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Viral Quasispecies Reconstruction
via Correlation Clustering

Somsubhra Barik, Shreepriya Das, and Haris Vikalo, Senior Member, IEEE

Abstract—RNA viruses are characterized by high mutation rates that give rise to populations of closely related viral genomes, the

so-called viral quasispecies. The underlying genetic heterogeneity occurring as a result of natural mutation-selection process enables

the virus to adapt and proliferate in face of changing conditions over the course of an infection. Determining genetic diversity (i.e.,

inferring viral haplotypes and their proportions in the population) of an RNA virus is essential for the understanding of its origin and

mutation patterns, and the development of effective drug treatments. In this paper we present QSdpR, a novel correlation clustering

formulation of the quasispecies reconstruction problem which relies on semidefinite programming to accurately estimate the

sub-species and their frequencies in a mixed population. Extensive comparisons with existing methods are presented on both synthetic

and real data, demonstrating efficacy and superior performance of QSdpR.

Index Terms—quasispecies, clustering, max K-cut, next generation sequencing, RNA viruses

✦

1 INTRODUCTION

RNA polymerases that replicate viral genomes exhibit high

error rates which cause relatively frequent point mutations in

the viral genomic sequences. As a result, RNA viruses typically

exist as collections of non-identical but closely related variants

inside host cells. The diversity of viral populations, often referred

to as viral quasispecies, adversely affects antiviral drug therapy

and renders the vaccine design challenging [1], thus motivating

their close studies. The quasispecies reconstruction (QSR) prob-

lem involves both the reconstruction of individual sequences in a

population as well as the estimation of their abundances. Presence

of sequencing errors in next generation sequencing (NGS) reads,

short read lengths as well as small genetic distances between

viral strains make QSR a hard problem to solve, even when

sequencing coverage is high. Although conceptually similar to the

single individual haplotyping problem, QSR has major additional

challenges – the number of individual haplotypes is a priori

unknown and the point mutations are in general poly-allelic rather

than bi-allelic [2].

Recent approaches to solving the QSR problems include

Bayesian inference methods such as ShoRAH [3] and QuRe[4],

the non-parametric Bayesian approach based on Dirichlet process

mixture model in [5] named PredictHaplo, Hidden Markov model

based Quasirecomb [6], max-clique enumeration technique on

read alignment graphs called HaploClique [2], graph-coloring

based heuristic named VGA [7], and the reference assisted de-

novo assembly reconstruction method named ViQuaS [8]. Gen-

erally, these methods can be categorized as read-graph based [2],

[7], probabilistic inference based [3]–[6] and de-novo assembly

based techniques [8]. The read-graph based methods [2], [7] rely

on a combinatorial approach to analyze a graph with vertices that

represent reads and edges that connect nodes corresponding to

reads which overlap. Specifically, [2] formulates the QSR problem
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as that of enumerating the maximal cliques in the aforementioned

graph, while [7], [10] map it to the coloring of graph vertices using

structural constraints. In probabilistic methods, one formulates

QSR as the problem of inferring hidden variables that model

abundance of viral variants or point mutations and recombinations.

In particular, PredictHaplo [5] uses an infinite mixture model to

determine the number of species and reconstructs each haplotype

by maximizing likelihood of the observed reads. Lastly, [8] per-

forms local haplotype reconstruction as a reference-assisted de-

novo assembly and arrives at a global solution by seeking overlap

agreement of the locally reconstructed haplotypes. Moreover,

quasispecies reconstruction methods often employ high-fidelity

sequencing protocols [7] and barcode-tagging of genomes [9].

Building upon the method in [11] which approximately solves

a semi-definite programming relaxation of the max-K-cut prob-

lem to perform single individual haplotyping, in this paper we

extend the correlation clustering framework to viral quasispecies

reconstruction. Specifically, we develop an accurate and computa-

tionally efficient algorithmic scheme that detects the number of

strains in a population, reconstructs their genomes, and deter-

mines their frequencies. To ensure computational efficiency, the

scheme removes spurious read overlaps with a negligible loss of

accuracy. We test the performance of the proposed method on

data sets emulating varying frequency spectrum, coverage and

nucleotide diversities as well as on a widely used real data set

introduced in [12] that contains Illumina MiSeq NGS reads from

a mixture of 5 known HIV-1 strains present at non-uniform pro-

portions. Benchmarking of the performance has been conducted

in terms of the minimum error correction (MEC) scores [13],

Reconstruction Proportions, Reconstruction Errors and Frequency

Deviation errors. The results demonstrate superior performance of

the proposed method as compared to state-of-the-art techniques

including PredictHaplo, ShoRAH and ViQuaS. An open source

software implementation of the method is freely available at

https://sourceforge.net/projects/qsdpr.

The paper is organized as follows. In Section 2, we present an

end-to-end correlation clustering framework for viral quasispecies

reconstruction that includes detection of the number of species in
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a mixture. In Section 3, metrics used to assess performance of

the proposed method are defined. Section 4 overviews both the

synthetic and experimental data used for benchmarking, while

Section 5 presents results of the benchmarking tests and the

comparison with competing methods. Section 6 summarizes and

concludes the paper.

2 METHOD

2.1 System Model

Let Q = {qk, k = 1, . . . ,K} denote the set of K quasispecies

strains present in a heterogeneous mixture of viruses. The strains

in Q are strings of identical lengths consisting of alleles (i.e.,

nucleotides A,C,G and T ), and differ from each other at a

number of variant sites (i.e., at the locations of single nucleotide

polymorphisms or SNPs). For simplicity, we restrict our attention

to the mutations, i.e., nucleotide substitutions, and do not explic-

itly model insertions/deletions. Let R = {ri, i = 1, . . . , |R|}
denote the set of overlapping reads aligned to a given reference

genome; the reads are DNA fragments obtained via the so-called

shotgun sequencing strategy used by next-generation sequencing

platforms and effectively sample (with replacement) the strains in

Q. Sequencing platforms suffer from base calling errors which

limit the reads to be much shorter than quasispecies strains. Note

that the homozygous sites (i.e., sites containing alleles common to

all strains) are not used in the quasispecies reconstruction and thus

the corresponding bases can be removed from the reads covering

those sites. Reads that cover one or no SNPs are also removed

from the set since they are non-informative. Let there be ℓ variant

sites that remain following the above pre-processing of sequencing

data. Then, each qk can be thought of as a string of alleles of

length ℓ, while each read ri is a short, randomly positioned and

potentially erroneous sub-string of one of the qk’s. The goal of

viral quasispecies reconstruction is to segment this set of reads

into as many clusters as there are viral strains (namely, K) so that

each cluster consists of reads that sample one specific strain.

2.2 QSR as a Correlation Clustering Problem

Previously described clustering problem can be formalized by

introducing a weighted read graph G = (V, E), where each

vertex in V corresponds to a read ri ∈ R, and each edge

eij ∈ E represents the overlap between ri and rj . The weight

or correlation associated with eij , denoted as ωij , is given by

ωij =

{

0 if ri and rj do not share variant sites,
sij−tij
sij+tij

otherwise,
(1)

where sij and tij denote the number of matches and mismatches

at the overlapping variant sites of ri and rj , respectively. Large

wij implies that ri and rj originate from the same strain while

small wij implies the opposite. Note that graph G is highly

sparse since, as pointed out in Section 2.1, the reads are much

shorter than the genomic region of interest and thus each read

overlaps with relatively few other reads. The edge weights defined

in (1) have a direct implication on one of the properties of this

partially observed graph, namely, signed weighted edge density

is larger within clusters than across clusters, i.e., reads with

higher correlation tend to be clustered together. The objective

is then to cluster vertices v ∈ V into K clusters such that the

signed edge density within clusters is maximized, while the signed

edge density across clusters is minimized. Note that sequencing

errors in reads cause weights ωij to deviate from true values,

thereby making the graph clustering problem non-trivial. It has

been shown in [16] that the non-sparse version of the correlation

clustering problem is APX-hard.

In this paper, we approach viral quasispecies reconstruction by

formulating it as a max-K-cut problem and solve its semidefinite

relaxation akin to the approach to single individual haplotyping

in [11]. The aim of max-K-cut is to partition a given set V
into K subsets V1,V2, . . . ,VK such that

∑

1≤p,q≤K
p 6=q

∑

i∈Vp,j∈Vq

ωij

is maximized. A convex relaxation of the max-K-cut problem

leads to a semi-definite program (SDP) which can, in principle, be

solved using standard SDP solvers that rely on the interior point

method. In particular, the resulting semidefinite problem is given

by1

max
Y
〈W,Y 〉

s.t. Diag(Y ) = 1,

Yij ≥ −
1

K − 1
, i, j = 1, . . . , |R|,

Y � 0,

(2)

where W = {ωij} is the edge weight matrix of G, 1 is the

|R|-dimensional vector of all 1’s, and each row of the |R| × |R|
matrix Y is a norm-1 vector which takes 1 of K possible values

and has the property that its inner product with any other row

gives −1/(K − 1) [17]. Such a definition of Y implies that its

rank is K , which is then relaxed to rank |R| to arrive at the SDP

formulation (2).

Viral quasispecies assembly with rare variants requires high

data coverage and often leads to large-scale optimization prob-

lems. Since Y can be interpreted as a noisy version of an underly-

ing matrix with data that originated from K clusters, it embeds

a low dimensional rank-K structure within it. This is notable

since SDPs with low-rank solutions can be solved efficiently [18].

Therefore, to find computationally feasible solutions to QSR, it is

beneficial to express Y as Y = V V T , where V is a |R| × K
matrix, and re-phrase optimization (2) in terms of this low-

dimensional matrix V (K ≪ |R|) such that V T
i Vj = Yij . In

particular, the Lagrangian relaxation of (2) is given by

min
λ≥0

max
V

∑

ij

(

ωijV
T
i Vj + λij

(

V T
i Vj +

1

K − 1

))

,

(3)

where λ = {λij} is an |R| × |R| matrix of Lagrange multipliers

for the inequality constraints in (2). To solve (3), the objective

function is alternately optimized with respect to V , keeping λ
fixed, and then with respect to λ, keeping V fixed, via gra-

dient descent. With λ fixed, the ith row of V is updated as

Vi ←
∑

j:eij∈E (ωij + λij)Vj , followed by a normalization to

preserve the unit norm property of rows; with V fixed, λ is updated

according to λij ← min
(

λij + α
(

V T
i Vj + 1/(K − 1)

)

, 0
)

,

where α denotes the step size of the gradient descent algorithm

and the factor multiplying α is the subgradient of the objective

in (3) with respect to λ. Vectors of random entries are added

as columns to V one at a time and the optimization of (3) is

repeated until the rank of V becomes smaller than the number of

its columns. The optimal solution Vopt of this procedure will have

a rank ropt ≥ K; therefore, to find a K-clustering of V as in the

1. 〈A,B〉 denotes matrix dot product, given by
∑

ij

AijBij for matrices A

and B.
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original problem, a randomized projection heuristic is applied [17]

- we project Vopt onto an ropt×K matrix P , with Pij ∼ N (0, 1),
and choose the jth cluster for ri if j = arg max

j=1,...,K
(VoptP )ij .

For each cluster, a consensus sequence of length ℓ is created by

position-wise majority voting among those reads that fell within

that cluster. This is followed by a greedy refinement step to further

improve the overall objective function, that involves changing

cluster memberships of reads as well as swapping alleles in the

cluster consensus sequences. Finally, the consensus sequences are

extended to full-length genomes by completing non-polymorphic

(homozygous) sites with alleles from the reference genome to

yield K quasispecies strains, whose frequencies are proportional

to the size of corresponding clusters.

Deep sequencing of RNA virus strains, essential for detection

of low frequency species in the mixture, results in a very high

sequencing coverage (i.e., a very large read set R), leading to a

high edge density in G. However, spurious read overlaps produce

edges with uncertain weights which may induce errors in the

quasispecies assembly solution. For example, if ri and rj are

such that tij = 0 (no mismatch) but sij 6= 0 (matches only),

ωij will be 1 irrespective of the actual value of sij . Hence, as a

graph sparsification step, we retain only those edges of G in the

clustering formulation which represent overlap of length above a

certain threshold, i.e., edges that satisfy sij + tij ≥ ǫo, where ǫo
is an edge overlap constant, and set ωij = 0 otherwise, thereby

ensuring that the values of non-zero edge weights are relatively

reliable. Moreover, edges characterized by comparable sij and tij
(ωij ≈ 0) are non-informative in terms of clustering; therefore,

edges in G are retained only if the edge weights satisfy |ωij | ≥ ǫa,

where ǫa is an edge ambiguity constant. This leads to reduction in

complexity and faster computation of the objective function in (3)

without compromising quality of the clustering solution.

2.3 Determining the number of species

In order to reconstruct the quasispecies strains present within

the viral population and infer their proportions, an assembly

procedure needs to determine the number of clusters K into which

vertices of G are to be partitioned. A major challenge for most

clustering methods is the requirement to pre-specify the number

of clusters. Note that a clustering that relies on parsimonious

cost objective functions (e.g., minimum error correction score)

favors larger number of clusters over smaller (since the MEC score

monotonically decreases in K). Therefore, such approaches may

be conducive to overestimating the number of clusters, producing

true clusters at the cost of a large number of false positives.

The model selection problem in clustering is an open and active

research topic and is known to be very difficult to solve. In this

work, we quantify the quality of a clustering solution by using

the Caliński-Harabasz criterion [19], also known as the pseudo-F

index, defined as

F (K) =
inter cluster variance/(K − 1)

intra cluster variance/(|R| −K)
. (4)

The terms in the numerator and denominator of (4) in the context

of quasispecies reconstruction are defined as follows. Let c(i) ∈
{1, . . . ,K} denote the index of the cluster containing ri, ∀ i. Let

nk denote the number of reads in the kth cluster and qk denote the

consensus of the reads in the kth cluster; moreover, let q̄ be the

consensus of qk, k = 1, . . . ,K . If HD(·, ·) denotes the Hamming

distance between 2 strings over the alphabet {A,C,G, T}, count-

ing non-gapped (i.e., sequenced) sites only, then the inter-cluster

variance is defined as
∑K

k=1
nkHD(qk, q̄) and the intra cluster

variance is given by
∑K

k=1

∑

i:ci=k HD(ri, qk). It is known that

high values of the pseudo-F index indicate closely knit clusters

[19], [20] and, in practice, the value of K for which this index

is maximized is a good candidate for the number of underlying

clusters. Therefore, the number of viral strains can be inferred

by solving the quasispecies reconstruction problem over a pre-

selected range of K and choosing the value of K for which the

pseudo-F index has the highest value.

3 PERFORMANCE METRICS

We characterize the performance of viral quasispecies reconstruc-

tion algorithms by the accuracy of the number of reconstructed

strains, the number of perfect (error-free) reconstructions among

those strains, accuracy of the frequency estimation and the cumu-

lative mismatch error of reads mapped to the reconstructed strains.

Let n and N denote the sizes of true and reconstructed

quasispecies populations, respectively. Let A = {a1, a2, . . . , an}
and B = {b1, b2, . . . , bN} denote the two populations, and let

ℓ be the length of the quasispecies strains. Assume N ≥ n.

With B′ denoting the subset of B containing n strains with

highest frequencies, define a function f : A → B′ that maps

reconstructed strains to the true strains, i.e., for i = 1, . . . , n,

f(ai) denotes the strain in B′ which is the closest neighbor to ai
in terms of the Hamming distance. In order to ensure distinctive

matching, f should be a one-to-one mapping. Hence, we choose

f as

f = arg min
f̃:A→B′

f̃ one-to-one

n
∑

i=1

HD(ai, f̃(ai)). (5)

We further define a read mapping function g : R→ B′ as

g(ri) = arg min
bk∈B′

HD(ri, bk), ∀ i = 1, . . . , |R|. (6)

The cumulative mismatch error for the entire read set is referred to

as the minimum error correction (MEC) score; the score expresses

consistency between the observed reads and the reconstructed

solutions [25]. It is formally defined as

MEC =
|R|
∑

i=1

HD(ri, g(ri)). (7)

We define Predicted Proportion as the ratio of the reconstructed

population size to the true population size, N/n, and Reconstruc-

tion Proportion as the ratio of the number of perfect (error-free) re-

constructions to the total number of true species. A reconstruction

is considered perfect or error-free if all alleles in the reconstructed

strain match the corresponding alleles in one of the true species.

To quantify accuracy of reconstruction, we define Reconstruction

Error as

Recons. Error =
1

n

∑

i∈A

HD(ai, f(ai))/ℓ. (8)

Lastly, accuracy of frequency estimation is measured by the total

variation distance or ℓ1-norm distance between the reconstructed

and true quasispecies spectrum, i.e.,

Freq. Deviation =
1

2n

∑

i∈A

|FA(ai)− FB(f(ai))|, (9)
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where FA : A → [0, 1] and FB : B′ → [0, 1] denote the

frequencies of the true and reconstructed populations, respectively

[26]. In the case when N < n, the metrics (8) and (9) are

computed on a subset A′ of A consisting of those strains which

are the closest neighbors of the reconstructed strains, with f now

defined as a mapping from A′ to B in a manner similar to (5).

It is worthwhile reviewing the definition of nucleotide diver-

sity, a measure of the genetic diversity present within a population.

Specifically, for the set A given above, nucleotide diversity is

defined as

Nucleo. Div = 2
n
∑

i=1

i−1
∑

j=1

FA(ai) FA(aj) HD(ai, aj),

and similarly defined for B′.

4 MATERIALS

4.1 Simulated data

In the first part of the simulation study, we synthesized datasets

by emulating high-throughput next generation sequencing of viral

populations, comprising of quasispecies strains present at uniform

and non-uniform proportions and with varying number of species

in the mixture. These datasets contain 2 × 350 bp (base pair)

long paired-end2 reads at a coverage sufficiently high to facilitate

reconstruction of the rarest species. First, we considered a mix

of 5 viral strains and generated reads at an effective sequencing

coverage 150X , where effective sequencing coverage is defined

as the average number of sequenced bases per nucleotide position

per quasispecies strain. Frequencies of the strains in the mix are

assumed to be uniform, i.e., 20% for each strain. The strains are

generated by introducing independent single nucleotide variations

at uniformly random locations along the length of a randomly

generated reference genome, at the rate of 1 mutation per 100
bases. To simulate realistic error rates of the Illumina’s NGS

platforms, 1 base per 100 nucleotide positions is replaced with

one of the remaining 3 bases. Inserts of the paired end reads

are on average 1000 bp long with standard deviation of 100 bp.

This dataset is referred to as S1. A second synthetic dataset, S2,

contains reads that provide 200X coverage for 10 viral strains

with uniform frequency distribution of the species (10% for each

strain), where the mutation rate, sequencing error rate and insert

length parameters are identical to those used in S1.

To emulate practical scenarios where viral populations are

characterized by non-uniform proportions of the member strains,

we generated two additional datasets of reads using identical

parameters except for a varying frequency of strains. These two

sets, denoted as S3 and S4, contain 5 and 10 strains and have

effective coverage as 200X and 400X , respectively, sufficiently

high to allow reconstruction of strains at frequencies as low as

5%.

The performance of QSdpR is also tested on a data set

consisting of simulated reads generated by mimicking the charac-

teristics of a real HIV-1 in vitro population, published in [12]. In

particular, 5 quasispecies strains of length 1000 bp (typical length

of a gene in the pol region of the HIV-1 genome) are simulated

to have a SNP rate of 0.09863. Paired-end reads of length 237
bp ±1% with 250 bp long inserts, typical of the dataset in [12],

2. Paired-end reads consist of two segments (a pair) that are separated by

“inserts” or regions of unknown content but known length statistics.

3. SNP rate is inferred by analyzing haplotypes in the ground truth data.

are simulated at an average coverage of 2000X; sequencing error

rate is maintained identical to that in the previously discussed

datasets. Frequencies of the quasispecies strains are set according

to the values estimated using Single Genome Amplification on the

protease gene [15] for the dataset in [12]. This data set is referred

to as S5 and summarized in Table 1 along with all the other

synthetic datasets.

In the second part of the study, we synthesize datasets to

assess the performance of QSdpR in settings where lengths of

the quasispecies strains are varied from 1000 bp to 3000 bp.

To this end, 2 × 150 bp long paired end reads with 200 bp

inserts are simulated at an effective coverage of 500X; these

reads sample a viral population of 5 quasispecies strains present at

uniform proportions. The SNP rate and the sequencing error rate

are identical to those in the simulation scenarios S1-S4. 10 datasets

are simulated for each value of reference length and performance

metrics averaged over the 10 runs are reported. These datasets are

referred to as L1-L5.

4.2 Real data

To further benchmark the performance of QSdpR, we consider

the HIV Five Virus Mix experimental dataset [12] and use the

NGS reads generated by Illumina’s MiSeq sequencing platform.

The data set consists of reads from a quasispecies population

generated in vitro using 5 known HIV-1 strains named HIV-1

89.6, HXB2, JR-CSF, NL4-3 and YU2. The paired-end reads

are on average 237 bp long and have standard deviation 26 bp;

they are aligned to the HIV-1 HXB2 reference genome and are

obtained from Genbank (accession number SRP029432). Using

state-of-the-art variant caller (see Section 4.3), 958 SNPs are

observed along the whole length of the reference, out of which

690 SNPs are located within the various gene regions of interest.

Sequencing depth for this data is highly non-uniform, as can be

seen from Figure 1. Figure 1a shows the coverage in terms of

sequenced bases per reference nucleotide position, while Figure 1b

shows the coverage at the SNP locations only, along with the

proportions of A,C,G and T bases at those locations. Figure 1b

indicates that the quasispecies data is poly-allelic at several of

the SNP sites. The ground truth for this quasispecies mixture

is available at http://bmda.cs.unibas.ch/HivHaploTyper/, in the

form of 5 individual strains that were sequenced independently

before the mixture of viral strains was formed. Frequencies of the

individual strains are estimated by amplifying protease gene of

the pol region of the HIV-1 genome by means of SGA [15]. HIV-

1 genome contains three major genes, namely, gag or the group

specific antigen which codes for polyprotein, pol or polymerase

which codes for viral enzymes such as reverse transcriptase (RT),

integrase (int) and protease (PR), and env or “envelope”, which

codes for glycoprotein, along with accessory regulatory genes

such as nef , vpr, vif and vpu. Features of these gene regions

are given in Table 2. The proposed quasispecies reconstruction

method is applied to these genic regions for benchmarking of the

algorithm performance [12][14].

4.3 Processing of the NGS datasets

The quasispecies reconstruction procedure starts with aligning the

raw NGS reads to a given reference genome. Alignments were per-

formed using ‘bwa mem’ algorithm (based on Burrows-Wheeler

Transform) with the default settings [21]. Reads are filtered out if

they are not mapped at all or not properly aligned to the reference,
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TABLE 1: Summary of the description of simulated datasets

Dataset No. of Haplotypes Nucleotide Diversity Effective Coverage Frequency (%)

S1 5 0.3% 150X 20, 20, 20, 20, 20
S2 10 0.5% 200X 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
S3 5 0.25% 200X 50, 25, 12.5, 6.25, 6.25
S4 10 0.5% 400X 18, 16, 14, 12, 10, 8, 7, 5, 5, 5
S5 5 3% 2000X 12.3, 9.2, 27.9, 38.4, 12.2

(a)

(b)

Fig. 1: Coverage of the HIV Five Virus Mix dataset [12] in terms of the

number of overlapping pair-end reads per base pair. This data, sequenced on

Illumina MiSeq platform, is available at https://github.com/cbg-ethz/5-virus-

mix. Subfigure (a) represents the raw read set before any quality clipping or

filtering steps. Subfigure (b) represents the coverage and proportions of alleles

at only the SNP locations, after pre-processing of read data. Lengths of the

colored bars at each location denote proportions of A, C, G and T nucleotides

as per read data.

or if they are not primary alignments, PCR (polymerase chain

reaction) duplicates or unable to pass quality filters (see [22] for

aligned read flags). Reads having more than 2 consecutive ‘N’

basecalls are discarded. Next, the sites for multi-allelic variants

in the aligned and sorted read set are detected by relying on a

widely-used variant caller FreeBayes4 (version 0.9.20-16) [23].

Since FreeBayes requires ploidy information as input among

other things, we set this parameter to a sufficiently high value

(namely 25) in the experiments to ensure that the SNP diversity

of the underlying strains is suitably captured. However, in the

experiments, it is found that FreeBayes returns exactly identical

set of SNPs for all values of ploidy ranging from 2 to 25. The

reads are converted into the input fragment format [24], amenable

to quasispecies reconstruction, using custom Python scripts. This

format is an efficient representation of variant information suitable

both for single-end and paired-end reads. It is to be noted that the

software available at this time for conversion of aligned reads into

fragment representation handles bi-allelic data only [24], which

required us to write our own scripts to deal with multi-allelic

variants. At the end of the core clustering procedure, results

are converted into full-length quasispecies strains by inserting

nucleotides from the reference genome into non-variant sites and

the reads are re-aligned with the resultant strains. Frequency of

a quasispecies strain is then evaluated based on the fraction of

reads that are nearest to it in terms of sequence similarity or the

Hamming distance. The software QSdpR takes aligned reads and

variant information as inputs, along with a reference genome, and

outputs set of quasispecies strains with corresponding frequencies.

5 RESULTS AND DISCUSSIONS

Detailed results of the experiments on simulated and real data sets

are presented in this section. For convenience, the quasispecies

reconstruction technique described in this paper is labeled and

referred to as QSdpR. Our software implementing the QSdpR

algorithm is made available as open source software at the location

https://sourceforge.net/projects/qsdpr.

4. However, QSdpR is not restricted to any particular choice of variant

callers

TABLE 2: Lengths of the genomic regions (in base pairs), percentage nucleotide diversity and the number of single nucleotide polymorphisms (SNPs) for genes

in the HIV-1 Five Virus Mix dataset. Nucleotide diversity is computed on the basis of the individual HIV-1 strains representing the ground truth.

Gene p17 p24 p2-p6 PR RT RNase int vif vpr vpu gp120 gp41 nef

Length
(bp)

396 693 413 297 1320 350 866 578 291 248 1533 1037 620

Nucleo.
Div.(%)

2.08 1.04 1.15 1.04 1.05 1.81 0.94 1.88 1.71 3.15 2.71 2.27 2.66

#SNPs 46 45 32 19 87 37 49 61 31 31 32 133 87
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5.1 Results on simulated data

We tested our proposed method on the synthetic data sets S1-

S5 and characterized its performance in terms of the metrics

introduced in Section 3 (we can evaluate these metrics since

in simulations the true quasispecies strains are known). The

mismatch errors (i.e., the MEC scores) are shown in Figure 2,

while Predicted Proportion, Reconstruction Error and Frequency

Deviation metrics are reported in Table 3. For a meaningful and

fair MEC comparison in Figure 2, we have excluded the cases

where the reconstructions are partial, i.e., the recovered sequences

are not full lengths (because fewer reads would map to the

partial sequences, leading to lower MEC score). We compared

QSdpR performance with that of PredictHaplo [5], ViQuaS [8]

and ShoRAH [3]. Among the considered schemes, our method

achieves the lowest MEC scores for all of the data sets considered

here, followed by PredictHaplo (PredictHaplo failed to run suc-

cessfully on S2 even though the sequencing coverage is as high as

200X), while ViQuaS and ShoRAH have much higher mismatch

errors in all cases. We attribute the superior MEC performance

of QSdpR to the fact that the correlation clustering framework is

explicitly concerned with minimizing the cumulative Hamming

distance between the reads and the reconstructed strains. It is

worthwhile pointing out that since in practice the ground truth

for a quasispecies population is generally unavailable (discovering

it is the entire purpose of QSR), performance metrics such as

the Reconstruction Error and frequency mismatch cannot be

computed in the experimental settings. In these scenarios, MEC

score is a proxy measure of the quality of the reconstruction.

Fig. 2: The MEC score comparison of QSdpR, PredictHaplo, ViQuaS and

ShoRAH on the Simulated Datasets S1-S5. PredictHaplo did not run on

S2. ShoRAH returned haplotypes with 72%, 44.6% and 93.6% of reference

genome lengths on sets S1, S2 and S5, respectively.

From Table 3, it can be seen that QSdpR infers the number of

underlying strains correctly for 3 out of the 5 data sets, namely

for S1, S2 and S5, as indicated by the Predicted Proportion

values. For datasets S3 and S4, it overestimates the number

of quasispecies strains by 1. On the other hand, PredictHaplo

underestimates the number of species by 1 for sets S3 and S5,

and infers it correctly for S1 and S4. ViQuaS and ShoRAH

significantly overestimate this quantity (except for the set S5
where ViQuaS reconstructs only one mixture component). In

terms of Reconstruction Error, our method is able to recover each

of the true strains without a single base mismatch for S1 and

S5; for S3, it matches the performance of PredictHaplo, which

does not provide error-free reconstruction in any of the data sets

on which it could successfully run. However, in set S4, Predic-

tHaplo provides the smallest recovery error (precisely, it makes

26 nucleotide mismatches fewer than our method). ShoRAH has

better reconstruction than our method only on S4. While our

correlation clustering technique provides the most accurate spectra

reconstruction for S1 and S5, it is less accurate than PredictHaplo

on sets S3 and S4. This is due to overestimation of the number

of strains for these 2 sets, which leads to misclassification of

some reads (i.e., they are assigned to erroneously created clusters)

thus causing discrepancy between the inferred frequencies and the

correct ones. The latter effect is much more pronounced in ViQuaS

and ShoRAH, primarily because they significantly overestimate

the number of species.

To validate the efficacy of the approach to inferring the

number of quasispecies strains as outlined in Section 2.3, we show

normalized F (K) in Figure 3 for the synthetic data sets S1, S3
and S5 and all the 13 genes of the experimental dataset. Note that

the true number of quasispecies strains in each of the considered

datasets is 5. It is evident from the figure that the correct value

of K maximizes the normalized pseudo F statistics for S1 and

S5 (except for S3, where the metric is maximized by choosing

K = 6, leading to an overestimation of the number of species in

the mixtures), and for all the HIV-1 genes (except PR and nef
genes, where the metric is maximized by choosing K = 7 and

K = 4 respectively).

To demonstrate how the running time of QSdpR scales with

parameter K , in Figure 4 we show runtimes for the values of K
ranging from 2 to 10 for simulation datasets L1 to L4. QSdpR

is applied to each of these sets and the resulting running times

averaged over 10 simulation runs for each set are plotted in

Figure 4. Since pre-processing of reads is common for all K and

post-processing (i.e, the construction of full length quasispecies

strains from clustering solutions) time is consistent across K ,

Figure 4 shows only the runtimes of the procedure outlined in

Section 2.2. This figure indicates that the computational overhead

needed to determine the number of species according to the

procedure outlined in Section 2.3 is practically feasible.

Fig. 4: Comparison of QSdpR runtime as a function of the parameter K for

simulation sets L1-L4. For the sake of simplicity, time required for post-

processing of reads is not included in runtime calculation. The values shown

are based on average of 10 Monte Carlo runs of simulation sets for each K

and reference lengths.
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Fig. 3: Normalized Pseudo F statistics as a function of the parameter K for simulated data sets S1, S3, S5 and 13 HIV-1 genes p17 through nef . The true

number of species for each dataset is 5. Value of K is correctly inferred for S1 and S5 among simulated sets and for all HIV-1 genes except PR and nef .

TABLE 3: Performance evaluation of QSdpR on the simulated datasets S1-S5. QS, PH, VQ and SH denote QSdpR (correlation clustering), PredictHaplo,

ViQuaS and ShoRAH, respectively. Boldface value in each row indicates the best performance for the given metric. PredictHaplo did not run on S2. ViQuaS

reconstructed only one strain for S5, hence is excluded from the comparison.

Predicted
Proportion

Reconstruction Error
(×10−3)

Frequency
Deviation (×10−2)

Dataset QS PH VQ SH QS PH VQ SH QS PH VQ SH

S1 1 1 6.2 13 0 9.2 5.7 6.7 0.06 0.78 1.68 7.2
S2 1 NA 8.5 13 0.4 NA 9.9 4.7 0.06 NA 1.28 3.62
S3 1.2 0.8 6 9.6 4 4 6.5 6.6 0.09 0.03 8.2 5.21
S4 1.09 1 4.3 16.7 7.3 4.7 10.2 5 1.33 0.88 2.78 3.43
S5 1 0.8 0.2 56.4 0 0.25 NA 6.6 0.01 3.07 NA 8.96

Fig. 5: A comparison of runtime of QSdpR with PredictHaplo and ViQuaS for

the simulation sets L1 to L4. The values shown are based on the average of 10

Monte Carlo runs of simulation sets for each method. ShoRAH is not included

in the comparison since it is slowest among all the methods considered.

In Figure 5, the runtimes of the proposed method are compared

with those of the competing methods including PredictHaplo and

ViQuaS using the simulation sets L1-L4. The runtimes shown in

the figure are averaged over the 10 runs for each of the methods. It

can be seen that the runtime of QSdpR is fairly comparable to that

of PredictHaplo; in particular, the runtimes of the two algorithms

are very close to each other for the case of 1000 and 1500 bp long

quasispecies strains. The difference in runtime, however, is more

prominent for longer strains. On the other hand, QSdpR is much

faster than ViQuaS for all of the considered lengths of quasispecies

strains. Note that we did not include the performance of ShoRAH

here since it is the slowest of the four methods and its runtime

distorts the scale in Figure 5. It is worthwhile pointing out that

the slightly faster performance of PredictHaplo comes at a cost of

underestimating the number of quasispecies strains present in the

mixture. Indeed, the number of strains inferred by PredictHaplo

for the above setup (average of 10 simulation runs) is given by

1, 2, 1.5 and 2, respectively, for sets L1 through L4, while the

numbers of strains inferred by the proposed method is 6, 7, 8
and 10. The corresponding numbers returned by ViQuaS are 57,

100, 137 and 163.5, respectively. Clearly, PredictHaplo is unable

to infer the richness of the diversity of viral populations in all the
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Fig. 6: Performance variation of QSdpR with the correlation graph sparsification parameters, namely, edge overlap constant ǫo (Figures 6(a),(c)) and

edge ambiguity constant ǫa (Figures 6(b),(d)) for quasispecies strains of lengths 2000 base-pairs (set L3, Figures 6(a),(b)) and 3000 base-pairs (set L5,

Figures 6(c),(d)) The solid lines in each plot denote the running time of the proposed algorithm and the dashed lines in each plot denote the percentage

reconstruction error. The values shown have been averaged over 10 simulation sets for each value of ǫo and ǫa. ǫa is fixed at 0.1 for Figures 6(a),(c) and ǫo is

fixed at 3 for Figures 6(b),(d).

cases, with the minimum deviation from true number of species (5)

being 3. QSdpR, on the other hand, infers the most accurate K for

strain lengths 1000 bp (6 species) and the deviation increases with

longer strain lengths. ViQuaS suffers from a gross overestimation

of the number of species in all of the considered cases.

In Figure 6, we study how the performance of the proposed

method depend upon the values of the parameters ǫo and ǫa.

Recall that a higher value of either of these constants leads to

an increased removal of spurious (and unreliable) edges from the

correlation graph, resulting in a decrease in runtime complexity.

In Figure 6, reconstruction error percentage rate and runtime of

QSdpR are plotted against a range of values of ǫo and ǫa for

the simulation sets L3 and L5, corresponding to strains of length

2000 and 3000 base pairs respectively. The metrics for each of the

simulation scenarios have been averaged over 10 sets. For the sake

of simplicity of the benchmarking experiment, we assume prior

knowledge of K . As can be seen from the subfigures of Figures 6,

the running time decreases as the read graph becomes sparser

with increasing ǫo and ǫa. At the same time, the reconstruction

accuracy improves since the clusters of reads corresponding to

each quasispecies now contain a progressively higher fraction of

reliable overlaps between the reads.

Note that, however, as the graph grows sparser the clusters

grow smaller in size and thus the effective coverage drops; this

may lead to unreliable reconstruction of consensus strains at the

end of the clustering procedure. As a result, the reconstruction

error rate of the overall method may degrade. Moreover, higher

values of ǫo and ǫa do not necessarily lead to a monotonic decrease

in the complexity of the algorithm. A good practice is to choose

those value of the constants which minimize the reconstruction er-

ror rate over a wide range of settings. For example, in Figure 6(c),

ǫo = 3 is the most favorable choice while in Figure 6(b), having

ǫa = 0.5 optimizes the error rate over the given range.

5.2 Results on the experimental data

In this section, we report the results of comparing performance of

the proposed method with competing algorithms when applied to

reconstructing HIV-1 Five Virus Mix data set. Gene-wise quasis-

pecies reconstruction is performed on the major genic regions of

this single strand RNA genome; the performance metrics are com-

puted for each of these regions. In order to determine the value of

K used in reconstruction, we analyzed the 4036 bp long genomic

region of the HIV-1 genome encompassing the gag-pol region.

For cross-verification, we repeated the procedure for finding K
with all the 13 individual gene regions and in 11 cases obtained

the correct number of clusters (see Figure 3). Performance of the

proposed method applied to gene-wise reconstruction is compared

to that of PredictHaplo and ShoRAH. ViQuaS could not be used

for gene-wise reconstruction since the current version of that

software does not support specifying genomic regions while upon

trying to run it for genome-wide reconstruction, the program did

not complete its run in 36 hours on an 8-core machine. Two other

recent approaches, namely Haploclique [2] and VGA [7] could

not be used due to code execution problems and lack of active

development support from the authors.

Figure 7 shows the MEC score comparison of our correlation

clustering method with that of PredictHaplo and ShoRAH. QSdpR

achieves better MEC scores than both PredictHaplo and ShoRAH

for all 13 genes of HIV-15. The performance is further char-

acterized by Predicted Proportion, Reconstruction Proportion,

Reconstruction Error and Frequency Deviation, all summarized

in Table 4. As can be seen from this table, Predicted Proportion

of our method is best among all 3 methods for all 13 genes, while

that of ShoRAH is the worst. Reconstruction Proportion of QSdpR

is better than that of PredictHaplo for 5 genes and equal to that of

PredictHaplo for 3 genes. Compared to ShoRAH, QSdpR is better

for 9 out of 13 genes. In particular, QSdpR is able to recover all

5. except p17 gene, where MEC scores of QSdpR is comparable to Predic-

tHaplo

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 26, 2016. ; https://doi.org/10.1101/096768doi: bioRxiv preprint 

https://doi.org/10.1101/096768


9

Fig. 7: The MEC score comparison of QSdpR, PredictHaplo and ShoRAH on the HIV-1 Five Virus Mix dataset.

TABLE 4: Comparison of Predicted Proportion, Reconstruction Proportion, Reconstruction Error and Frequency Deviation on the real HIV-1 Five Virus Mix

data. QS, PH and SH refer to QSdpR (correlation clustering), PredictHaplo and ShoRAH, respectively. Reconstruction Error is to be multiplied with 10−3 and

Frequency Deviation error is to be multiplied with 10−2 to get the actual numeric value. Boldface value in each column indicates the best performance for the

given metric in that column.

Metric Gene p17 p24 p2p6 PR RT RNase int vif vpr vpu gp120 gp41 nef

P
re

d
ic

t.

P
ro

p
. QS 1 1 1 1 1 1 1 1 1 1 1 1 1

PH 1 0.6 0.8 0.8 0.6 0.8 0.6 0.6 0.8 1 0.8 0.8 0.8
SH 14.2 14.4 13.4 5.6 24.6 12.6 14.4 12.6 4.8 4.6 18.2 20.8 16.4

R
ec

o
n
s.

P
ro

p
. QS 0.4 0.6 0.6 1 0.2 1 1 0.8 0.2 0 0 0.4 0.4

PH 1 0.4 0.8 0.6 0.2 0.6 0.4 0.4 0.8 0.6 0 0.8 0.4
SH 0.8 0.2 0.4 0.8 0 0.8 0 0.2 0.8 0.4 0 0 0

R
ec

o
n
s.

E
rr

o
r QS 10.1 2.9 3.9 0 7.3 0 0 0.35 3.4 69.4 73.6 15.8 26.5

PH 0 2.9 0 0.84 9.3 2.9 1.9 2.9 0 34.7 28.6 0 5.2
SH 10.1 7.2 8.2 6.7 12.6 2.2 8.3 19 0 41.1 48.6 33.9 34.5

F
re

q
.

D
ev

. QS 4.3 4.9 4.6 3.6 3.9 2.3 1.7 2.05 2.48 3.6 5.7 4.3 1.6
PH 4.3 3.6 6.8 5.8 7.3 3.4 3.6 4.8 3.2 2 4.6 2.7 2.3
SH 5.42 5.89 5.67 5.38 7.05 4.41 6.13 6.01 2.19 3.33 6.39 7.11 6.19

5 true quasispecies strains in 3 out of 4 genes in the pol region

comprising of PR, RT , RNase and int genes. It is interesting to

note that QSdpR in general has higher Reconstruction Proportion

for genes with lower nucleotide diversities (see Table 2). In terms

of Reconstruction Error, QSdpR outperforms PredictHaplo in 6 of

the genes while for the remaining ones PredictHaplo has a better

performance. As for ShoRAH, QSdpR has better performance on

9 of the genes and comparable performance in 1 gene. Since

the proposed method relies only on SNPs to distinguish viral

strains in a population, its Reconstruction Error may be higher

in the genomic regions which harbor a significant portion of non-

substitution mutations in the HIV-1 genome. Finally, in terms of

Frequency Deviation, our method has equal or better performance

than PredictHaplo on 8 genes and better than ShoRAH on 11
genes. The genes where other methods achieve slightly better

performance are those in the gapped portion of the genome.

6 CONCLUSION

Inference of RNA viruses in heterogeneous mixtures and esti-

mation of their relative proportion within the quasispecies has

been an active area of research in recent years. In this paper, we

proposed QSdpR, an end-to-end framework for viral quasispecies

reconstruction based on a correlation clustering formulation of

the problem. The clustering is relaxed to a convex optimiza-

tion problem and efficiently solved exploiting underlying sparse

structure of the solution. We tested the method on synthetic data

with uniform and non-uniform quasispecies spectra and varying

diversity and mutation rate conditions. Moreover, the method

was also tested on a widely known experimental HIV-1 dataset

having 5 known strains. In all the scenarios, the proposed method

competes favorably with the existing methods, providing accurate

estimation of the viral quasispecies spectrum.

REFERENCES

[1] Lauring, A. S., & Andino, R. (2010). Quasispecies theory and the
behavior of RNA viruses. PLoS Pathog, 6(7), e1001005.
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