detection 
tests, which consist of multiple steps to accurately identify a single 
virus (57), with or without cell culture.

It is worth noting that over the past 20 years, the development 
and refinement of real-time reverse transcriptase polymerase 
chain reaction (RT-PCR) has enhanced the clinician’s ability to 
diagnose an array of viruses rapidly and accurately. Multiplex 
RT-PCR testing analyzes a single sample for multiple viral agents 
and subtypes simultaneously, producing sensitive and specific 
results in a short period of time (58). Even with the 2009 influenza 
A (H1N1) virus pandemic, the Centers for Disease Control and 
Prevention (CDC) quickly modified standard PCR assays to detect 
the new virus (59). A challenge to routine RT-PCR testing in all 
patients who present with viral symptoms is the prohibitive cost, 
need for specialized equipment, and the relatively longer time 
between sampling and availability of results (60). Furthermore, 
PCRs detect viral genes that are used as a surrogate measurement 
of whole virions. In some instances, viral gene detection may 
actually reflect non-replicating, non-infectious virions. Newer 
rapid point-of-care PCRs are currently being developed, but their 
implications for clinical decision making remain uncertain (61). 
In addition, rapid antigen detection tests (RADT) are also avail-
able commercially for detection of both RSV and influenza virus 
infection in the outpatient and emergency department settings 
(62, 63). However, in a recent study by Moesker et  al., RADTs 
were found to have relatively low sensitivity compared to RT-PCR 
testing which limits their use for clinical decision making (64). 
Nonetheless, RADT maybe a valuable tool, especially during 
an outbreak, because it is a point-of-care test that is easy to use 
with a rapid turnaround time (65). Since clinical symptoms for 
different viral respiratory infections are often the same, and with 
the limitations of our current testing methods, it is critical that 
clinicians obtain microbiology data early, especially in the risk 
population (66–69).
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There is also a large variability of disease severity in chil-
dren infected with RSV or influenza A (H1N1) virus. In RSV 
infection, development of lower respiratory track disease in 
premature infants, with or without chronic neonatal lung 
disease is associated with a significantly higher risk of hospi-
talization, intensive care unit admission, need for mechanical 
ventilation, and death (12, 70–73). In a study of 2,147 children 
with lower respiratory infection due to RSV, Rodriguez et  al. 
reported age less than 6 months, history of prematurity, chronic 
respiratory disease or congenital heart disease, and coinfection 
with adenovirus were significant predictors of increased disease 
severity (74). Similar predictors exist for children infected with 
influenza A (H1N1) virus, including age less than 5  years, a 
history of chronic lung disease, congenital heart disease, and 
immune compromise (Table 1) (75). It is therefore prudent that 
clinicians should conduct laboratory evaluations early in the ill-
ness for viral infections in these at-risk populations presenting 
with respiratory failure and ARDS.

In contrast to clinical predictors of disease severity, the con-
tribution of viral factors to disease burden remains unclear. In 
RSV infection, although earlier studies suggested no correlation 
between viral load and disease severity (76, 77) newer findings 
suggest otherwise. Studies by both DeVincenzo et al. and Houben 
et al. reported a direct correlation between viral load and disease 
severity in infants with primary RSV infection (78, 79). El Saleeby 
et al. also reported that viral load is independently associated with 
increased risk of patients with RSV requiring prolonged hospi-
talization or intensive care, or to develop respiratory failure (80). 
The relevance of viral load in influenza A (H1N1) virus infection 
is unclear. Launes et al. found that in children who had more than 
5 days of symptoms, a higher influenza A (H1N1) viral load at 
diagnosis correlated with an increased risk of requiring mechani-
cal ventilation (81). Similarly others have found that patients 
with systemic symptoms and pneumonia had higher viral load 
when compared to those with uncomplicated upper respiratory 
tract infections alone (82). As would be expected children have a 
higher influenza A (H1N1) viral load compared to adults because 
of less exposure to influenza antigens. However, this finding did 
not correlate with the occurrence of disease complications (83).

PATHOPHYSiOLOGY AND HiSTOLOGY  
OF RSv AND iNFLUeNZA A (H1N1)  
viRAL-iNDUCeD ARDS

Both RSV and influenza A (H1N1) virus result in a broad spec-
trum of disease, ranging from mild upper respiratory symptoms 
to fulminant respiratory failure and ARDS (59, 84). This high 

degree of variability may be due to the pathogenicity of the viral 
pathogen, host immune response, or a combination of both (85).

Human RSV consists of subgroups A and B and primarily 
infects humans. The RSV genome encodes 11 different proteins 
involved in transmission, infection, evasion of host response, and 
replication (86). Infection is typically restricted to respiratory 
epithelial cells, including both type I and type II alveolar pneu-
mocytes, from the trachea to the level of bronchioles. Infection 
leads to epithelial and interstitial inflammation with progression 
to inflammatory infiltrates and epithelial sloughing (87). After 
infection and viral replication, RSV causes epithelial cells to fuse, 
forming a syncytium from which the virus spreads from cell to 
cell (88). Those infected epithelial cells are then destroyed, releas-
ing inflammatory cytokines and chemokines that ultimately 
attract additional inflammatory cells and degrade capillary 
integrity (89). Disruption of the alveolar–capillary barrier results 
in leakage of plasma proteins into interstitial tissue and within 
the alveoli, finally interfering with surfactant function (90). With 
an understanding of the pathophysiologic process of RSV, it is no 
surprise that progression to ARDS is a potential end point.

Aside from viral pathogenicity, host immune-mediated factors 
also contribute to disease severity. A rapidly progressive area of 
research is in understanding the role of biomarkers not only in the 
diagnosis and prognosis of ARDS, but also in potential therapeu-
tic options to alter such biomarkers (91). Inflammatory proteins 
in the matrix metalloproteinase (MMP) family have been shown 
to be elevated in pediatric ALI (92) with a specific increase in 
MMP-9 production in RSV infection. Blocking MMP-9 in vitro 
and in vivo resulted in decrease in viral load (93). In addition, 
activation of several chemokine and interleukin subtypes, as well 
as tumor necrosis factors, has been shown to positively correlate 
with severity of illness in children with RSV (94). In their study, 
Fernandez et al. discovered that higher levels of soluble interleu-
kin-10 (IL-10) positively correlated with both disease severity 
and duration of supplemental oxygen in infants with acute RSV 
infection (95). A separate study confirmed this associate with 
increased levels of IL-10 in nasopharyngeal secretions (96), but 
the pathogenicity of this correlation has yet to be determined.

Antigenic variability exists with both influenza A (H1N1) 
virus and the resultant immune-mediated response. Like influ-
enza B and C, influenza A is made up of structural proteins and 
two groups of surface glycoproteins, hemagglutinin (HA), and 
neuraminidase (NA). These glycoproteins are responsible for 
attachment and entry into cells, viral spread throughout the res-
piratory tract, and are capable of a large degree of variability (97). 
Waterfowl serve as the largest natural reservoir for influenza A 
subtypes (98). The avian-to-human leap can occur through direct 
transmission (99) or, alternatively, through pigs (100). Although 
transmission from pigs to humans is a rare event, it occurred 
in the 1918 pandemic (101) a small outbreak in New Jersey in 
1976 (102) and the most recent pandemic of influenza A (H1N1) 
starting in 2009 (103).

Influenza A (H1N1) virus primarily targets alveolar epithelial 
cells that serve as first-line defense against respiratory infections 
(104). Histological evaluation of 100 fatal cases of influenza A 
(H1N1) virus infection revealed diffuse alveolar damage with 
inflammation, fibrosis and edema, disruption of surfactant 
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production, and detection of viral antigens throughout the lung 
parenchyma (105). Like RSV, this pathogenic can process rapidly 
progresses to refractory hypoxemia and ARDS (106).

In addition to viral pathogenicity, disease severity of influenza 
A (H1N1) virus infection is also closely associated with host 
response (107). In both healthy patients and those with comor-
bidities, influenza A (H1N1) virus can lead to an exaggerated 
inflammatory response with dysregulation of local and systemic 
chemokine and cytokine production (108, 109). In a study spe-
cifically in the pediatric population, Takano et al. found a positive 
correlation with disease severity and elevated levels of serum 
interferon gamma, several interleukin types, and monocyte che-
moattractant protein-1 (MCP-1) (110). Some studies suggest that 
these elevations may be adequate immune response to infection 
(111), but further exploration of the inflammatory response in 
influenza A (H1N1) virus infection is likely to yield development 
of potential interventions to prevent disease progression to ARDS.

TReATMeNT OPTiONS AvAiLAbLe  
FOR RSv AND iNFLUeNZA A (H1N1)  
viRAL-iNDUCeD ARDS

The treatment of ARDS has significantly evolved over the past sev-
eral decades. Perhaps the greatest improvement in management 
developed from studies involving lung-protective ventilation (9). 
Other interventions such as inhaled nitric oxide (112), fluid man-
agement (113), use of steroids (114), and prone positioning (115) 
are being further investigated and validated. However, specific 
treatment for RSV infection remains lacking. Despite the sub-
stantial short and long-term morbidity and mortality associated 
with RSV disease in children, the current management for RSV 
infection consists of supportive care, in the form of oxygen sup-
plementation, adequate hydration, and mechanical ventilation 
for those who develop respiratory failure. Multiple therapeutic 
strategies have been explored with very limited success, and a 
vital need remains for an effective disease treatment.

Interventions for either virus can be separated into primary 
prevention of infection, typically through vaccination, and 
reduction of infectious burden once transmission has already 
taken place.

Primary prevention through vaccination continues to be a 
major area of research and potential advancement for both RSV 
and influenza A (H1N1) virus. To date, no RSV vaccine has 
proven efficacious. While significant research has been devoted 
to vaccine development, major obstacles specific to RSV, such as 
young age of infection, lack of persistent immunity, and poorly 
validated animal models make it difficult to find an effective 
and safe solution (116). One current prospect, Medi-534, a live-
attenuated, intranasal vaccine providing protection against both 
RSV and parainfluenza 3, although safe in children ages 1–9, has 
yet to show a beneficial immunogenic response in infants (117). 
Other more recent advances continue to focus on live-attenuated 
vaccines, as well as chimeric live vectors (118), with varying 
antibody response between children (119, 120).

While vaccine development continues, prophylactic use of 
polyclonal RSV intravenous immunoglobulin (RespiGam) or 

human anti-F monoclonal antibodies (palivizumab and motavi-
zumab – which is not yet licensed for use) in high-risk infants has 
been shown to reduce the risk of RSV-associated acute lower res-
piratory tract infections and disease severity (121). Palivizumab 
is a human, monoclonal antibody targeted to block viral infected 
cells from fusing with adjacent cells (122). Palivizumab has been 
shown to be most effective in high-risk populations, specifically 
premature infants and those with chronic lung disease or con-
genital heart disease (123). The use of palivizumab as treatment 
for RSV infection in mechanically ventilated pediatric patients 
has not been shown to be effective (124). Furthermore, studies 
have also shown that palivizumab prophylaxis in these patients 
has a limited effect on the total disease burden of RSV infection, 
including overall RSV-related hospital admissions and resource 
utilization (12, 125). Although not approved for use in the 
United States, motavizumab, the second-generation derivative of 
palivizumab, decreased viral load compared with placebo (126). 
However, in a more recent study of hospitalized RSV infected 
infants treated with motavizumab or placebo, no antiviral effect 
was demonstrated (127). Furthermore, both therapies produce 
only temporary, passive immunity (128).

The 2009 influenza A (H1N1) virus was a novel strain, leaving 
children and young adults with little if any preexisting antibod-
ies and without adequate protection with the seasonal influenza 
vaccine alone (129). A new influenza A (H1N1) virus vaccine 
was rapidly developed and has subsequently been shown to be 
safe and effective at providing adequate immunological response 
(130, 131). One post-pandemic study showed a correlation with 
higher rates of influenza A (H1N1) virus infection, compared 
with other influenza types, along with increased ICU admissions 
for countries with limited numbers of the population having 
received influenza A (H1N1) virus vaccination (132).

In addition to general supportive care, the second goal of 
therapy in viral infection focuses on reducing the infectious 
burden and, theoretically, subsequent viral sequelae. Currently, 
inhaled ribavirin is the only approved antiviral treatment for 
RSV infection in children (133) but its use is associated with 
potential teratogenicity, and its efficacy remains uncertain (134). 
Ribavirin directly and indirectly inhibits replication of both 
DNA and RNA viruses, including RSV (135). Studies in infants 
found a decrease in mortality and respiratory deterioration, and 
a decrease in days of hospitalization and days of mechanical 
ventilation in ventilated infants (136). Luo et  al. reported an 
adult case of severe RSV infection progressing to ARDS that 
was successfully treated with inhaled ribavirin (137), but overall 
effectiveness in treatment of viral pediatric ARDS has yet to be 
determined. In addition to its use in RSV, ribavirin has also been 
used in treatment of severe influenza A (H1N1) virus infection 
(138). Ribavirin can be given orally but is typically aerosolized 
when used for respiratory viral infections. However, safety 
considerations regarding potential teratogenicity and exposure 
to health-care workers during administration (134) limit its 
use. The American Academy of Pediatrics does not recommend 
the routine use of ribavirin to treat RSV infection, reserving its 
use for patients with potentially life-threatening disease (139). 
Several small molecule inhibitors that interfere with RSV F 
protein (MDT-637 and JNJ-2408068) (140) have been identified, 
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including the GS-5806 that was recently evaluated in a challenge 
safety study of healthy adults (141). In this study by DeVincenzo 
et al., treatment resulted in decreased viral burden and severity 
of clinical disease. The use of these small molecule inhibitors 
in the context of pediatric subjects who develop ARDS remains 
untested at this point.

Neuraminidase inhibitors (which prevent the release of influ-
enza virions), including oral oseltamivir, inhaled zanamivir and 
laninamivir, and parenteral peramivir, remain first-line interven-
tions for influenza. Only oseltamivir, peramivir, and zanamivir 
are available in the United States. Perhaps the most widely used, 
oseltamivir results in a significant decrease in duration of symp-
toms as well as severity of illness with early treatment (<48 h of 
symptoms) (142). Use of oseltamivir in severe cases of influenza 
A (H1N1) has become standard practice (24, 143), although 
some studies have shown increased resistance (144). Randolph 
et al. conducted a retrospective study of 838 children admitted 
to the PICU with confirmed influenza A (H1N1) infection (145). 
Overall, 564 (67.3%) required mechanical ventilation, but the rate 
of progression to ARDS was not reported. Although 88% were 
treated with oseltamivir, there was no association with improved 
mortality. Farias et al. found a reduced mortality in patients with 
PARDS from influenza A (H1N1) if oseltamivir was administered 
within the first 24 h (25).

While further studies are needed to look at the effectiveness 
of antiviral medications in the treatment of viral-induced ARDS, 
in recent years, investigators are also focusing on the potential 
benefits of immune modulation. With enhancement in research 
surrounding viral pathogenicity and host immune response, 
potential targets of intervention will hopefully be identified.

Aside from viral-specific therapies, ECMO has been utilized 
as rescue therapy for severe respiratory failure in pediatrics for 
more than 20  years, with more than 50% survival (146). The 
overall use of ECMO for treatment of ARDS has increased with 
improvement in mortality (147). The recent PALICC recommen-
dations conclude that ECMO should be considered for treatment 
of pARDS when lung-protective strategies have failed, when the 
cause of respiratory failure is thought to be reversible, or when the 
child may be suitable for lung transplantation (148).

The use of ECMO in pediatric respiratory failure due to RSV 
is well reported (149, 150). In their retrospective review of 151 
children requiring mechanical ventilation for RSV bronchiolitis, 
Flamant et  al. reported the use of ECMO in 14 patients (151). 
In this study, the median duration of ECMO was 12.5 (5–18) 
days with a survival rate of 71.4%. On the other hand, the use of 
ECMO in pARDS due to influenza A (H1N1) virus is sparsely 

reported (152, 153) and most of our understanding stems from 
adult studies. In a study in Australia and New Zealand during 
the 2009 influenza A (H1N1) pandemic, 68 adult patients 
with influenza-induced ARDS were treated with ECMO (154). 
The median duration of ECMO was 10 (7–15) days. When the 
report was submitted, 48 (71%) patients had survived to ICU 
discharge, with 14 deaths and 6 patients remaining in the ICU, 
2 of whom remained on ECMO. In their study in the United 
Kingdom during the same pandemic, Noah et  al. discovered a 
decrease in mortality for patients with ARDS due to influenza 
A (H1N1) who were referred and transferred to an ECMO center 
compared with matched non-ECMO-referred patients (155). In 
this study, 69 patients received ECMO with a mortality rate of 
14.4%. Expanded use of ECMO within the pediatric population 
for influenza A (H1N1) virus induced ARDS has yet to be inves-
tigated. However, the use of ECMO in refractory cases or RSV or 
influenza A (H1N1) virus induced ARDS should be considered 
when applicable.

CONCLUSiON

While it is clear that viral infections are an important cause of 
pediatric ARDS, the exact disease burden remains unknown. 
With more definitive diagnostic criteria, clinicians now have a 
wide array of research possibilities regarding pediatric ARDS, 
both retrospective and prospective. Further studies to expand 
our understanding of viral-induced pediatric ARDS will 
be of great benefit, both in understanding the epidemiology 
and viral-specific treatment options available. In addition, an 
improved comprehension of viral transmission, pathogenicity, 
and host response will be particularly important in times of 
pandemics, either from known or novel viruses. Finally, contin-
ued efforts in prevention and treatment of viral infections will 
likely be of greatest advantage to decrease viral progression to 
pediatric ARDS.
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