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In spite of an increasing array of investigations, the relationships between viral infections
and allogeneic hematopoietic stem cell transplantation (HSCT) are still controversial, and
almost exclusively regard DNA viruses. Viral infections per se account for a considerable
risk of morbidity and mortality among HSCT recipients, and available antiviral agents have
proven to be of limited effectiveness. Therefore, an optimal management of viral infection
represents a key point in HSCT strategies. On the other hand, viruses bear the potential of
shaping immunologic recovery after HSCT, possibly interfering with control of the
underlying disease and graft-versus-host disease (GvHD), and eventually with HSCT
outcome. Moreover, preliminary data are available about the possible role of some virome
components as markers of immunologic recovery after HSCT. Lastly, HSCT may exert an
immunotherapeutic effect against some viral infections, notably HIV and HTLV-1, and has
been considered as an eradicating approach in these indications.

Keywords: hematopoietic stem cell transplantation, viral infection, adoptive immunotherapy, immunologic
recovery, vaccines, cytomegalovirus
GENERAL INTRODUCTION

Optimal management of viral infections is a primary goal in every HSCT strategy in order to limit
virus-related morbidity and mortality. Moreover, since viruses bear the potential of shaping
immunologic recovery after HSCT, they possibly interfere also with control of the underlying
disease and graft-versus-host disease (GvHD) and eventually with HSCT outcome. Finally, HSCT
may exert an immunotherapeutic effect against some viral infections.
MANAGEMENT OF VIRAL INFECTIONS AFTER HSCT

Management of viral infections after HSCT includes different steps. Monitoring of viremia and of
virus-specific immune recovery are the main tools to drive anti-viral interventions after HSCT.
Possible prognostic factors may help optimizing both patient prophylaxis and treatment.
Immunotherapy, either active or more commonly adoptive, may provide alternatives to the
limited effectiveness of the pharmacological agents and to their toxicities. Because most of the
available data derive from the experience with cytomegalovirus (CMV), the main general issues
org January 2021 | Volume 11 | Article 5693811
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about the different approaches will be presented in the CMV
section, whereas in the sections dealing with other single viruses,
virus-specific items will be mainly considered.

CMV
CMV represents the most common viral reactivation after HSCT
and the most deeply investigated. Serologic CMV-positivity has a
high prevalence worldwide (over 80%), but with a rather wide
inter-nation variability, therefore making donor/recipient (D/R)
serologic mismatch a frequent problem in the setting of
unrelated donor (1). Being of recipient origin in the majority
of cases (2), the frequency of CMV reactivation after HSCT
ranges from 10% in CMV-negative recipients to up to 90% in
CMV-positive recipients with CMV-negative donor (3).

Due to its outmost adverse prognosis, CMV reactivation is the
target of prophylaxis or pre-emptive therapy aimed at preventing
end-organ disease. Being based on drugs associated with
considerable toxicity, prophylaxis therapy has been formerly
somewhat unpopular; moreover, concern is raised as to
whether the ever-wider use of these drugs may enhance the
development of viral drug-resistance (4). Among new drugs,
however, letermovir has recently shown a very good safety profile
and excellent efficiency, therefore being currently indicated for
prophylaxis of CMV infection in adult CMV seropositive
recipients of an allogeneic HSCT.

Monitoring
With the above premises, early detection of CMV reactivation is
a key point to avoid undue treatments. Monitoring of CMV
reactivation is routinely performed after HSCT, with quantitative
PCR being largely considered more reliable than p65
antigenemia in driving timely pre-emptive therapy.
Nevertheless, some concern still exists as to when pre-emptive
therapy should be started. More recently an RNA-detecting
transcription-reverse transcription concerted reaction (TRC)
has been explored as an alternative diagnostic tool, but with a
possible advantage in detecting a resolved viral activation rather
than in timely recognizing its beginning (5).

Monitoring of specific anti-CMV immune reconstitution may
represent an additional tool for predicting CMV reactivation,
possibly optimizing the use of anti-CMV drugs and driving the
referral to adoptive immunotherapy (Table 1). In general, an
inverse relationship between CMV-specific immune recovery
and CMV viremia appearance, severity and relapse has been
clearly demonstrated; on the other hand, patients spontaneously
clearing viremia develop a CMV-specific T-cell recovery (19, 22).

Combining HLA-multimer-bound CMV-peptides and CMV-
peptide-induced cytokines, notably gamma-interferon, has been
proposed as a suitable method for recognizing CMV specific T-
cell; peptides deriving from the CMV p65 and immediate-early 1
(IE-1) proteins have been regarded as the best promising viral
markers to be detected (23). Other CMV proteins, as pUL97,
have been more recently proposed as possible alternative or
complementary diagnostic tools (24), while HLA multimers and
cytokine release represent the favorite methods to retrieve virus-
specific T-lymphocytes for adoptive therapy. A limitation of
Frontiers in Immunology | www.frontiersin.org 2
HLA-multimers is that they are HLA-restricted and recognized
only by CD8 cells, being almost exclusively class I.

The main evolutions of the cytokine release-based CMV-
specific T-cell recovery detection have been Quantiferon and
Enzyme-Linked Immunospot Interferon-g-Release Assay
(ELISPOT), currently the most widely used technique,
paralleling HLA-multimer-based ones (7, 25); HLA multimers
and ELISPOT have also been combined and compared, leading
to similar results (9). Conversely, Ohnishi et al. found that
ELISPOT was more reliable than HLA multimers in early
recognizing functionally active anti-CMV T-cells (10). Of note,
HLA multimers allow cytotoxic T-lymphocytes (CTL) avidity to
be evaluated, although this parameter recently failed to show
predictive value in the setting of CMV immune recovery (26).
More recently, streptamer technology has been a further
development of HLA multimer-based methods (27).

Previous studies have suggested that anti-CMV immune
reconstitution is a rather late event, earlier in case of donor
seropositivity, hindered in T-cell depleted HSCT and
independent of viral reactivation (23, 28). The late appearance
of CMV specific T-cells, notably in case of donor (D)−/recipient
(R)+ serology, has been widely confirmed (20). The
independence of CMV immune reconstitution and CMV
reactivation has not been confirmed in other experiences (25).
On the other hand, failure to achieve a good expansion of CMV-
specific T-lymphocytes after CMV reactivation is linked to the
failure of spontaneous viremia clearance (29). The degree of HLA
mismatch is a possible, additional factor negatively affecting
CMV-specific immune recovery (30); on the other hand, HLA
class I mismatch may be more likely associated with
immunodominant genotypes in CMV antigen presentation (31).

Donor age has also been claimed to affect significantly the
occurrence and the quality of CMV immune recovery (25), in
accordance to investigation on healthy subjects that showed an
evolution of CMV T-cell immunity with increasing age (32, 33).
These issues may have a particular impact on patients receiving
parent-derived haploidentical HSCT (34). Since T-lymphocytes
from patients failing to clear CMV had a poorer cytokine release
after challenge with CMV antigens, quality of CMV immune
recovery is supposed to play an important role in controlling
CMV reactivation (35). Moreover, a “memory cell type” response
to lymphocyte proliferation assay predicts a better CMV-
protection (36). The most recent and complex approach
evaluated the CD8+ cytokine secretion profile in response to
CMV antigens, with identification of a non-protective (NPS; IL-
2-IFN-g+TNF-a-MIP-1b+) and a protective signature (IL-
2+IFN-g+TNF-a+MIP-1b+), respectively linked to lack of
control and control of CMV reactivation (37).

Although reduced intensity conditioning (RIC) has been early
recognized as an additional transplant-related factor negatively
interfering with CMV immune recovery (9, 38), D−/R+
combination is the main transplant related factor affecting
CMV-specific immune reconstitution; indeed, this pairing does
not simply delay the recovery of CMV-specific cells but also
affects their pattern of cytokine release (39). A confounding
factor may be sometimes the persistence or even the transient
January 2021 | Volume 11 | Article 569381
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expansion of recipient derived anti-CMV T-cells, possibly
interfering with establishing of full donor chimerism (40)
following RIC conditioning (41).

In an attempt at quantifying T-cell recovery, a study
investigating only CD8+ CTL proposed a threshold value of
1 × 107 per liter (8). More recently, the threshold of 1 × 106 anti-
CMV CTL/liter two months after HSCT in the relatively more
favorable D+/R+ setting was suggested as a protective level
against viral reactivation (6). Overriding the matter of
considering CD8 only or both CD8 and CD4, a threshold
value of 3/µl for CD8 and of 1/µl for CD4 has been defined as
Frontiers in Immunology | www.frontiersin.org 3
protective after a prolonged follow-up in a series of young adults
(17). Almost contemporarily, lower threshold values for CMV
protection were also proposed, with counts of 1 and 1.2 cells/ml
for CD8+ and CD4+, respectively (15).

Prognostic Factors
Serological donor–recipient mismatch, notably D−/R+ pairing,
has been for long time recognized as the main a priori HSCT-
related adverse prognostic factor for CMV reactivation and
disease. Indeed, according to widely accepted recommendations,
CMV serology is among the main donor selection criteria (3, 42).
TABLE 1 | Summary of experiences in monitoring specific CMV recovery.

References Technique Target N. of
patients

D/R
serology

Type of
transplant

Follow
up

CMV recov-
ery

Best recovery Note

Borchers
et al. (6)

Tetramers,
7
commercial
kits

1 CD8/mcL 278 All
pairings

All represented 100
days

198/278,
71%

D+/R+ HLA-linked variability

Nesher
et al. (7)

Elispot IE1
and p65

Spot count 50/
100 according to
cell threshold

63 R+ No
haploidentical

100
days

42/63 D+/R+ 21/23 CMV reactivations
among negatives

Cwynarski
et al. (8)

Tetramers 1 CD8/mcL 24 All
pairings

13 sibling 11
MUD

100
days

9/24 D+/R+ No 100 day recovery after
MUD

Gratama
et al. (9)

Tetramers 1 CD8/mcL 27 All
pairings

Sibling and
MUD partially
T-depleted

1 year 15/27 CMV reactivation
without disease

1/9 recovery R-, 1/4 CMV
disease

Hebart
et al. (10)

Tetramers
and
ELISPOT

1/mcL 23 No D-/R- Heterogeneous 100
days

14/19 CD8 ,
11/18 CD4

NA Possible dysfunction of
CD8

Mohty
et al. (11)

ELISPOT
and
tetramers

1 /mcL 54
ELISPOT
16/54
tetramers

All
pairings

RIC, sibling 1 year 46/54 D+

Ohnishi
et al. (12)

ELISPOT
and
tetramers

1 /mcL 37 32D+/R+ Heterogeneous 250
days

All D+/R+ D+ ELISPOT earlier than
tetramers, RIC earlier

Lilleri et al.
(13)

ELISPOT 3 CD8/mcL, 1
CD4/mcL

45 All
pairings

MAC 1 year 63-98%
according to
D/R pairing

D+/R+

Gratama
(14)

TEtramers 7 CD8/mcL 83 R+ No
haploidentical

1 year 18%
recovery
at +65

D+/R+ +65 recovery predcitive of
CMV disease

Tormo
et al. (15)

ELISPOT 1 CD8/mcL, 1.2
CD4/mcL

133 All
pairings

Heterogeneous 1 year 89.1%
evaluable

D+ Delayed recovery after T-
cell depletion and UCB

Borchers
(16)

Tetramers 10 CD8/mcL 134 All
pairings

Heterogeneous 2 years 79 D+/R+
58 D-/R+
43 D+/R- at
day 100

D+/R+

Lilleri et al.
(17)

Elispot 3 CD8/mcL, 1
CD4/mcL

131
pediatric or
young

All
pairings

Heterogeneous 1 year 76 R+(90%
evaluable) 8
R- (21%)

D+/R+ No further CMV
reactivation after CMV-
specific recovery

Tey et al.
(18)

Quantiferon IFN-g >0.2 IU/mL 41 All
pairings

Heterogeneous 1 year 31/41 No

Yong et al
(19)

Quantiferon IFN-g >0.2 and
>0.1 IU/mL

96 All
pairings

No
haploidentical

100
days

No response
in 8 CMV
disease

Spontaneous CMV
control

Similar results with
ELISPOT

Krawczyk
et al. (20)

Quantiferon IFN-g >0.2 IU/mL 48 All
pairings

No
haploidentical

1 year 5/9 D-/R+, 9/
14 D+/R+

IFN >8.1 IU/mL
protecting from
viremia

Quantitative assessment
of IFN response crucial
for CMV control

Paouri
et al. (21)

Quantiferon IFN-g >0.2 IU/mL 37 All
pairings

Pediatric 1 year 15/37 Lower reactivation
after specific CMV
immune recovery
January 2021 | V
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Other HSCT-related a priori risk factors include T-cell depletion,
RIC conditioning and possibly unrelated cord blood (UCB) and
haploidentical donor transplant. In the setting of RIC
conditioning, the risk of CMV reactivation is delayed rather
than increased, due to a delay of donor-type CMV-specific
recovery and persistence of recipient CMV-specific lymphocytes
(43, 44). In a multivariable analysis, D/R serostatus, GVHD and T-
cell depletion resulted as independent predictors of CMV
reactivation, enabling the authors to propose a risk score
model (45).

In spite of considerable overlapping, GVHD and CMV-
specific immune recovery are the best recognized a posteriori
risk factors for CMV reactivation and severity. The
aforementioned data show that CMV-specific immune
recovery has a strong prognostic value even in the absence of
GVHD and that GVHD is not the only shaping factor of CMV-
specific immune recovery.

Furthermore, early NK response may have a favorable impact
on the risk of CMV reactivation (36). There is a bidirectional
relationship between NK recovery and CMV infection, since low
NK level favors CMV reactivation and CMV reactivation shapes
NK response, as specified in a subsequent section (46).

In spite of the high predictive value of these risk factors,
considerable attention has been paid in order to identify
additional, preferably patient- and/or donor-specific
predictive elements.

A rather intuitive approach has been the correlation with
particular HLA antigens. On this field, data are rather scant, with
an increased risk for a negative CMV outcome only in HLA-
DRB1*09 patients (47). More data are available on the presence
of some class I MHC genotypes, known to be more efficient in
presenting multiple CMV antigens; in different settings of HSCT,
they seem to improve the outcome of HSCT possibly reducing
the severity rather than the rate of CMV reactivation (31).

Donor KIR genotype has also been investigated, leading to the
finding of a significantly lower risk of CMV reactivation if the
donor had 5-6 KIR genes rather than 1–4 (48). However, this
result should be taken cautiously, since only T-repleted, RIC
HSCT from matched sibling donor were included in the analysis.

Gamma-delta lymphocytes bear the potential of exerting an
antineoplastic and antiviral activity, possibly without eliciting
GVHD, thus arousing the interest about a possible role in CMV
control (49). On the other hand, CMV may shape gamma-delta
recovery, as presented below. A recent meta-analysis showed a
highly significant relationship between sustained post-HSCT
gamma-delta recovery and protection against viral
reactivations, mostly represented by CMV (50).

Attention has also been paid to single nucleotide
polymorphisms (SNP) in key receptor or transcription factors.
NOD-2/CARD 15 is an innate-immunity receptor, recognizing
muramyl dipeptide, therefore mainly involved in antibacterial
reactivity (51). Nevertheless, NOD2 polymorphism has been
linked to the risk of developing other diseases, such as Crohn
disease, and even to the outcome of HSCT (52). NOD2 is
expressed on the surface of multiple cell lines, including
monocytes, dendritic cells and NK cells. On a large unselected
Frontiers in Immunology | www.frontiersin.org 4
series, SNP8 mutation in either donor or recipient was linked to
an increased risk of herpetic virus reactivation (51).

Forkhead box P3 (Foxp3) is a transcription factor that
regulates T-reg development. In the limited setting of pediatric
AML, HSCT recipients with donor-derived rs3761548 mutation
showed a significantly increased risk of CMV reactivation (53).

Interleukin-7 (IL-7) is a hematopoietic cytokine essential for
de novo T cell development in the thymus and homeostatic
peripheral expansion of T cells signaling through the
heterodimer IL-7 receptor (IL-7R). The IL-7Ra-chain is a high
affinity component expressed on naïve and memory T cells and
downregulated in effector T-cells, which is also involved in TH2
differentiation and T-reg induction. Analysis of donor IL-7Ra
polymorphism showed that donor-derived homozygous SNP
rs6897932 was significantly linked to CMV reactivation (54).

Rather surprisingly, a direct relationship has been described
between CMV reactivation and early achievement of full donor
chimerism in myeloablative HSCT recipient, irrespective of the
CMV serostatus (55). This finding may be related to the
aforementioned short-term CMV protective role of recipient-
derived surviving T-cells (40).

Adoptive Immunotherapy
As previously stated, therapeutic failure is a common event in the
treatment of CMV reactivation. In these cases, adoptive
immunotherapy with original or third-party donor T-
lymphocytes is generally regarded as the mainstay of
treatment. General issues in manufacturing and infusing
CMV-virus specific T-lymphocytes (VST) are common to the
other virus infections to be presented below; on the other hand,
most of the paper dealing with adoptive anti-viral
immunotherapy is focused on CMV. Therefore, the general
questions about adoptive immunotherapy will be described in
this section and the analysis of the experiences in CMV
treatment will be limited to the most relevant reports (Table 2).

The original hematopoietic stem cell (HSC) donor is the
preferable source of CMV-VST. Unfortunately, the original
donor may be seronegative. Moreover, an unrelated donor may
be variously unavailable for a further donation. In these cases, it
is common to derive cell products from a third-party donor,
generally a haploidentical related donor. Third party
lymphocytes have been retrieved up to 60–90 days from
infusion (62). A possible alternative method is the “off the
shelf” approach, where VST, general with multi-virus
specificity, are banked from unrelated third-party donors and
delivered to suitable HLA-recipients. The multi-virus specificity
reduces the costs of banking and offers an effective cell product in
case of multiple viral infections (63).

The first approach to adoptive immunotherapy in CMV has
been the delivering of polyclonal donor-derived T-cells, which
were activated and expanded ex-vivo through the exposition to
viral antigens. A major limit is the 4–8 weeks-time required to
manufacture the cell product, which makes it unsuitable as a
therapeutic strategy; therefore, a prophylactic or pre-emptive
design was frequently preferred, where clearance of viremia and
CMV immune recovery were the targets (56, 64). Although
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GVHD was not a negligible issue on the field of toxicity, the risk
of such complication seems to be significantly lower with the
refinement in antigen selection and a two logs (from 107 to 105/
kg) decrease in the dose of infused cells (61).

CMV has also been included among the specificities of multi-
viral VST, realized by ex-vivo challenge through multi-antigens
peptide mixes (65). Ex-vivo expansion is the only suitable
approach when even seropositive donors have a low rate of
circulating specific T-cells, as it may happen with ADV.
Conversely, CMV-specific T-lymphocytes account for at least
1% of the total T-lymphocytes in seropositive healthy subjects,
apparently increasing with age (32, 33). Therefore, the short-
term recovery of a sufficient amount of CMV-reactive cells seems
to be a rationale purpose.

As for lymphocyte selection, two main methods are favored to
retrieve CMV-specific T cells: HLA-multimer selection and
gamma-interferon capture magnetic immunoselection.

The multimer selection is based on the recognition by CD8+
cells of class I HLA-multimers-bound CMV-derived and HLA-
specific peptides. Tetramers are the reference HLA-multimers
(66). Unfortunately, their steric configuration does not allow cell
binding to each of the four sites (27). To overcome this
limitation, advances in HLA multimerization have led to
pentamers and octamers. Pentamers have been proposed as the
best steric configuration because all five HLA-peptide complexes
are available for T-cell binding (67). Conversely, octamers
Frontiers in Immunology | www.frontiersin.org 5
binding may induce T-cell apoptosis (68). Moreover, the
avidity of conventional multimer binding causes a persistent
antigen-T-cell interaction, possibly leading to functional
impairment of the selected T-cells (27).

Streptamers are an evolution of the technique, having the
advantage of a reversible binding to the target and allowing an
easy detachment of the selected T cells (69). They are peptide-
loaded Strep-tagged HLA monomers, binding CD8 at low
affinity. Strep-Tactin multimerizes streptamers and increases T
cell avidity. Finally, T-cells are displaced by the addition of
biotin, binding Strep-Tactin with a higher affinity (69).

In a comparative study including tetramers, pentamers and
steptamers, all of the methods proved to be reliable; nevertheless,
tetramers gave the best results in terms of specificity, whereas
streptamers allowed the achievement of a GMP-compliant
product (66). As previously reminded, the best specificity of
tetramers may be at the expense of quantitative yielding of CD8+
cells (27). However, a reduction in the number of required CD8+
cells for CMV treatment is reasonable in comparison to
polyclonal CMV-stimulated cells, possibly about 1 × 104/kg (59).

Rapid manufacturing of GMP-compliant cell products is the
outstanding advantage of multimer selection, which was the
chosen strategy in a recent phase I/II trial (30). The selection
of only CD8+ cells is felt as a disadvantage, while the selection of
CD4 through HLA class II multimers presents quite different
problems and is still in a preliminary phase (70). On the other
TABLE 2 | Adoptive immunotherapy as prophylaxis and treatment of CMV reactivation after HSCT.

References Study N. of
patients

Type of
transplant

Lymphocyte
donor

Time to
manufacturing

Method Design N. of
cells

Result GVHD

Micklethwaite
et al. (56)

Phase
I

9 Heterogeneous,
HLA-A2,
matched HSCT

Original donor 21 days Stimulation with
dendritic cells
pulsed with p65
derived, HLA
restricted peptide

Prophylaxis 2*10e7/
sqm on
day 28

2 subsequent
selflimiting CMV
reactivations

3
GVHD,
1 lethal

Micklethwaite
et al. (57)

Phase
I

12 Adults only,
matched HSCT

Original donor 21 days Stimulation with
p65adenovector
transduced
dendritic cells

Prophylaxis 2*10e7/
sqm On
day 28

4 subsequent
selflimiting CMV
reactivations

4 grade
II-III

Peggs et al.
(58)

Phase
I-II

18 Related donor
adults

Original donor 24 hours Overnight p65
challenge of
unstimulated
leukapheresis

11 pre-
emptive, 7
prophylaxis

1*10e4/
kg CD3+.
About
day 28

2/11 and 1/7
reactivations

3 grade
II-III

Uhlin et al.
(59)

Pilot 6 Heterogeneous 2 original
donor, 4 third
party
haploidentical

2-4 hours HLA restricted
pentamers, within
hours

Pre-emptive
2 toxicities,
4 refractory

>1*10e4/
kg within
100 days

In 5/5 evaluable,
long lasting viral
clearance

Not
reported

Blyth et al.
(60)

Phase
II

50 No
haploidentical,
CMV+ donor

Original donor 24 hours HLA-restricted
tetramers

Prophylactic/
pre-emptive

2*10e7/
sqm

5 post-infusion
reactivation, 1
CMV death,
reduced need of
anti-CMV drugs

12
grade II-
IV

Koehne et al.
(61)

Phase
I

17 Matched T cell
depleted

16/17 original
donor

28 days Culture with
conditioned APC

12 refractory
viremia, 5
CMV
disease

>5*10e5/
kg day
98-164

12/12 and 3/5
clearance of
viremia

No “de
novo” or
flare

Neuenhahn
et al. (30)

Phase
I-IIa

16 Heterogeneous 8 original
donor, 8 third
party

24 hours HLA-restricted
streptamer

Drug
refractory
viremia, pre-
emptive

1*10e4/
kg CD3+.

62,5% clearance
of viremia
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hand, the critical role of targeting multiple epitopes has been
recently underscored (71), even though previous studies have
shown its feasibility (72).

Gamma-IFN capture and immunomagnetic selection is the
main alternative method. Short-term ex-vivo challenge with
CMV antigens induces T-cells’ release of gamma-IFN;
secreting cells undergo immunomagnetic selection after
labeling with a double moAb conjugate, including a gamma-
IFN and a CD45 directed moAb. Unlike multimer selection, this
method allows both CD4 and CD8 to be collected, with CD4
generally accounting for the majority. The reported number of
infused cells is variable, but a lower requirement is likely also in
this setting, since 1–2 × 104/kg CD3 cells have been repeatedly
reported (58, 73).

As multimer selection, gamma-capture allows the rapid
production of an active cell product, though requiring a short
(overnight) ex-vivo expansion phase. The yield is lower in
comparison to multimers entailing the processing of larger
blood volumes, thus raising some concern as to the feasibility
in case of unrelated donors. A definite advantage of gamma
capture is the possibility of delivering both CD4 and CD8 cells,
recognizing multiple viral epitopes. On the other hand, the
method selects only gamma-IFN producing cells, whereas the
diversification in cytokine profile could exert a role in achieving
an effective anti-CMV response (39). Moreover, gamma-IFN
alone, does not help discriminating between protective and non-
protective cytokine release profiles (37).

In summary, few phase II clinical trials are available, with
study design rather heterogeneous, ranging from prophylaxis
(60) to pre-emptive therapy (30, 61). Low risk of GVHD, viremia
clearance rates ranging from 60 to 100%, some response also in
patients with CMV disease and low CMV-specific mortality are
the outstanding findings (74, 75).

The experience with anti-CMV VST suggests some additional
advantage of this approach. Effective adoptive immunotherapy
proved to be linked to overall T-cell recovery (76) and to an
improvement in CMV-related inhibition of hematopoiesis (77).

Conversely, the whole matter of adoptive immunotherapy
suffers the general drawback of excluding patients with active
GVHD, hindering the access to many severe cases. The reason
obviously relies on the direct lympho-toxicity of corticosteroids
and in the inhibiting activity of immunosuppressive agents. To
solve this primary problem, investigations are ongoing to make
VST resistant to immunosuppressive agents. The likely most
intuitive approach of engineering cells through ex-vivo
manipulation has not been explored so far (75). Conversely,
Menger et al., in streptamer-selected CMV-specific CD8+ cells
were able to disrupt the glucocorticoid receptor gene using
electroporation of transcription activator-like effector nuclease
messenger RNA (78). More recently, Basan et al. were able to
produce GMP-compliant NR3C1- multi-virus VST (79). Among
the other immunosuppressive agents, resistance to calcineurin
inhibitors is under study, but the available data regard only
EBV (80).

Tapering of immunosuppressive therapy represents a further
open issue possibly leading to an over-estimation of adoptive
Frontiers in Immunology | www.frontiersin.org 6
immunotherapy-related GVHD. Indeed, at times, immuno-
suppression had been reduced or discontinued before starting
adoptive immunotherapy, to avoid treatment interfering and/or to
favor the clearance of viremia. To avoid third party lymphocytes
and the inherent issues, the introduction of a virus-specific TCR in
T-cells of original HSC donors failing to mount spontaneously a
virus-specific response has also been explored. However, although
preliminary data have been reported even on the field of CMV (81),
this approach seems more suitable for viruses where the issue of a
failure of T-cell response is a more compelling problem.

An alternative strategy is the generation and expansion of
VST starting from naïve cells of seronegative donors or UCB,
overcoming the risk of unavailability of the original HSC donor
and allowing VST to be available before transplantation. Hanley
et al. were able to expand tri-virus (adenovirus, CMV and EBV)
specific T-cells from UCB units recognizing multiple viral
epitopes (82). Later, they also observed that high avidity anti-
CMV T-cells generated from naïve cells of seronegative donors
had different epitope-specificities than high avidity T cells from
seropositive healthy subjects, but proved to be effective in
clearing viremia (82). Moreover, healthy subjects had low-
avidity anti-CMV T-cells, recognizing the same epitopes as
high avidity ones generated from naïve cells. Overall, these
findings underscore the evolution over time of CMV-specific
T-cells immunoreactivity in healthy subjects (32, 33).

Vaccines
Among post-HSCT viral infections, CMV is the only one where
alternative ways to adoptive cell immunotherapy have been
explored. Unfortunately, the available data are derived from
preliminary, phase I–II clinical trials, generally not followed by
investigations on larger series.

The best studied strategy has been patient active
immunization. A commercial CMV-vaccine containing
plasmids encoding glycoprotein B and phosphoprotein 65 was
delivered to HSCT recipients in a randomized phase 2 study,
with rather equivocal results (83).

A more promising approach seemed the administration of
dendritic cells (DCs), variously challenged with viral
components. In a preliminary study, CMV pp65 messenger
RNA-loaded autologous monocyte-derived DC was
administered to a small group of healthy subjects and HSCT
recipients. Three of four healthy subjects and one of two
evaluable HSCT recipients developed a detectable increase in
CMV-specific T cells (83).

Taking into account the role of donor derived DC in the post-
HSCT immune reconstitution, Sundarasetty et al. transduced
peripheral blood monocytes with an integrase-defective lentiviral
vector, co-expressing GM-CSF, IFN-a and the CMV antigen
pp65, attaining the production of GMP-compliant donor-
derived DCs suitable for clinical use (84).

An alternative approach has been the delivery, as a vaccine, of
a chimeric peptide composed of a CD8-T-cell epitope from CMV
pp65 and a tetanus T-helper epitope (CMVPepVax). As a
common limitation of such products, the vaccine was HLA-
restricted and was administered only to HLA-A*0201 HSCT-
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recipients. In a randomized phase 1b trial, CMVPepVax proved
to be safe and treated patients had a significant reduction in
NRM (85).

In a phase 2 trial, the ASP0113 vaccine, containing two
plasmids encoding CMV antigens, was delivered to ten HSCT
recipients in order to enhance both humoral and cellular
immunity. Although the treatment showed a favorable toxicity
profile, the clinical activity was questionable (86).

In a phase I trial, a small series of HSCT recipients received a
CMVpp65-derived peptide as a CMV-vaccine. Most of the
patients had a significant increase in CMV-specific CD8+ T
cells and/or Vd2negative gd T cells, and a humoral response of
neutralizing antibodies, suggesting a correlation between the
immune response and virus clearance (87).

EBV
The relevance of EBV reactivation after HSCT relies on its
pathogenetic role in the development of post-transplant
lymphoproliferative disease (PTLD), recognized as a self-
standing main lymphoma group in the recent WHO
classification (88). The limited efficacy of the available
therapeutic resources makes management of EBV reactivation
a crucial issue.

In the vast majority of cases, PTLD after HSCT shows B-cell
phenotype and is of donor origin (89). Conversely, analysis of
LMP-1 polymorphism shows that EBV strains causing PTLD are
mostly of recipient origin, although transmission of donor-
derived EBV has been reported even in the setting of cord
transplantation (90).

Immunophenotypically, expression of EBNA 2 and 3 is a
characteristic of PTLD (91). Proliferation of EBNA 3+ lymphoid
cells does not occur in the absence of an immunologic
impairment, thus linking immunosuppression with PTLD (92).

Multiple a priori risk factors for the development of PTLD
have been recognized, most of them concerning the type of
transplant. HLA-mismatch, RIC conditioning, D/R serological
mismatch, acute GVHD, and pre-transplant splenectomy proved
to be predictive of PTLD development (93). HLA-mismatch
includes also UCB transplant (94) whereas any kind of T-cell
depletion has been recognized as a likely additional risk factor
(95). On the field of haploidentical HSCT and therefore of HLA
mismatch, patients receiving post-HSCT CTX may build up a
subset at lower risk of PTLD, possibly attributable to lysis of
EBV-infected lymphocytes with relative sparing of memory
cells (96).

Beyond the aforementioned GVHD, the use of mesenchymal
cell has been claimed to be an additional a posteriori risk factor,
although the question can be raised as to its independence from
GVHD (97).

Gamma/delta lymphocytes, notably delta-2+ recovery, have
aroused considerable interest as a possible major EBV
controlling factor. In experimental models, delta-2+
lymphocytes proved to be cytotoxic against EBV infected cells
(98); in another study, delta-2+ recovery seemed to exert a
protective role from EBV reactivation (99). The same authors
showed that mycophenolate-driven inhibition of delta-2+
Frontiers in Immunology | www.frontiersin.org 7
gamma-delta lymphocytes could play a role in the
pathogenesis of PTLD, at least in the haploidentical setting (100).

Little is known about D/R specific risk factors. Patient age over
50 years is commonly considered as an adverse risk factor (101).
Moreover, attention has been driven to the possible lymphocyte
senescence in case of parental donor, possibly leading to a reduced
antiviral response (34). In a previous study, EBV reactivation was
more common among HSCT recipients with gamma-interferon 3/
3 genotype (102). With some resemblance to the matter in HIV
patients, the same authors showed a reduced risk of EBV
reactivation in HSCT recipients heterozygous for CCR5/delta 32,
in comparison to wild type homozygosity (103).

Monitoring
Monitoring of EBV viremia has been routinely performed after
HSCT since many years (104). Parallel monitoring of EBV-
specific T-lymphocytes recovery is not routinely performed,
although it could offer clues in order to better understand the
risk of PTLD development and to optimize rituximab treatment.
EBV-specific T-cell recovery was shown to occur earlier
compared to CMV in case of D/R serologic mismatch (105).
Using the HLA class I tetramer technique to disclose EBV-
specific CD8, Clave et al. showed that patients with EBV
reactivation having virus-specific CD8 recovery had
spontaneous resolution of viremia without rituximab,
suggesting that monitoring of immune recovery could drive
the administration of rituximab more than the viremia itself
(106). Using the alternative ELISPOT technique, disclosing both
specific CD4 and CD8 cells, there was a striking difference in
EBV-specific immune recovery between patients transplanted
with myeloablative (MAC) and RIC, suggesting a negative
impact of the latter on the risk of developing PTLD (107). As a
general comment, lack of EBV-specific immune recovery can be
proposed as a posteriori risk factor for PTLD.

Adoptive Immunotherapy
Failure to achieve a stable response to rituximab has led to the
use of adoptive immunotherapy in PTLD (108). Unselected
donor lymphocytes (DLI) have been the oldest choice to treat
refractory PTLD. This treatment fails to control PTLD when an
in-vivo expansion of EBV-specific lymphocytes does not
occur (109).

The risks connected to the use of unselected DLI and its
limited effectiveness lead to the development of strategies to
deliver EBV-specific cells. In normal EBV-seropositive subjects
EBV-specific T-cells account for more than 1% of total T-
lymphocytes, making the retrieval of a sufficient number of
cells easy both for ex-vivo stimulation and for the
manufacturing of a short term cell product (70, 109). A
primary warning derived from a report showing that routine
ex-vivo cytokine-induced expansion with recipient EBV-infected
lymphoblastoid cells led to a loss of EBV reactivity in EBV-
seropositive healthy donors, whereas unstimulated T-cells
maintained their activity (110). This finding has not received
further support, and does not seem to correspond to the clinical
results with stimulated VST (111).
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The relative ease of obtaining EBV-specific cells and the
expected decreased risk of GVHD has led to a broadening of
VST spectrum of indication, including not only proved PTLD
but also high-risk virus reactivation (Table 3).

The use of multi-specific antiviral T-cells requires longer time
than EBV-specific cells and is possibly more suited for other
types of viral infections (65, 114, 115). Third-party donor cells
have also been explored (116). Results have been reported
according to the “off-the-shelf” approach, with donor cells still
detectable 12 weeks after a single infusion (63).

The high rate of EBV-specific T-cells in seropositive healthy
subjects facilitated the short-term release of potentially effective
cell products, although the available clinical data are still limited.
Interferon-gamma surface capture with immunomagnetic
separation, allowing the recovery of both CD4 and CD8 VST,
has been the favorite technique to retrieve short-term, donor-
derived, EBV-reactive T-cells (117). Unfortunately, response to
cell therapy appears to be limited to patients with less clinically
advanced PTLD, with durable PTLD control being related to
early in-vivo expansion similar to DLI (117). The selection
technique through virus peptide bound to HLA class I
multimers has been developed also for the selection of EBV
specific CD8+ lymphocytes, but clinical data are still
awaited (118).

Most of the available data derive from VST obtained
through ex-vivo stimulation of donor lymphocytes with EBV
infected lymphoblastoid cells. The largest series report
favorable outcomes both when VST was used as treatment,
with 11/13 patients achieving a response and when used as a
preventive measure, with none of 101 treated patients
developing PTLD. No new acute GVHD was recorded, and
only 5.7% of patients experience grades I–II GVHD
relapse (113).

In the specific setting of EBV, preliminary data have been
reported about the generation of resistance to calcineurin
inhibitors in virus-specific CTL (80, 119).
Frontiers in Immunology | www.frontiersin.org 8
A subsequent step has been the development of EBV-specific
cytokine-induced killer (CIK) cells, with a patient affected by
VST-refractory PTLD being the first reported case. Unstimulated
original donor mononuclear peripheral cells were expanded in
the presence of interferon-g, anti-CD3, IL-2 and IL-15, and
pulsed with a commercial “EBV-select” peptide pool. CD3
+CD56− cells, mainly CD8+, accounted for 89% of the cells in
the final product, with the remaining being represented by CD3
+CD56+ cells. CD3− CD56+ NK were almost undetectable. In
the treated patient, a single EBV-specific CIK cells infusion
achieved complete and durable resolution of a multi-resistant
PTLD, with specific CIK cells being detectable until 30 days after
the infusion (120).

Adenovirus
Adenovirus (ADV) infections are a relevant cause of morbidity
and mortality in HSCT patients, with pediatric patients and
patients receiving highly manipulated or mismatched HSCT
being at a particularly elevated risk (121, 122).

Adenovirus requires post-transplant viremia monitoring.
Monitoring of ADV-specific lymphocyte recovery has also
been proposed for many years, at least in the setting of
pediatric high-risk transplantation (122), with ELISPOT being
the favorite method. The aim of this strategy is to identify in
advance patients requiring treatment with donor-derived ADV-
specific T-cells, although the real benefit of monitoring has also
been questioned (123). Failure of developing ADV-specific T-
cells has been reported as a rather common problem, frequently
associated with the appearance of ADV viremia/infection (124).

Adoptive Immunotherapy
Delivery of allogeneic ADV specific T-lymphocytes seems to be a
reasonable way of treatment in patients with severe and/or
refractory ADV infection (Table 4). Some specific ADV-
related problems have been identified. With rare exceptions,
ADV-specific T-cells account for a small proportion of total
TABLE 3 | Adoptive immunotherapy for PTLD treatment.

References Type of
study

N. of
patients

Type of
transplant

Donor Technique Tim to
manufacturing

Time and dose Purpose Outcome GVHD

Moosmann
et al. (112)

Unspecified 6 Hetrogeneous Original
donor

Stimulation with
EBV Antigens

Overnight 0.4-9.7*10e4/kg,
according to need
wihin 100 days

Refractory
PTLD,
therapeutic

3/6 PTLD
remissions

No

Doubrovina
et al. (109)

Unspecified 30 Mostly HLA
matched

Original
donor

DLI 0.2-1*10e6/kg,
clinical need

Biopsy
proven
PTLD,
therapeutic

73%
remissions

17%

Doubrovina
et al. (109)

Unspecified 19 Mostly HLA-
mismatched

Original
donor 14
and third
party 5

Culture with 28-35 days 1*10 e6/kg, clinical
need

Biopsy
proven
PTLD,
therapeutic

68%
remissions

No

Heslop
et al. (113)

Unspecified 101 Mostly HLA-
matched BM

Original
donor

Culture with virus
activated
lymphoblastoid
cell

28 days 1*10e7/sqm Prophylaxis
in high risk
patients

No PTLD 7/101
grade I-II
recurrence

Heslop
et al. (113)

Unspecified 13 Mostly HLA-
matched BM

Culture with virus
activated
lymphoblastoid
cell

28 days 1*10e7/sqm Therapy of
biopsy
proven
PTLD

11/13
remissions

1/13 low
grade
recurrence
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lymphocytes even in reactive donors, therefore requiring ex-vivo
expansion to achieve count suitable for clinical purposes (126).
Moreover, failure to retrieve ADV-specific cell in up to 20% of
donors (127) frequently forces to use third party cells, generally
from haploidentical related donors. Finally, failure to achieve a
sufficient ex-vivo cell expansion from donors with baseline ADV-
reactivity is an uncommon but well-established additional
problem (62). A further matter of concern is the imbalance
favoring CD4 on CD8 T-cells (128) and the low representation of
central memory cells in the expanded T-cell population (126).

Apart from some attempts to generate ADV-reactive cells in
the setting of multi-virus T-lymphocytes products (129), many
attempts have been made in order to solve the abovementioned
ADV-specific issues. Anticipating the delivery of virus-specific T-
lymphocytes in a preventive approach is an option, with the
consequent disadvantage of a larger number of patients treated
and exposed at risk of developing GvHD (62). The CAR-T
technique has also been proposed to generate T-lymphocytes
with double anti-CD19 and antivirus specificity, to treat B-cell
ALL patients at high risk of both relapse and of virus infection
(111). To overcome the problem of the lack of baseline and ex-vivo
ADV-reactivity, transfer of T-cell receptor has been successfully
performed, both in alpha/beta and in gamma/delta T-lymphocytes
(127). With regard to the duration of response, third party ADV
specific cells have been detected two months after infusion (62),
whereas the limited proportion of CD45RA-/CCR7+ central
memory cells achievable may be due to a weak effectiveness of
the commonly used IFN-g-based immunomagnetic selection
system, claiming for the development of alternative selection
techniques (130). A possible alternative could be the generation
and expansion of ADV-specific T-cells from naïve donor
lymphocytes; preliminary data are available on UCB, but no
further development has been so far reported (82).

With these premises, two phase I/II clinical trials have been
conducted on HSCT recipients (75, 131). In the former, IFN-
gamma immunomagnetic selected anti-ADV T-lymphocytes
from HSCT donor or third party haploidentical donor were
administered after short term ex-vivo expansion to patients with
refractory ADV infection. Manufacture failure occurred for 3/14
patients. CD4+ cells accounted for the vast majority of infused
cells and virus clearance was achieved in 10/11 treated patients,
with anti-ADV activity being detectable up to 90 days. GVHD
risk was acceptable (75). The second trial followed the approach
of previously collecting HSCT-donor-derived lymphocytes,
either from mobilized PBSC or from lymphocyte apheresis and
administering ADV-specific lymphocytes as a pre-emptive
treatment. Again, failure to retrieve a suitable number of
ADV-specific cells was reported in a substantial proportion of
cases. All of the eight patients receiving ADV-specific cells as
pre-emptive therapy achieved viral clearance. Grade II GVHD
occurred in 1/8 patients (131).

HHV6
HHV6 reactivation occurs in up to 50% of patients undergoing
HSCT, showing a quite heterogeneous clinical counterpart
ranging from asymptomatic carrier to severe end organ
disease, with pediatric and UCB recipients being at the highest
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risk of severe complications (132, 133). The available therapeutic
resources are far from being optimal, thus requiring
development of further strategies.

Monitoring of viremia is commonly performed, especially in
pediatric and in high risk HSCT (132–134). Conversely,
monitoring HHV6 specific immune recovery has not been
widely implemented. In a recent paper, a CD8 response against
multiple HHV6 antigens was demonstrated by means of ex vivo
HLA-multimer staining techniques, even though with the
weakness of being HLA restricted and able to identify only
CD8 T-cells (135).

Little is known about possible specific donor/recipients
related factors affecting the HHV6 viral reactivation risk. A
significant relationship between HHV6 CNS involvement and
HLA class I genotype has been described, notably HLA-
B*40:06 (136).

With regard to adoptive immunotherapy, predominantly
multi-virus products have been used; HHV6-specific T-
lymphocytes account for a scant minority of total lymphocytes
in normal subjects, making ex-vivo expansion mandatory in
order to achieve a sufficient number of T-lymphocytes.
Gerdemann et al. reported the “short term” production of
multi-specific anti-virus CD4+ and CD8+ lymphocytes starting
from single-collection of mononuclear cells, stimulated with a
viral-derived peptide mixture, in the presence of Il-4 and IL-7
(114). The multi-virus product was subsequently tested clinically
in a miscellaneous group of HSCT recipients and produced a
94% response rate, with acceptable toxicity. The same group
subsequently reported the possibility of producing HHV6-
specific cell products (115). The final development was the
inclusion of HHV6 specificity in an “off-the-shelf”, multi-virus
T-lymphocytes program: this strategy has the advantage of
storing ready to use third party T-lymphocytes products,
overcoming the time limitation of ad hoc prepared cell
concentrates. In a phase II study, a 67% response rate was
observed in a limited number of HHV6 reactivation (62).

BK Virus
BK viremia and viruria are common in HSCT recipients and are
routinely monitored; BK positivity is frequently found also from
the feces, suggesting that gastrointestinal mucosa may be an
additional site of virus latency (137). It was found that in the
early post-transplant phase, BKV-specific CD4 recovery was
more common in patients without BK viruria. Conversely,
beyond the sixth month after transplant, virus specific CD4
recovery was more frequently detected among patients with
BKV viruria. Specific CD8 recovery occurred later and less
frequently than CD4 one, and were more common among
patients with BKV viruria. Differences were disclosed between
CD4 and CD8 specific lymphocytes, as a naïve or CM phenotype
accounted for a considerable proportion of CD4, whereas
detected CD8 showed a predominant TEMRA phenotype (138).

Due to the severity of hemorrhagic cystitis, the use of CTL can
be considered as an important therapeutic option.
Unfortunately, BKV specific lymphocytes are present in low
concentration even in reactive normal subjects (139). BKV is
therefore generally among the target of broad-spectrum antiviral
Frontiers in Immunology | www.frontiersin.org 10
T-lymphocytes, and HC is among the indications of this
therapeutic strategy (65). Nonetheless, specific anti-BKV T-
lymphocytes can be selected by cytokine capture system and
have been sometimes successfully delivered (139). Preliminary
data on a phase II study have been presented about delivering of
BKV-specific T-lymphocytes for the treatment of HC. In spite
of the rather positive results, the study suffers the limitations of
excluding patients with active GVHD. Moreover, CTL had been
previously expanded from suitable random donors in order to
avoid the risks of time to manufacturing and of failing to retrieve
a sufficient number of lymphocytes (140).

JC Virus
The data about monitoring and immunotherapy of JC infection
are rather limited. JC virus is among the viruses whose DNA
monitoring, both in urine and in peripheral blood is
recommended (141). Investigating the appearance of anti-JC
CD4+ and CD8+ lymphocytes through ELISPOT is feasible,
with an underlying AML diagnosis and recipient age being
reported as risk factors negatively linked to the establishment
of an antiviral status (141). Donor derived VST can be produced
after stimulation with viral proteins, and have been sometimes
successfully delivered for the treatment of refractory PML (142).
Data in HSCT setting, however, are missing.

Conclusion
The almost totality of the studies about the management of viral
infections after HSCT deal with DNA viruses, and most of them
are addressed to CMV and EBV. Monitoring of virus specific
immunologic recovery and adoptive immunotherapy is the best
explored issues. On both fields, tetramer selection and magnetic
immunoselection have proved to be the most promising
approaches, each with specific pros and cons and without
clear-cut evidence favoring one of the two. Monitoring of
specific immune recovery allows an optimization of the
therapeutic approach.

As for adoptive immunotherapy, the use of donor-derived
lymphocytes is likely the optimal approach. However, in the
setting of unrelated donor, it can be either troublesome if an
additional leukapheresis is required in a “on demand” approach,
or resource-wasting if lymphocyte collection is planned at the
time of HSC harvesting. Moreover, donor lymphocytes may be
unavailable. In any case, the outcome after delivering third party
lymphocytes can be regarded as positive. Irrespective of the
source, time to manufacturing is not a limitation in CMV and
EBV, where large amounts of VST are easily retrieved, thus
favoring an approach based on clinical needs.

The main matter of concern is the complex relationship
between adoptive immunotherapy and GVHD. GVHD, either
de novo or as flare up, is the most feared consequence of
lymphocyte therapy; on the other hand, tapering of
immunosuppression is a common measure in an attempt to
control virus reactivation, further increasing GVHD risk in case
of subsequent adoptive immunotherapy. Conversely, patients
with active GVHD, notably on corticosteroids therapy, are
generally excluded in clinical trials, thus ruling out the most
troublesome patients and artificially reducing the impact of
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GVHD on the outcome of cell-therapy and viral diseases. Large
scale availability of VST resistant to immunosuppressive agents
is an expected development in order to allow clinical trials to be
conducted also in patients with GVHD.

Lack of spontaneously retrievable virus-specific lymphocytes
in healthy subjects, the possible failure to expand even available
lymphocytes and the time required to achieve a suitable cell
product, build up major limitations to immunotherapy in DNA
virus infection other than CMV and EBV, even if a third party
donor is selected. In these cases, an “off the shelf” and a pre-
emptive clinical approach are favored. The availability of VST
resistant to immunosuppressive agents is a need shared with
CMV/EBV infection. A possible remedy to the failure of
expanding VST for viruses other than CMV/EBV might be the
engineering of TCR, as outlined in the ADV paragraph. Concern
can be raised as to immunologic escape and vector-
related events.

In spite of the evidence favoring adoptive immunotherapeutic
in refractory viral infections, the available data seem to outline an
approach based on local policies rather than on widely accepted
strategies. Lack of clinical trials in patients with GVHD, that
marks a difference with real life practice, may be a
partial explanation.

Unfortunately, little is available on the issue of improving
virus-specific immune recovery. The attempt at developing active
immunotherapy strategies has led to questionable results at best.
Relying on these data, this approach can be hardly regarded
as promising.

In spite of its potential benefit and possible future
developments, adoptive immunotherapy remains still a
resource-wasting, cumbersome strategy, not devoid of toxicity.
Its popularity seems to cover the lack of reliable alternatives. The
availability of more effective anti-viral agents is probably the
main unmet requirement.
VIRUS AS IMMUNE RECONSTITUTION
BIOMARKERS

There has been historically great interest in finding good markers
of immunologic recovery post HSCT with the final objective to
personalize and optimize patient management. Based on the
reported experience in solid organ transplantation (SOT),
Torque Teno Virus (TTV), a single stranded DNA virus of the
Anellovirus family (143, 144), has been studied as a possible non-
pathogenic marker of immunocompetence. It can be retrieved
from multiple biologic fluids in up to 100% of healthy subjects
and is now generally considered as a component of the human
virome (145), replicating in many organs and tissues, including
T-lymphocytes; at the same time, TTV viremia is controlled by
the presence of normally functioning T-lymphocytes (146). The
characteristics of TTV are rather unique and may offer a novel
instrument enabling to “measure” the immune function, beyond
the limits of simple cell counts. In SOT, immunosuppressive
drugs were associated to higher levels of TTV viremia whereas
graft rejection is heralded by a decrease in DNA copies (147,
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188). Confounding findings may be the less pronounced increase
in TTV viremia in patients receiving sirolimus, possibly
attributable to some anti-viral activity of m-TOR inhibitors
(149), and the decrease in TTV DNA in patients receiving
ATG, due to transient lack of substrate for viral replication
(150). The data on SOT enabled other groups to investigate TTV
as a marker of immune function in HSCT recipients, where the
matter is made more intriguing by the complexity of the immune
reconstitution process. Albert et al., retrospectively, and
Wohlfarth et al., prospectively, observed a decrease in TTV
DNA after delivery of conditioning regimen as a marker of
lymphopenia, and its progressive increase along with lymphocyte
recovery (151, 152). In both studies, the limited size of the series
and the short period of observation (12 months) did not allow a
correlation with the main clinical HSCT endpoints to be
thoroughly looked for. More recently, a relationship has been
suggested between the failure to clear TTV and major HSCT
complications such as CMV reactivation (153) and GVHD (154).
TTV viremia kinetic was then determined on a large series of
HSCT recipients and analyzed in multivariable analysis: failure
to clear TTV was linked to CMV, GVHD and unrelated donor,
with patients bearing higher day 100 TTV levels showing a worse
survival and a higher risk of severe aGVHD. The relationship
between T-cell depletion and TTV is far from being disclosed,
and available preliminary data open the question of whether a
more accurate assessment of immunocompetence could be
possible by TTV rather than by mere lymphocyte (155).

The ever-widening spectrum of treatments encompassed
under the heading of HSCT makes the task far more
troublesome than in the case of SOT.
EFFECTS OF VIRUSES ON IMMUNOLOGIC
RECOVERY AND HSCT OUTCOME

On the other hand, viruses remain one of the most acknowledged
factors influencing or even remodeling immune recovery after
HSCT, interfering with its outcome. Most of the available data in
this field comes from CMV.

CMV and Post-Transplant Immune
Reconstitution
Historically CMV reactivation was associated with proliferative
impairment in T lymphocytes of HSCT recipients (156), but
more recent papers showed that these patients had faster CD8+
recovery (157). The simple CMV serological status seems to
influence immune recovery, with D−/R+ status causing an
increase in IFN-g producing CD8+ lymphocytes and a
reduction in multifunctional ones (39). Higher day 100 total
CD8 counts were seen both in CMV seropositive and in CMV
reactivators, especially after BM transplants (158). Itzykson et al.
described that the mere CMV seropositivity, irrespective of CMV
reactivation, resulted in a predominant recovery pattern,
characterized by early CD8+ and late B-lymphocyte recovery;
effector memory and late effector memory cells accounted for the
majority of CD8+ lymphocytes, with the pattern being linked to
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a higher NRM (159). The burst of effector memory CD8+ after
CMV reactivation had been observed up to one year in a
pediatric series, with later central memory and naïve cell
recovery after two years (160). In adults the expansion of
effector memory CD8+ led to limited width repertoire and
contraction of naïve T-cells, both CD4 and CD8, even in long
term after transplant, with the hypothesis that the expansion of
anti CMV-specific CD8 depresses the normal reactivity of the
involved compartment (161). This difference seems to be
attributable to immune aging, since very old CMV positive
non-transplanted subjects exhibit a similar pattern of shrinkage
of the T-cell repertoire (162).

Early expansion of NK after different kinds of HSCT has been
diffusely described (163). Viral reactivation/infections seem to
drive early (day 30) NK proliferation in the setting of T-repleted
HSCT (164). CMV has been linked to distinct features of NK
response. After CMV reactivation, NK preferentially express the
activating NKG2C receptor instead of the inhibitory NKG2A,
and the inhibitory “killer immunoglobulin-like receptor” (KIR)
(165). The opposite does not work since NKG2C+ NK cell count
does not predict CMV reactivation, at least in adults (166).
NKG2C+ NK cells show a six-fold lower affinity with HLA-E
bound proteins than NKG2A+ ones (167). The HLA-E bound
CMV UL40 peptide has been shown to drive selectively the
NKG2C+ NK clonal-like expansion and differentiation (168).
KIR instead interacts with epitopes of conventional first-class
HLA antigens, notably HLA-C. Among KIRs, KIR 2DL2/3
(CD158b) reacting with HLA-C1 is significantly more
frequently expressed on NK in CMV positive recipients (159).
After the challenge with CMV, NK modify their CD56 positivity
from bright to dim and acquire CD57 positivity as a marker of a
“memory” adaptive phenotype. CMV-shaped NK react releasing
a burst of gamma-interferon to further challenge through HLA-E
bound peptides, with the aim of protection from further CMV
reactivation (169). Thus, in these patients, a unique KIR
expressing CD56+CD57+NKGC2+ CD8+ T-cell subpopulation
may be an additional marker of CMV-driven immune recovery
after HSCT (170). In a study on cord blood recipients, CD56
(dim)KIR+ NKG2A-cells were the expanding NK population,
without detectable NKG2C cells. Possible relevant differences are
hence disclosed between an adult donor and a naïve immune
system (163). The difference between adult and cord blood
HSCT is underscored by an additional study failing to disclose
a rapid adaptive CMV-induced NK cells in UCB recipients, late-
occurring only in patients with high viral load (169). In
experimental animal models, CMV proved to be the driver of
the adapted NK response and adapted NK proved to be effective
in clearing CMV at virus re-challenge, as could be hypothesized
from clinical studies (171). The wide heterogeneity of HSCT
settings and some contradictory results (46) raise the question as
to whether CMV-linked features of NK response are invariably
to be expected after every type of HSCT. For example, on a series
of MUDHSCT recipients, a significant increase of NK bearing an
adapted phenotype was limited to cases where BM was the stem
cell source (158). Bigger and more homogeneous studies need to
be carried out to elucidate better these interactions.
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Further hallmarks of CMV reactivation are large granular
lymphocytes (LGL) and gd T-cell expansion. LGL increase is a
late phenomenon, peaking beyond one year after HSCT; the
expanded population bears a CD8+ phenotype and poses
questions as to its biological significance, since monoclonal
TCR rearrangement can be observed in a substantial
proportion of cases. In spite of long-term persistence of
restricted LGL in a minority of cases, the available data point
out to a reactive rather neoplastic nature (172). gd T-cell
expansion in characteristically confined to the Vd-2-
compartment, with possible effects on the susceptibility to
infectious complications (173). Differently from normal adults,
T-gd proliferation in HSCT recipients presents an adaptive
pattern primarily shaped by CMV, including the proliferative
potential after re-challenge (174).

CMV and Transplant Outcome/GVHD
It is of much interest to use all these data regarding anti-CMV
immune response to understand possible interfering
mechanisms with immunological aspects of HSCT. Apart from
the direct infectious risk, in fact, the relationships between CMV
reactivation and outcome of HSCT are not univocal and are still
debated. CMV exerts a deep influence on immune recovery,
bearing the potential of interfering with the main determinants
of HSCT outcome, as engraftment, GVHD, NRM and relapse of
the underlying disease. One example is that D−/R+matching was
postulated to lead to the proliferation of recipient CD8, which
can jeopardize donor immune recovery and the achievement of
full donor chimerism (175, 176). An increase in NRM has been
commonly reported as a consequence of CMV on HSCT
outcome (177–179) and of CMV-driven immune recovery
profile (159), of course, at least in part, due to the morbidity
and mortality linked to the CMV infection per se.

The question about GVHD is more intriguing and less
elucidated. GVHD is an obvious risk factor for CMV
reactivation, but whether CMV accounts for an increased risk
of GVHD is more controversial. Bidirectional relationship
between acute GVHD and CMV have been extensively
described (179, 180) but the underlying causative factors
remained speculative. The cross-reactivity between CMV-
specific T-cells and host allo-antigens is the most appealing
link between CMV and GVHD (181, 182), but the question in
still open (31). The CMV-related imbalance in T-reg recovery
has been claimed to explain the increased GvHD (183). Virus-
related overexpression of mismatched class I, mainly HLA-C
(170), and class II, mainly HLA-DPB1 (181), may play a role in
settings other than HLA-identical HSCT, considering also HLA-
DPB1 is not considered in defining a 10/10 matched unrelated
donor. As for non-conventional class I HLA antigens, it has not
been thoroughly investigated. No data are available about a
possible under-expression of the immune-regulatory HLA-G
by CMV, as documented after HSV reactivation (184). Some
indirect evidence can be instead drawn from HLA-E expression.
HLA-E shows a low degree of polymorphism, with the majority
of the human population having either HLA-E*01:03 or HLA-
E*01:01, with HLA-E*01:01 being linked to an increased risk of
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both GVHD and disease relapse. As previously mentioned, HLA-
E bound peptides interact with NK through the inhibiting
NKG2A and the activating NKG2C receptor, but HLA-E is
also recognized by T-cell (167). The complex network
connecting CMV, HLA-E expression, peptide binding and NK
activation (167, 182) may elicit a T-lymphocyte reaction, notably
in a context of HLA-E*01:01mismatch.

Along with the appearance of papers underscoring the
negative effect of CMV reactivation/infection on the outcome
of HSCT, a parallel literature points out to its possible beneficial
effects. As the detrimental activity was mainly related to an
increase in NRM, the potential benefits included a lower risk of
relapse and a better disease-free survival (DFS). In 2006, a
significant survival benefit had been demonstrated for HSCT
recipients experiencing CMV reactivation but not disease (185)
Explanations to this observation were speculated to be through
protection from relapse by CMV-induced pseudo-clonal
proliferation and “memory”-like adaptation of NK cells (165)
and through an increased graft versus leukemia (GVL) effect
through CMV-conditioned NK cells (170). Most of the research
has been progressively focused to the target CMV and DFS in
AML patients. Positive CMV antigenemia significantly reduced
the risk of relapse in AML patients but the advantage in DFS was
counterbalanced by an excess in NRM, confirmed also in an
EBMT survey (177–179). In multivariable analysis, CMV-
reactivation proved to be among the independent variables
predicting a better DFS in AML patients, with simultaneous
CMV-reactivation and chronic GVHD being associated to a
highly significant advantage in terms of survival (186).
Considering only transplants in first CR, the DFS advantage
overrode the worse NRM, thus leading to a balance significantly
favoring CMV reactivators (187), with greater net benefit to be
expected in patients receiving T-cell repleted grafts (188). Some
more insights can be derived from haploidentical HSCT, where
the rate of CMV reactivation is notably high. In this setting, the
presence of one or more class I MHC genotypes, characterized by
a higher efficiency in presenting CMV antigens, had been linked
to a lower relapse and non-relapse mortality rate without an
excess of GVHD (189), also in multivariable analysis (31).

To sum up, the above data suggest that CMV reactivation
may somewhat reinforce a GVL effect in the setting of HSCT,
especially in AML patients. The benefit, if any, has to be
attributed to its remodeling effect on immune recovery. In
order to offer a satisfactory explanation of this phenomenon,
the main attention has been driven by the NK activation and by
the gd lymphocytes expansion, although the available evidence is
far from having thoroughly clarified the issue. CMV-induced
adapted CD56(dim)CD57+NKG2A-NKG2C+KIR+ NK
population may react against proteins bound to HLA-E
bearing leukemic blasts; the switch from the more selective
inhibitory NKG2A to the activating NKG2C in CD57+ NK
may exert a key role (190). On the more restricted field of
mismatched and haploidentical HSCT, the missing self-antigen,
perceived by the inhibitory KIRs, as HLA-C sensing KIR 2DL2/3,
could trigger an adapted NK reaction against the HLA
mismatched leukemic cells (191). As said before, gd T-
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lymphocytes proliferating compartment is invariably the Vd-2-
one. This increase in Vd-2- gd lymphocytes resulted as a
favorable predictor of post-HSCT DFS in acute leukemia (192).
Lastly, cross-reactivity was preliminarily disclosed between CMV
and leukemic cells (193), with need for further evidence
supporting this.

Other Viruses and Transplant Outcome
In spite of the outmost interest raised by PTLD and adoptive
immunotherapy, the data about EBV reactivation and post-
HSCT immune recovery are rather scant. Viral load has been
reported to impair generically both B- and T-cell recovery (194,
195). The expansion of CD8+ effector memory cells,
characteristically related to CMV, has not been observed after
EBV and ADV reactivation (196). A proliferation of gd T-
lymphocytes, bearing analogy to CMV reactivation, has been
described (197), but other investigators were not able to confirm
these data (198). An increase in double negative T-lymphocytes
has been linked to EBV re-activation (199). Surprisingly, and
somewhat similarly to CMV, EBV reactivation without PTLD
was linked to earlier NK recovery and better survival, mainly
attributable to a lower relapse rate, irrespective of the type of
transplant (200). These data are however more explained by
Minculescu et al. findings, linking generically early NK
proliferation to viral infection and higher NK counts to lower
TRM (164). The lines of immunologic evidence linking CMV
reactivation to AML control are lacking in the setting of EBV. In
a study linking acute and chronic GVHD to CMV reactivation,
the authors failed to demonstrate any relationship between EBV
reactivation and GVHD (196).

Even fewer is known about the specific effects of other viruses.
An old observation linked HHV-6 reactivation to persistent
post-HSCT lymphopenia (201). The same authors linked an
impaired anti-CMV immune response to HHV-6 reactivation
(202). In line with these data, Quintela et al. described delayed T-
cell recovery and increased risk of CMV infection in patients
reactivating HHV-6 (133). Higher HHV6 viremia, in a pediatric
series, seemed to hamper long term T-cell reconstitution, both
CD4 and CD8, whereas the effector memory compartment
resulted unaffected, suggesting less impairment of short term
immune recovery (203). Clinically, HHV6 reactivation occurs in
about 50% of HSCT recipients, with higher risk of acute GVHD
and NRM and worse OS, both in pediatric and in adult series
(204–207). These effects seem stronger in MAC transplant (207–
209) and in UCB (133). Due to the lack of specific researches, the
possible relationships between HHV6, acute GVHD and HSCT
outcome, are merely speculative (210).

A relationship was found between Herpes simplex early
activation, presence of the POL herpetic antigens in the skin
and GVHD; according to the authors, virus-induced activation of
dendritic cells could have exerted a key role (211). Moreover,
Herpes simplex causes a lower expression of HLA-G on
endometrial decidual cell; HLA-G immune-inhibitory effect
may play a role in maternal-fetal tolerance during pregnancy;
speculatively at least, these data may account for another link
between Herpes simplex and GVHD (184).
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In spite of its relevance in pediatric HSCT, little is known
about the relationships between adenovirus and immune
recovery, apart from a generic report of delayed T- and B- cell
reconstitution (212). Little is known also about the effects of
ADV infection and HSCT outcome, apart from the mortality of
the viral disease per se. A single study pointed out to ADV stool
positivity as a risk factor for intestinal acute GVHD (213). More
generally, DNA virus infections have been associated to worse
HSCT outcomes (214), with only scant evidence suggesting a
protective role against AML relapse after viral infections other
CMV (187).

Conclusion
Even more than in the management of virus infection, precise
and definite data on the interference of viruses with immune
recovery after HSCT are lacking and are mainly restricted to the
CMV issue. The reported investigations point out to the potential
of CMV, and marginally of other DNA viruses, of shaping
immune recovery, although the results are not univocal and do
not encompass the wide spectrum of transplant-related variables
and complexity.

There is some concordance as to the fact that CMV may
increase GVHD risk and possibly the risk of other infectious
complication, thus worsening NRM and OS. Apart from possible
homologies between viral and human sequences, the evolution
from sibling to MUD, to HLA mismatched HSCT, calls
progressively for a study of the role of non-conventional and
conventional MHC mismatches as a link between CMV immune
response and GVHD.

According to other report, CMV could decrease the risk of
baseline disease relapse, at least in the setting of AML, possibly
also involving some of the pathways linking CMV to GVHD. It is
debatable whether this eventually translates into an advantage or
a reduction in survival. Underlying diagnosis, donor selection,
conditioning regimen and type of transplant give rise to multiple
combinations with different GVHD, relapse and infectious risks,
thus offering some explanation for contradictory results.

Investigations on the effects of other viruses on immunologic
recovery and HSCT outcome are warranted and can be expected
to disclose relevant issues in the management of HSCT patients.
HSCT AS IMMUNOTHERAPY IN VIRAL
INFECTIONS

Despite viruses being one of the main complications of HSCT,
HSCT was used to try and cure some viral illnesses through
exerting an immunotherapeutic effect, at least in some selected
viral infections.

HIV
In 2009, the case was reported of a HIV patient undergoing
HSCT from a CCR5 Delta32/Delta32 donor, who achieved long
term HIV-free survival, lasting over anti-retroviral therapy
(ART) discontinuation (215). The persistence of remission was
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confirmed at longer follow-ups of the same patient, commonly
known nowadays as the Berlin patient (216). Moreover, HIV was
not found anymore in any biological samples of the patients and
the antibody response weaned over time which was interpreted
as an additional proof of recovery (217). A possible explanation
for the Berlin patient outcome could be the natural HIV
refractoriness of the donor. Although CCR5 Delta32/Delta32 is
present in about 1% of the general population (70), only one
more documented case of HSCT from a CCR5 Delta32
homozygous donor, has been reported in a HIV patient; HIV
viremia became undetectable but the patient died of his
underlying lymphoma, thus hindering any evaluation of long-
term post-transplant outcome of the HIV infection.

Beyond the above considerations pointing out to HSCT cure
as a fortuitous event in HIV, some evidence seems to show an
intermediate outcome in other HIV patients after HSCT. A deep,
progressive reduction in HIV reservoir was observed in a small
series of long-term survivors after HSCT from wild-type CCR5
donors (218). Similar results were reported in other small series
or case reports, with anti-HIV response lasting over ART
discontinuation and sometimes ending into an acute viral
rebound phase, suggesting some kind of immunologic escape
(219, 220). As a whole, these data seem to account for a graft vs-
HIV effect (208) and enabled to look for immunologic strategies
to improve post-HSCT HIV control (70). Patel et al. raised and
expanded in vitro HIV-specific T lymphocytes from HIV-naïve
healthy donors. Anti-HIV T-lymphocytes reacted in vitro against
different viral epitopes. Interestingly, most of the CD8
lymphocytes exhibited a CD45RA− CD62L− effector memory
phenotype, similar to what happens after challenging with other
viruses, such as CMV. A proportion of CD45RA− CD62L+
central memory cells was also obtained, possibly more capable
of long term disease control (70). More recently, the same group
reported the possibility of producing GMP-compliant HIV-
specific T-lymphocytes with wide viral epitope recognition and
high in vitro activity. Again, effector memory cells accounted for
the majority of CD8 lymphocytes, still with a minor proportion
of central memory phenotypes (221).

HTLV-1
HSCT has been proposed and currently performed as possible
curative approach to another retrovirus, HTLV-1, etiologic agent
of adult T-cell leukemia/lymphoma (ATLL) (222). According to
non-recent data, the retrovirus HTLV-1 infects about twenty
million people worldwide, mostly in East Asia (223), with <5% of
them eventually developing ATLL (224). The viral trans-
activator TAX plays a central role in the virus-related
oncogenesis by exerting multiple deregulatory activities on key
genes involved in T-cell homeostasis (222). The clear-cut
relationship between virus and neoplasia and the deriving
possibility of controlling ATLL through an effective GVL
targeting virus specific antigens confer unique features to
HSCT in this indication. HTLV-1 bZIP factor has been
proposed as a possible target of immunotherapy. Patients
affected by ATLL and asymptomatic HTLV-1 carriers exhibit
tolerance towards this viral antigen as testified by the lack of
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reactive T-lymphocytes. Conversely, donor derived immune
system after HSCT does express bZIP specific CD4+ T-cells,
thus bearing the potential of targeting virus infected cells (225).
The matter concerning TAX is more trivial, since TAX is not
always expressed in ATLL cells, and sometimes the appearance
of TAX expression seems to herald some kind of immune escape
and an overwhelming relapse (224). Conversely, donor derived
TAX-specific viral specific T-cells are found in the setting of
HSCT (226), and have proved to be effective and long lasting in
inhibiting HTLV-1 infected cells both in-vivo and in vitro (227).
The experience with HSCT has given rise to alternative strategies,
in order to overcome HSCT itself and the related risks. In
particular, creating autologous TAX-specific viral specific T-
cells, via a TAX-directed “vaccine” has been hypothesized
(226–228).

Other Viruses
Lastly, the issue of HSCT as an immunotherapy in T/NK EBV-
related lymphoproliferative disorders deserves some remarks. In
immunocompetent subjects, EBV proliferation in T/NK cells
may cause a spectrum of diseases ranging from chronic active
EBV infection (CAEBV) to extra-nodal T/NK lymphoma and
NK leukemia (229). CAEBV mainly affects children, and NK/T-
cell leukemia/lymphoma mainly young adults (230, 231). Case
reports and small series propose HSCT as an effective treatment
option in both conditions (229). In this setting, evidence has
been reported of an immunotherapeutic effect exerted by HSCT
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(229, 232) and even of the possibility of improving the outcome
of HSCT through the infusion of donor-derived targeted viral
specific T-cells (233).

Conclusion
The role of HSCT to treat virus-related disease is doomed at
being a marginal one and is mentioned here for the sake of
completeness. Severity of the disease, lack of effective alternative
treatments, and availability of a viral molecular marker exerting a
key pathogenetic role targeted by HSCT are main requirements
to be simultaneously satisfied in order to undergo the otherwise
unacceptable risks of HSCT. Therefore, extension of the
indications beyond HTLV-1 and EBV-related diseases is
unlikely. HIV seems to be a theoretical rather than practical
indication, even if HSCT proved to be feasible in HIV patients
affected by neoplastic diseases.
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