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The recent introduction of SARS-CoV-2 into the human popu-
lation has led to a pandemic with immense health and socio-
economic impact worldwide1,2 The emergence of new variants 

with higher transmissibility and/or immune escape properties 
pose future challenges for containing the circulation of the virus3,4 
Potential contributing factors like antiviral immunity by natural 
infections or vaccines as well as social behaviour, viral reservoirs, 
testing strategies and global transmission make it difficult to pre-
dict the dynamic nature of future evolutions of SARS-CoV-25–8. As 
previously shown for epidemic infectious diseases, such as influenza 
virus and ebolavirus, continuous pathogenomic surveillance of cir-
culating virus is pivotal to understand outbreak origins and progres-
sions and to inform public health interventions9–13. Comprehensive 
SARS-CoV-2 surveillance programmes allow monitoring of the 
epidemiological situation and link it to viral variants and clinical  

outcomes14,15. Results thereof are of importance to decision mak-
ers for assessing the current situation and preparing for imminent 
developments14. Nonetheless, such programmes do come with limi-
tations in their applicability at a global scale. Certain population 
groups including asymptomatic and individuals with reduced access 
to healthcare may be inherently underrepresented depending on the 
national testing and surveillance strategy16. Neglecting such groups 
potentially introduces a bias to the detection of variants with altered 
clinical manifestation. Moreover, few countries can muster enough 
resources for comprehensive case monitoring, which requires ade-
quately funded organisational structures, cross-disciplinary scien-
tific expertise and the readiness to integrate these resources into 
public health operations17–19.

WBE can overcome sampling bias and some economic con-
straints of epidemiological surveillance20. SARS-CoV-2 RNA is 
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excreted in faeces, urine and saliva from infected individuals, 
and what makes its way to the sewer can be potentially found in 
the wastewater (WW)21. Hence, municipal WW drainage systems 
can serve as point of use for representative sampling of circulating 
SARS-CoV-2 variants22,23. Initially, PCR-based approaches were 
applied to detect viral RNA in the sewage24–29. Deduced virus titres 
were shown to robustly reflect prevalence rates in the catchments30–32 
and empower forecasts of infection dynamics for the near future33. 
The successful sequencing of SARS-CoV-2 genomes from WW was 
reported34,35 and used to detect regional occurrence of selected virus 
variants based on the presence of characteristic mutations25,26,29,34–46. 
Later, WW was used to construct and quantify haplotype signatures 
of variants of concern (VOC) and to deduce the reproductive num-
ber47,48. Yet, the suitability of WBE to survey the spatiotemporal viral 
dynamics and integrate variant-specific epidemiological parameters 
on a national scale has not been assessed so far.

Austria, a Central European country of around 9 million inhabit-
ants with a high degree of international mobility owing to tourism, 
which detected 3.34 Mio SARS-CoV-2 positive cases as of 17 March 
2022, responded with strict non-pharmaceutical interventions to the 
pandemic. Like other European countries, the pandemic was charac-
terised by the sequential emergence of different VOC, namely, Alpha 
(pangolin nomenclature49: B.1.1.7), Delta (B.1.617.2) and Omicron 
(B.1.1.529). Notably, the province of Tyrol harboured one of the larg-
est clusters of the Beta variant (B.1.351) outside of South Africa from 
January to March 202150,51 Such spatiotemporal dynamics of emerg-
ing viral variants coupled with a comprehensive national epidemio-
logical surveillance system52 including routine genotyping of positive 
cases, and a high population share of 93% being connected to sewer 
infrastructure53 set the stage to develop and validate the necessary 
methodology for WW-based variant monitoring by sequencing.

In this study, we present a validated, robust framework to deduce 
public health-relevant epidemiological indicators such as rela-
tive abundance and reproduction numbers for predefined variants 
from WW-derived deep-sequenced SARS-CoV-2 genomes within 
the context of a national-scale WBE programme. Furthermore, we 
show the feasibility of de novo detection of emerging variants from 
WW sequencing data.

Results
National-scale WBE surveillance programme. For the presented 
study, 94 WW treatment plants (WWTPs), covering >59% of the 
Austrian population (Fig. 1a and Extended Data Fig. 1a), were 
selected. Thereby, the population of the nine different federal 
states were covered between 18 and 100%, with a median value of 
53% (Extended Data Fig. 1b). The selected WWTPs varied in the 
population size of the catchment, with between 1,490 to 1,900,000 
people (median: 22,725). The selection of monitored WWTPs was 
guided by the objective to cover as many people in as many parts 
of the country as possible, with a special emphasis on towns with 
larger school facilities, as well as access to samples and appropriate 
logistic chains. Samples collected between 1 December 2020 and 10 
February 2022 were considered (Extended Data Fig. 1c). All sam-
ples were subjected to quantitative PCR with reverse transcription 
(RT-qPCR)-based measurements of SARS-CoV-2 genome quan-
tity, using internal spike-in controls to deduce copy numbers per 
volume. WW collection, pre-processing and quantitative screen-
ing were performed at three different laboratories. In total 3,413 
samples were analysed by amplicon-based whole-genome deep 
sequencing, using a pipeline described previously54. Of all samples, 
10.2% failed during sequencing, mostly owing to low viral loads in 
the WW during the low-incidence summer period (from June to 
August 2021) as indicated by CT values >35. The remaining 89.8% 
produced a detection confidence of SARS-CoV-2, and 80.0% passed 
our quality criteria of at least 40% genome coverage, to be consid-
ered for follow-up analysis (Extended Data Fig. 1c).

The reproducibility of our sequencing pipeline to call 
low-frequency mutations down to 1% was shown previously for 
clinical samples54. To validate mutation calling in WW samples, 
we sequenced triplicate samples from two WWTP locations, rep-
resenting varying WW characteristics (Extended Data Fig. 2a), 
namely, the WWTP Hofsteig with a high industrial share and the 
more rural WWTP Kuchl. Comparing the observed mutations 
qualitatively between the triplicates revealed that only 29% and 
21% of the mutations in the WWTPs Hofsteig and Kuchl, respec-
tively, were observed in all three replicates (Extended Data Fig. 2b). 
For mutations called by at least two of the three replicates, this pro-
portion rose to 47% and 40%, respectively. Despite the high drop-
out rate, the overall correlation of observed mutation frequencies 
was encouraging with Pearson’s correlation coefficients in pairwise 
comparisons between 0.69 and 0.87, respectively (Extended Data 
Fig. 2c). Notably, the read coverage along the genome was not 
uniform, leaving substantial regions with few informative reads. 
The positioning of poorly covered regions did not show a strong 
reproducibility between the replicates, indicating that variable 
sample quality and stochasticity have a more pronounced effect 
than systematic technical causes such as amplicon primer affini-
ties (Extended Data Fig. 2d). Consequently, mutations that were 
expected to be present, for example, defining mutations for a viral 
strain dominating at a certain time, often failed to manifest in the 
data (Extended Data Fig. 2e). Comparing the deduced mutation 
frequencies from the single samples to the median of all triplicates 
also revealed substantial deviation from the expected mutation 
frequency, especially up to a relative abundance of 50% (Extended 
Data Fig. 2f). Most missed mutations were found in regions of low 
read coverage, explaining their regular dropout. However, some 
of the missed mutations would have been covered by a substan-
tial number of reads. In this case, the lack of detection may be 
explained with sampling errors during the amplification step due 
to low amounts of viral RNA in the complex WW matrix (Extended 
Data Fig. 2e,f).

Variant characterisation and quantification. Our technical assess-
ments of WW sequencing determined the overall reliability and 
reproducibility of the approach, but also showed inherent short-
comings related to dropouts at individual sites. Consequently, we 
aimed to develop a robust and error-tolerant method for the detec-
tion and quantification of different viral variants, which we named 
VaQuERo (variant quantification in sewage designed for robust-
ness). To increase the positive predictive value, a reduced set of rel-
evant variants for targeted quantification was defined first. Thereby, 
detectable variants were restricted to variants of concern, of interest, 
or under monitoring as defined by the European Centre for Disease 
Prevention and Control (ECDC) and variants circulating in Austria 
according to GISAID database records55,56. Each mutation that 
occurred in more than 80% of all genomes associated with a par-
ticular variant deposited in the GISAID database, was considered a 
marker mutation for the respective variant. Mutations found in no 
other variants of relevance with more than 40% were denominated 
as unique markers. Subclades separated by less than three unique 
mutations were collapsed into an aggregated representative variant. 
In total, 33 variants of relevance were included in the analysis. On 
the basis of this comprehensive set of marker mutations, we devel-
oped a method to detect and quantify variants. To gain robustness 
against the anticipated dropouts and hence inflated number of muta-
tions with an observed frequency of zero, we implemented a hurdle 
model inspired scheme57. In a first step, we removed all mutations 
not found in the set of marker mutations or that were observed at a 
mutation frequency below 2%58. Variants of relevance, for which at 
least two individual and at least 10% of all uniquely defining muta-
tions were detected, were designated as detected and subjected to 
the subsequent quantification step. For quantification, both unique 
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and non-unique marker mutations were used in a SIMPLEX regres-
sion to deduce the overall variant frequencies.

Applying VaQuERo to our data enabled us to quantify the tem-
poral development of the variant composition in WW (Fig. 1b). 
Thereby, the VaQuERo approach converted the detailed but com-
plex mutation patterns as observed in the WW into a format that 
was reminiscent of case-based epidemiological reports and made it 
more accessible for public health stakeholders in Austria. Moreover, 
as these data provides information on variant-specific relative abun-
dances over time, it can serve as the basis for further in-depth analy-
sis (Extended Data Fig. 3).

To visualise the regional patterns of expansion and decline of sin-
gle variants, we reduced Austria to its main axis of mobility, as doc-
umented by mobile communications network records (Extended 
Data Fig. 4). Imposed by its geographical drawn-out shape and its 
topography with a large mountain range (the Alps) and main river 
(Danube), the two defined mobility axes follow a west-east and an 

east-south direction. This way, we used the second dimension to 
depict changes over time. Interpolation in this reduced space–time 
coordinate system allowed to visualise the spatiotemporal devel-
opment of variant incidences (Fig. 1c). This was demonstrated by 
the steady retreat of B.1.160 and B.1.258 and their replacement by 
Alpha, ushering in the eastern provinces of Austria during January 
2021 and being completed in the western provinces only around 
three months later. By contrast, the displacement of Alpha by the 
Delta variant during early summer 2021 as well as the subsequent 
change from Delta to Omicron during a high-prevalence phase 
during winter 2021/22, started almost concomitantly throughout 
Austria and were completed within a month (Fig. 1c).

Comparison between WBE and epidemiological case surveil-
lance. In a next step, we sought to validate our WBE analysis results 
through a comprehensive integration with available surveillance 
data from individual cases in the catchment areas (>310,000) col-
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lected by the Austrian Agency of Health and Food Safety (AGES). 
Of note, during the period from 1 January 2021 to 10 February 
2022, 50.6% of all positive cases in Austria were tested for VOC. 
Testing was performed by mutation-specific PCR assays against 
characteristic mutations, mutation hotspot sequencing and/or 
whole-genome sequencing. The testing regime was implemented 
according to the official guidelines of the Austrian health authori-
ties but may have been affected by occasional technical and practi-
cal constraints, such as delays in the development and roll out of 
adapted diagnostic tests for newly emerged variants (for example, 
January 2021) or overloaded infrastructure during periods of high 
incidence (for example, November 2021) (Extended Data Fig. 5a). 
Nevertheless, together with the overall high testing rate (median 
of 37.4 tests per thousand inhabitants and day between January 
2021 and February 2022) and the low positivity rate (median 0.7% 
between January 2021 and February 2022)52 the number of unre-
ported cases is assumed to be comparatively low. The absolute case 
counts per detected variant from communities within the catchment 
areas were aggregated to proportions per total genotyped cases per 
week and per catchment area. Contrasting the two independent 
data sources indicates a high concordance of the WW data with the 
epidemiological trends and the time of introduction of emerging 
variants (Fig. 2a). WBE also reliably captured smaller epidemiologi-
cally confirmed outbreaks as shown, for example, for Beta (B.1.351) 
and B.1.1.318 in the municipal area discharging to the WWTP 
Bregenz (Fig. 2a). In some instances, even time points with a single 
confirmed infection case in the catchment area were reflected by a 
proportionate signal in the WW analysis. The size of the WWTP 
catchment in terms of people served (that is, people residing in the 
catchment and being connected to the sewer) influenced the sen-
sitivity to detect individual infected cases. To examine the overall 
agreement between the case-based and WW-based variant surveil-
lance, we applied Cohen’s κ coefficient to measure inter-rater reli-
ability for each monitored variant separately. First, we tested the 
ability to detect a variant in a defined catchment. The test revealed 
robust agreement between the two approaches, with κ values sig-
nificantly different from zero for all variants (Fig. 2b). Additionally, 
we tested our ability to identify the dominating variant with a rela-
tive frequency of >50%. There, the two approaches agreed for the 
variants that showed prolonged dominance across the country, that 
is, Alpha, Delta and Omicron. For variants which reached higher 
frequencies only at isolated instances, concordance between the 
approaches was less pronounced (Fig. 2c). Quantitative agreement 
between the two approaches was tested applying a rank correlation 
analysis. To avoid feigned confidence caused by the bimodal dis-
tribution, with a heavy overrepresentation of values close to 0 and 
close to 1 (Extended Data Fig. 5b), relative frequencies <0.1 and 
>0.9 were omitted. Collectively, the signal from the WW variant 
surveillance and case surveillance exhibited a Kendall correlation 
coefficient τ of 0.43 (P = 10−27; Fig. 2d). Independent analyses of dif-
ferent variants produced comparable results for Alpha, Delta and 
Omicron, but not for Beta likely owing to its low number of data 
points (Extended Data Fig. 5c). To estimate the sensitivity of the 
WW-based approach, reports from the epidemiological case sur-
veillance were examined for regions and time points where no cor-
responding variant-specific signal in the WW was detected. These 
missed variant occurrences constituted between 1 and 117 epide-
miologically assigned cases, with a median of just 2 cases. Typically, 
we found that the larger the catchment the higher the absolute 
number of missed cases, but at the same time the lower the relative 
proportion of missed signal (Extended Data Fig. 5d). In terms of 
relative frequencies, missed variant signals ranged from 0.005% to 
100% with a median of 3.74%. This is close to the expected detec-
tion limit of our method, given that mutations with frequencies 
below 2% in WW samples are dismissed (Fig. 2c). Considering the 
median missed case count and the median missed variant frequency  

altogether, 77.5% of all missed data points were below either of 
them. Conversely, a variant linked to more than 2 cases and more 
than 3.74% of all cases in the catchment area can be expected to 
be reliably detected in the WW. With 50.6% of positive individual 
cases being genotyped, effective detection limit of absolute cases can 
be expected to be slightly higher. Overall, the comparative analyses 
revealed that WBE provides a detailed reflection of the epidemio-
logical dynamics at regional resolution across Austria (Extended 
Data Fig. 6).

De novo recognition of mutation constellations. Beside the reliable 
detection and relative quantification of known variants, detecting 
novel emerging variants is the second purpose a variant surveillance 
programme should serve. Effectively, this is equivalent to a decon-
volution of single haplotypes in the amalgamation of genotypes 
found in the sewage. The nature of amplicon-based sequencing of 
fragments of around 400 bases59 renders direct linkages of muta-
tions across amplicons largely unfeasible. To overcome this obstacle, 
we conflate associated mutations by their corresponding frequency 
pattern in time and space. Thereby, it is possible to designate differ-
ent mutation constellations by a hierarchical, unsupervised two-step 
clustering approach implemented in our DeViVa (deconvolution of 
virus variants) tool. Evaluation of this approach showed that single 
samples typically feature not enough supportive information to 
deduce revealing mutation constellations. Apparently, a sensible 
composition of the sample set is pivotal to produce reliable results. 
To this effect, DeViVa was applied to all samples from the same cal-
endar week from the province Carinthia, chosen for its substantial 
amount of data before the emergence of the Alpha variant. Thereby, 
Alpha-related mutations were observed in a dedicated constellation 
deduced from six samples from 1 February to 6 February 2021. The 
respective constellation contained a total of 30 mutations, of which 
19 are defining mutations for Alpha (Fig. 3a). Identified mutation 
constellations can again be used as input for VaQuERo to examine 
the timely trends and geographic spread of the de novo identified 
mutation constellations. Such an analysis immediately displays that 
the observed constellation was indeed novel and sharply rising in 
three out of four WWTPs (Extended Data Fig. 7).

Dynamics of genetic diversity. One important concept in molecu-
lar population biology is the nucleotide diversity π, expressing the 
mean number of nucleotide differences across all loci between two 
genome sequences from all possible pairs60. A small π indicates a 
very homogeneous population. Emerging variants with a higher 
reproductive fitness, gradually outdistancing prevailing variants, 
are expected to concomitantly see a reduction in observed π-values. 
By contrast, repeated introduction of virus through infected indi-
viduals should manifest in elevated π-values. To test these hypoth-
eses, we first calculated the nucleotide diversity for each sequenced 
sample and compared its progression with the relative amount of 
the Alpha, Delta and Omicron variants (Fig. 3b). The recurring 
pattern seen for Alpha and Omicron, was a decreasing nucleotide 
diversity soon after the emergence of the variant. These reductions 
demonstrated the ongoing selective sweep in the genomic diversity 
caused by the replacement of the previously prevalent variants and 
their accumulated nucleotide diversity. By contrast, upon the take-
over of the Delta variant, no reduction of π was observed, rather 
a steady increase in nucleotide diversity during the dominance 
of Delta could be observed (Fig. 3b). As the effect of the selective 
sweep seems to dominate the nucleotide diversity in the measured 
period, further hypotheses were subsequently evaluated only on 
samples with at least a 95% relative frequency of dominant variants. 
Population size and number of active infections in the catchment 
area show a weak but highly significant positive correlation (Kendall 
τ of 0.15 and 0.19, respectively) with the observed nucleotide diver-
sity (Extended Data Fig. 8a,b). To test the hypothesis that regional 
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migration of people contributed to elevated π-values, we resorted to 
time-resolved mobile communication network records and official 
numbers of Austria’s Federal Statistical Office on registered com-
muters and registered tourist overnight stays. These mobility-based 
analyses showed only a weak correlation (Kendall τ of −0.06 to 
0.03) between people’s regional movements and the diversity of the 
virus population measured in the WW (Extended Data Fig. 8c–f).

Variant-specific reproduction number from wastewater. 
Sequencing-based abundance estimation typically produces only 
relative ratios, but no absolute quantification of single variants. Yet, 
it can be combined with ex-ante measured RT-qPCR-based quan-
tification of the total viral load of the same sample47. Thereby, it 
can be assumed that the SARS-CoV-2 load normalised per popula-
tion equivalents λ reflects a proxy for the prevalence of COVID-19 
within the population connected to a sewage system61. To estimate 
the prevalence for single variants, the total normalised virus load λ 
can be apportioned according to the relative variant frequencies ν 
by λν = νλ. Accordingly, its first derivative with respect to time dλν/
dt is a surrogate for the effective reproduction number Reff

62, which 
we denoted as reproduction number from WW Rww. Hence, our data 
allowed a time-, region- and variant-resolved tracing of the effec-
tive reproduction number (Extended Data Fig. 9). Variant-specific 
Rww values were calculated considering the total viral load accord-
ing to RT-qPCR normalised to the ammonium nitrogen load as 
a population size marker61 and the variant-specific relative abun-
dances derived by VaQuERo from the same WW sample (Fig. 4a). 
Rww for different variants deduced at the same time and the same 
location, hence being produced by the same well-defined popu-
lation, allow a direct comparison of the fitness of the examined  

variants. For Alpha, the variant-specific Rww was increased by a fac-
tor of 1.38 as compared to concomitantly circulating variants, which 
is supported by epidemiological studies63–65. The takeover by Delta 
fell into a low-prevalence phase with little WW sequencing infor-
mation and was too sudden to yield enough time points with simul-
taneous signals of Delta and its predecessor to quantify its growth 
advantage with the applied method. For the exchange from Delta to 
Omicron, our WW-based Rww measurements indicated a reproduc-
tive advantage of Omicron over Delta by a factor of 1.85, exhibiting 
the same trend albeit reduced magnitude compared to reported Reff 
from individual case epidemiology66 (Fig. 4b).

Discussion
This study aimed to convey insights deduced from WBE into classi-
cal, established concepts of case-based SARS-CoV-2 epidemiology. 
This includes the detection and quantification of a broad range of 
variants as defined by pangolin and the calculation of a WW-derived 
reproduction number Rww. Thereby, we facilitated its direct use in 
decision-making processes by public health authorities. Results of 
deconvoluted variant information and associated quantitative viral 
loads were reported to provincial and federal public health authori-
ties since mid 2021 and continue to support regular risk assessments 
in Austria. We demonstrated that our VaQuERo method allows 
robustly deduction of relative virus variant frequencies from WW. 
We show at large scale that variant characterisation from WW and 
from case surveillance agree qualitatively and quantitatively. Onset, 
duration and scale of variant prevalence are in good agreement. The 
robustness of this finding is warranted by the comprehensive testing 
strategy implemented in Austria and the longitudinal and transver-
sal breadth of the WW sequencing data presented here.
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Fig. 3 | Analysis of mutation patterns. a, Mutation constellations in tree representation as clustered by their mutation frequencies in weekly sample 
batches from all Carinthian samples in the period from December 2020 to February 2021. The first constellation enriched with Alpha mutations is 
showcased with the frequencies of the mutations as observed in the samples used for deconvolution (heat map, left) and the frequency of the respective 
mutation in all samples of a specific variant as deposited in GISAID (heat map, right). b, Comparison of the relative abundance of Alpha, Delta and 
Omicron variants and the observed nucleotide diversity π in the WW samples. WWTPs with more than three pre-Alpha data points are shown individually 
(bottom), all WWTP are shown cumulatively (top). To test for reduction of nucleotide diversity during emergence and dominance of the occurrent 
variants, a one-sided Mann-Whitney U test between variant introduction (dotted vertical line) and end of dominance (dot-dashed vertical line) was 
performed. Corresponding P values are indicated.
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With respect to detection sensitivity of single cases, we note that 
the accuracy of sequencing-based WBE depends on prevalence and 
population number in the catchment area. In a catchment area with 
too many positive cases, the signal of an individual case becomes 
undetectable. A too-low prevalence rate, on the other hand, leads to 
a high dilution of viral RNA in the WW, thus impeding their detec-
tion. On average, with the given relation of (time variable) preva-
lence and catchment size, we observed that an absolute prevalence 
of more than 2 documented cases or a relative share in all docu-
mented cases of above 3.74% constitute the lower bound to reliably 
detect individual variants in Austrian municipal WWTP catch-
ments early upon emergence. We show that after its introduction, 
Alpha exhibited a consistently elevated growth by 38% in compari-
son to pre-Alpha variants, as expressed by a higher variant-specific 
reproduction number Rww deduced from WW. Similarly, Omicron 
presented an 85% increased growth as compared to Delta.

Methods for the quantification of previously described and/or 
de novo variants from the complex genotype mixtures in WW are 
being developed but not well established yet42,67–69. Our approach 
to assign mutations to mutation constellations based on their indi-
vidual mutation frequencies across several samples using DeViVa 
serves as a proof of principle and can be integrated directly with the 
variant definition-guided VaQuERo approach to identify emerging 
mutation constellations and investigate their temporal and spatial 
development patterns. A robust confirmation that the deduced 
constellations are indeed novel haplotypes, and of clinical relevance 
remains to be shown on the basis of individual patient samples.

In contrast to epidemiological case samples, virus sequencing 
from WW remains a technical challenge owing to the low con-
centration of target molecules, nucleic acid degradation as well as 
numerous interfering factors in the WW matrix70. The results pre-
sented here were derived despite considerable deficiencies in the 

raw sequencing data quality caused by the complex WW matrix, 
making our analysis approach applicable to versatile WBE oper-
ating conditions. However, fine-grained sample designs71 and/or 
more customised extraction methods72 and long-read sequencing 
techniques are expected to promise an even higher resolution of the 
future designation, detection and quantification of SARS-CoV-2 
variants and other viruses.

Our results indicate that WBE recapitulates surveillance of epi-
demiological cases at a high spatiotemporal resolution, at reduced 
sample number and logistical effort. WBE complements classical 
surveillance programmes, but it cannot replace individual case-based 
surveillance owing to inherent limitations such as the inability to 
identify positive individuals and correlate clinical outcomes of novel 
variants. Yet, comprehensive WBE represents an economic way, 
given the reduced number of assays needed to gain an overview of 
the pandemic situation, to inform traditional case-based epidemi-
ology and to adjust the testing strategy on a regional level. Further, 
WBE allows to observe the emergence of variants on a global scale, 
including in countries with limited resources to maintain individual 
case-based surveillance programmes73. In this regard, it is critical to 
iterate the presented methodology to other modes of WW disposal 
in absence of a centralised sewerage system74,75 Once in place, WBE 
will also provide valuable synergies to survey the prevalence of a 
wider range of public health-relevant pathogens, such as influenza 
virus and enteric viruses76–78

It is well established in population genomics that certain applica-
tions benefit from a high sampling rate79 Here we aimed to syner-
gise the two fields by connecting the concept of nucleotide diversity 
and epidemiological parameters, such as prevalence and mobility, 
as a surrogate for introductions. We observed that the absolute case 
number is indeed imprinted into the observed nucleotide diversity. 
By contrast, no effect of mobility was found. Further studies are 
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needed to clarify if this is due to a limited role of regional mobility 
during viral spread, or if the available data does not provide enough 
sensitivity for its detection. The introduction of the Alpha and the 
Omicron variant led to a pronounced selective sweep, resulting in 
an overall reduced nucleotide diversity. Notably, no similar reduc-
tion could be observed after the takeover of the Delta variant, which 
was accompanied by an increase in nucleotide diversity of the cir-
culating virus population. The circumstances around the establish-
ment of Alpha, Delta and Omicron as dominant circulating variants 
differed in many aspects. Alpha and Omicron were introduced dur-
ing winter amidst a fading seasonal wave, immediately causing a 
new rise in incidence numbers. By contrast, Delta emerged during 
a low-incidence period in early summer, leading to a prominent but 
only slowly rising epidemiological wave. The reduction in nucleo-
tide diversity after the introduction of Omicron, observed in the 
first two months after introduction, is unexpected since the two 
related sub-variants BA.1 and BA.2 emerged time-shifted and cir-
culated simultaneously. It is tempting to account the peculiarity of 
Delta to a higher genomic plasticity in contrast to other variants 
as discussed previously80,81. Generally, tracking the overall changes 
of nucleotide diversity, variant-specific reproduction numbers and 
emergence of novel mutation constellations in WW allow observa-
tion of evolutionary processes, potentially assisting understanding 
and anticipation of future shifts in circulating virus populations.

The field of WBE received a strong impetus driven by the needs 
of the current pandemic management22,72. Nonetheless, many tech-
nical, scientific and policy challenges must be resolved to realise 
its full potential. For a robust quantification and interpretation of 
the data, a better understanding of the amount and the duration of 
virus shedding via faeces is needed, especially considering the influ-
ence of patient immune status and possibly altered variant-specific 
properties82. The timely transfer of insights gained from WBE into 
actionable results for public health will be key83. Our current setup 
of sample logistics, experimental procedures and sequence analy-
ses led to the sharing of results with stakeholders typically within 
10–14 days after sampling, providing a valuable layer for risk assess-
ment to the Austrian authorities. Future improvements are expected 
to lead to reduced turnaround times with additional value for the 
pandemic management. On an international level, WBE data shar-
ing will be crucial to support global pathogen surveillance. This 
national-scale study demonstrates the accuracy and the informa-
tion richness of sequencing-based WW surveillance for the current 
SARS-CoV-2 pandemic as well as its potential for future improved 
global surveillance of other infectious diseases.
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Methods
Analysis of WW parameters. Chemical oxygen demand, total nitrogen and 
ammonium nitrogen were analysed on site by respective WWTP operators using 
cuvette tests and following standards specified by the International Organisation 
for Standardisation: ISO1570584, ISO1190585 and ISO1173286, respectively. 
Deposition and daily WW flow were also recorded on site.

Sample processing. Sampling was performed by the WWTP operator with 
onsite installed 24-h refrigerated automatic composite samplers. RNA extraction 
and RT-qPCR-based virus quantification was performed by the members of the 
Coron-A consortium (https://www.coron-a.at), at three different laboratories (TU 
Wien, Medical University of Innsbruck and University Innsbruck). The protocols 
for WW sample pre-treatment and PEG-NaCl-based precipitation of the virus 
fraction were based on the methods described by Ye et al. and Wu et al.87,88. The 
details of the implemented protocols varied in each of the executing laboratory. 
Generally, all workflows followed a common procedure. Twenty-four-hour 
volume-equivalent mixed samples were stored at 4 °C until processing. Before 
PEG-precipitation-based concentration, large particles were removed. Nucleic 
acid extracted from the pellet after concentration were analysed via one-step 
RT-qPCR for presence of the N-gene of SARS-CoV-2 and passed on for sequencing 
library preparation. Experimental details have been described previously for 
each laboratory: Medical University of Innsbruck30,TU Wien31, and University 
Innsbruck32.

To warrant comparability of different laboratory procedures applied, a ring trial 
was performed. To this end, raw WW from three different WWTPs in Carinthia 
in calendar week 45 of 2021 was collected from catchments selected according to 
their 7-day incidence within the respective population, to represent WW with low, 
medium and high viral loads. Each of three cooled (4 °C) samples was aliquoted 
and sent to the three laboratories. The samples were processed on the same day 
via laboratory-specific methods. After concentration and nucleic acid extraction, 
extracts were sent on dry ice to one laboratory (Department of Microbiology, 
University of Innsbruck) to quantify the absolute SARS-CoV-2 concentration 
in the extract. The analysis was conducted using a digital PCR system (Qiacuity 
One 5plex System, Qiagen) to impede possible bias from reference standards 
and calibration curves. Confidence intervals were deduced from single samples, 
assuming a Poisson-distributed absolute number of responding partitions of the 
digital PCR system and calculated by the Qiacuity Software Suite 1.2. The results 
from the ring trial (Extended Data Fig. 10) reflect that the different methods 
as described above yielded nucleic acid extracts with a comparable amount of 
SARS-CoV-2 gene copies across the concentration range.

Samples generated for sequencing reproducibility were prepared in 
triplicates as described above. Each of the triplicates were drawn from the same 
24-h volume-equivalent sample. All subsequent analysis step were performed 
independently.

RNA library prep and sequencing. RNA from WW extracts was reverse 
transcribed with Superscript IV Reverse Transcriptase (Thermo Fisher Scientific). 
The resulting complementary DNA was used to amplify viral sequences with 
modified primer pools from the Artic Network initiative59 or VarSkip 1a primer 
pool (NEB). For amplicon cleanup AMPure XP beads (Beckman Coulter) were 
used at a 1:1 ratio and amplicon concentrations and size distributions were 
checked with the Qubit Fluorometric Quantitation (Life Technologies) and the 
2100 Bioanalyzer system (Agilent), respectively. Amplicon concentrations were 
normalised, and sequencing libraries created with the NEBNext Ultra II DNA 
Library Prep Kit for Illumina (NEB) according to the manufacturer’s instructions. 
As before library concentrations and size distribution were assessed again, the 
pools mixed at equimolar concentrations and sequencing carried out on the 
NovaSeq 6000 platform (Illumina) using an SP flow cell with a read length of 
2 × 250 bp in paired-end mode.

Mutation calling. After demultiplexing, adapter sequences were trimmed 
with BBDUK, and the overlapping regions of paired reads were corrected with 
BBMERGE from the BBTools suite (v 38.90)89. BWA-MEM90 (v.0.7.17) was then 
used to map read pairs to the combined GRCh38 and SARS-CoV-2 genomes 
(RefSeq: NC_045512.2) with a minimal seed length of 17. Only read mappings 
uniquely and properly paired to the SARS-CoV-2 genome were kept and primer 
sequences were masked with iVar91 (v.1.2.3). LoFreq92 (v 2.1.2) was used for 
low-frequency variant calling, after first using its Viterbi method to realign reads 
around indels and adding indel qualities. Variants were then filtered with LoFreq 
and Bcftools93 (v.1.9) only considering variants with a minimum coverage of 75 
reads, a minimum Phred scaled calling quality value of 90 and indels with a HRUN 
value of at less than four. Variant annotation was performed with SnpEff94 (v.4.3) 
and SnpSift95 (v.4.3).

Variant detection and quantification. Multiple genome alignments of 6.8 million 
global SARS-CoV-2 genomes provided by the global initiative on sharing avian 
influenza data (GISAID database, retrieved on 29 January 2022)55,56 and the 
associated pangolin lineage assignments were used to extract all nucleotide variants 
as compared to the reference genome. For each pangolin lineage, all mutations that 

could be observed in at least 80% of the analysed genomes were defined as sensitive 
marker mutations for the respective lineage. Mutations occurring only in samples 
of one lineage with a frequency greater 40% were considered specific or unique 
mutations for that lineage. To reduce complexity, the scope was focused on all 
lineages which were detected in Austria (at least ten sequenced genomes according 
to GISAID) and all de-escalated variants, variants of concern/interest and variants 
under monitoring as defined by the European Centre for Disease Prevention 
and Control (ECDC; https://www.ecdc.europa.eu/en/covid-19/variants-concern; 
accessed on 29 January 2022). A total of 33 different regionally relevant variants 
were included. Deduced marker mutation, together with inferred mutation 
frequencies, were further used to quantify all respective variants of relevance per 
WWTP in the available time course data according to the following scheme: (i) 
remove all samples with more than 60% of the genomic position covered with less 
than 10 reads; (ii) filter marker mutations with observed frequency >0.02 and 
>75 supportive reads; (iii) for each time point, denote all variants with at least two 
unique mutations and at least 10% of all unique mutations as detected; (iv) add 
mutation frequencies from samples from the preceding 8 days; (v) filter frequencies 
of marker mutation of detected variants; (vi) transform96 remaining mutation 
frequencies to avoid zeros and ones by f′ = (f(d − 1) + 0.5)/d, where d denotes 
the sequencing depth at the respective locus, f and f′ denote the observed and 
the transformed mutation frequency, respectively; (vii) infer expected frequency 
per variant applying a regression model Y = Xβ, where Y represents the mutation 
frequencies, X represents the n × m design matrix assigning the considered n 
mutations to one or more of the m variants and β estimated model coefficients. 
To this end the package gamlss97 (generalised additive model for location scale 
and shape; v.5.3.4) is used with a SIMPLEX98 linker function and weights w per 
mutation i: wi =

( 1
Δt+1

)

log10 (di), with the time difference Δt to the current 

sample in focus in days and the sequencing depth di for mutation position i. If 
the SIMPLEX function does not converge, resort to the Beta function. If the 
sum of the estimated variant frequencies exceeds 1, the frequencies are scaled 
down proportionally. The model is then used to predict the frequencies of the 
unique markers, as an estimate of the variant frequencies. An implementation of 
the described software is available on GitHub (https://github.com/fabou-uobaf/
VaQuERo). Spatiotemporal visualisation was performed from the deduced variant 
frequencies across Austria using the Multilevel B-Spline Approximation99 using the 
mba.surf function implemented in the R package MBA (v.0.0.9) with the following 
non-default parameters: no.X = no.Y = 30; m = range of longitude (°) divided by 
range of date (days); and extend set to FALSE.

Variant-specific reproduction number from WW. SARS-CoV-2 load was 
normalised to the ammonium nitrogen load as a population size marker,  
assuming an ammonium nitrogen load per capita of 8 g per day61. The 
normalisation results in the viral load parameter λ, representing viral copies  
per population equivalent per day, which is proportional to the absolute  
number of infected individuals47. In combination with the relative proportions 
from the sequencing-based variant quantification (derived from VaQuERo),  
the absolute quantity λν from a certain variant ν was estimated, by multiplication of 
the total virus load with the relative frequency of the variant. From there, the load 
time series is fitted and interpolated with a spline using the Matlab 2018a function 
FIT with option SmoothingSpline and smoothing parameter p of 0.001. The 
smoothing parameter p is defined between 0 and 1. p = 0 produces a least-squares 
straight-line fit to the data, while p = 1 produces a cubic spline interpolant. 
Next, to account for time delays in viral shedding of infected individuals, the 
smoothed time series is deconvoluted according to an experimentally inferred 
shedding distribution (using an iterative blind deconvolution algorithm) with 
a gamma distribution truncated after 25 days and normalised as previously 
described21. Finally, Rww is estimated from this time series using the Epi-Estim62,100 
implementation provided in MATLAB script estimate_R (https://mathworks.
com/matlabcentral/fileexchange/78760-estimate_r). We use variant-specific mean 
generation times of 5.5 (s.d. 4), 4.6 (s.d. 3.1), 3.3 (s.d. 3.5), 6 (s.d. 4.9) for the Alpha, 
Delta, Omicron and pre-Alpha variants, respectively101–103. Deduced Rww on the 
basis of viral load signal in the WW below 5 mega gene copies per population 
equivalent per day are rejected.

Evaluation by epidemiological case records. The national COVID-19 
surveillance system, maintained by AGES, collects all confirmed SARS-CoV-2 
cases, as identified, by routine tests of asymptomatic persons, suspected cases with 
symptoms and cases detected through contact tracing, amongst other methods. 
This data set extends to, if available, comprehensive, aggregated medical records 
including virus variant-related differential diagnosis. In the period of examination 
between 1 January 2021 and 10 February 2022, on average 50.6% of all identified 
SARS-CoV-2 cases in all municipalities connected to any examined WWTP were 
tested for SARS-CoV-2 mutations and variants. Sequencing-based tests were 
performed by either partial sequencing of the spike gene50, Sanger sequencing or 
whole-genome sequencing. However, most cases were analysed using RT-qPCRs 
for specific mutations, performed in the responsible diagnosis laboratory and 
reported to AGES. On the basis of the set of reported mutations, a case was 
classified as a particular variant of concern or as the wild type, accordingly. 
Definition of indicator mutations were adapted during the pandemic. Since 
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initially BA.1 and BA.2 were not distinguished but identified as B.1.1.529. Omicron 
subclades were aggregated in WW and clinical data for comparative analyses. 
Individual cases are allocated to their place of residence. Data were extracted from 
the AGES records for all municipalities connected to any examined WWTP and 
aggregated for all municipalities within the same catchment area and from the 
same calendar week, to deduce absolute case counts and relative frequency per 
variant, per catchment area and per week. Municipalities which discharge into 
more than one WWTP were omitted. If omitting municipalities led to the loss 
of >40% of the people served by one WWTP, the entire WWTP was omitted. 
For plotting purposes and for direct comparison with WW-derived data, both 
epidemiological cases and data from WW samples were shifted to Wednesday of 
that respective week. One-sided κ statistics were calculated using the function epi.
kappa with the Fleiss method from the epiR package (https://cran.r-project.org/
web/packages/epiR). Deduced P values were corrected for multiple testing with the 
method of Benjamini and Hochberg.

Mutation deconvolution. For mutation deconvolution, a hierarchical, 
unsupervised two-step clustering approach was used. First, a silhouette analysis 
collected mutations with similar pattern of relative abundances within a specific 
set of samples. The method is implemented in a software tool named DeViVa 
(deconvolution of virus variants), written in Python (v.3.8) and available from 
GitHub (https://github.com/SebH87/DeViVa). The first clustering step used Ward’s 
method on the basis of Euclidian distance to segregate spurious mutations. To 
guarantee consistent results, only mutations with a relative abundance >5% were 
accepted. The relative abundance of the remaining mutations was transformed 
(centred log-ratio transformation; 0 was replaced by 10−7) and subjected to a 
second hierarchical clustering step. For this, distances between mutations were 
calculated by applying the complete-linkage algorithm, which is based on square 
Euclidian distance. To identify distinct mutation constellations a silhouette analysis 
was performed104. Thereby, a silhouette coefficient is calculated for each clustering 
produced by a critical distance threshold between 2 and 20. The clustering 
exhibiting the highest silhouette coefficient is considered optimal and is used. 
Finally, each cluster is variant-typed by introducing its mutations into the reference 
genome of SARS-CoV-2 and assigning this newly assembled genome with the 
pangolin lineage tool49

Nucleotide diversity. The LoFreq-filtered variant call format files of all WWTP 
for which more than 18 time points were available with at least 2/3 of the genome 
covered with more than ten reads were used to extract variants with an allele 
frequency above 1%. Multiallelic SNPs were joined using Bcftools93 (v.1.12). For 
the amplicon primer sets used (ARTIC version 3 and VarSkip version 1) a total of 
69 and 40, respectively, runs of independently processed and sequenced, synthetic 
SARS-CoV-2 RNA (Twist BioScience) control samples were produced and used 
to define sites with increased false-positive variant callings. For that purpose, the 
controls were sequenced and analysed as described above. Mutations which exhibit 
a median observed allele frequency >2% or an allele frequency >5% in at least 10% 
of the samples were flagged as problematic mutations and omitted from further 
analysis. In total 39 mutations were identified as such. Thereof, 9 and 30 mutations 
were identified in ARTIC v3 and VarSkip v1 produced datasets, respectively. 
SNPgenie105 (v.2019.10.31) was used to calculate genome wide nucleotide 
diversity π. For samples with more than 20 time points, the data was integrated 
with abundances of variant of concern as deduced by VaQuERo. Significance of 
reduction of π between the introduction and the end of the dominance periods 
was evaluated using a one-sided Mann-Whitney U test between π-values from ±4 
weeks around the first time the variant rose above 10% relative frequency and from 
±4 weeks around the last time the variant was observed with a relative frequency 
above 90%.

Mobility data. Statistics on registered accommodation in the hospitality industry 
(Beherbergungsstatistik 2019/20, https://www.statistik.at/atlas/?mapid=them_
tourismus_winter_uebernachtungen) and the statistic on registered commuting 
dynamics (Registerzählung 2011, Abgestimmte Erwerbsstatistik, https://www.
statistik.at/atlas/?mapid=them_bevoelkerung_pendler) were gathered from 
publicly available databases. Of note, both registers do not represent the same 
period, and moreover, it is incalculable how social adaptation (work from 
home and circumvention of hospitality restrictions) has affected the registered 
behaviour. Therefore, time-resolved mobility data, which is based on the mobile 
communications network records from one undisclosed mobile provider, were 
used in addition. A movement from region A to B in the origin–destination 
matrix was measured if a mobile phone was first logged in to A for at least 15 min 
and afterwards logged in to B for at least 15 min. Detailed information about the 
origin–destination matrix calculation process have been described previously106. 
This movement data was used to define main axes of transportation for 
visualisation purpose and to deduce the proportion of population who at least once 
per day left the catchment area in the direction of another area or even another 
federal state. Therefore, the number of movements leaving the districts which are 
assigned to the WWTP were counted for each catchment. The retrieved statistics 
were normalised to the number of people connected to the sewage system and 
log10 transformed.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All raw sequencing data used during this study, with additional sequencing 
data produced for samples drawn from Austrian WWTP before December 
2020, are available under the ENA accession number: PRJEB48985. Raw variant 
quantification of samples described in this contribution are visualised and can be 
browsed in a dedicated dashboard available at https://ww-dashboard.bergthalerlab.
com107. Access to aggregated epidemiological data, collected by the Austrian 
Agency for Health and Food Safety (AGES; https://covid19-dashboard.ages.at/), 
can be granted for research purposes in compliance with local regulatory and 
legal frameworks, to exclude retraceability of individual cases, upon request via 
the corresponding author. SARS-CoV-2 genome sequences for marker mutation 
definition can be obtained from GISAID (https://www.gisaid.org/) from registered 
users agreeing to the effective terms of use (https://www.gisaid.org/registration/
terms-of-use/).

Code availability
The source code for the developed and applied software for variant quantification 
(VaQuERo) and mutation deconvolution (DeViVa) is available on GitHub (https://
github.com/fabou-uobaf/VaQuERo and https://github.com/SebH87/DeViVa).
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Extended Data Fig. 1 | See next page for caption.

NATuRE BIOTECHNOLOGy | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


ArticlesNATuRE BiOTECHNOlOgy

Extended Data Fig. 1 | Data collection and WWTP selection. a, Cumulative population curve for all Austrian WWTP and their served people. The 
positioning of the six showcase WWTP is highlighted. b, Proportion of population for each Austrian federal state being connected to a WWTP included in 
the surveillance programme. c, Graphic representation of all sequenced samples from WWTP with more than three timepoints. Sample date and location 
and sequencing success are indicated. Samples are classified into passed and detected if 40% and 5% of the genome, respectively, is covered with more 
than 10 reads. A coverage of more than 5% of the genome was considered as robust detection of the virus, since at least three independent amplicons 
responded, but too little information is provided to reliably characterise viral variants. Therefore, detected samples were not used further. If less than 5% of 
the genome was covered, the sequencing of the respective samples was categorised as failed. 80% of all samples were classified as passed. Another 10.2% 
and 9.8% were classified as detected and failed, respectively.
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Extended Data Fig. 2 | Sequencing reproducibility analysis. Analysis of triplicate sample sets collected on the same day at two different WWTP 
and processed independently. a, Distribution of parameter characterising the WW of Austrian WWTP. The values of the two WWTP selected for 
reproducibility analysis are marked with solid (Hofsteig) and dashed (Kuchl) lines. Boxplots indicate 25%, 50% and 75% percentile (boxes) and up to 
the 1.5 times interquartile range contiguous from there (whiskers). b, Reproducibility analysis for detection of mutations. Venn diagram over the sets of 
mutations observed with a frequency greater zero in an individual sample for all mutations called in any of the triplicates with an allele frequency greater 
2%. c, Analysis of triplicate samples with respect to the qualitative reproducibility of observed allele frequencies. Correlation between allele frequencies 
is modest with correlation factors between 0.69 and 0.87. Generally, mutation dropout in one sample contributes heavily to a reduced correlation factor. 
d, Reproducibility of normalised read coverage per amplicon between the triplicates. e, Deduced allele frequencies of marker mutations of the Alpha 
(B.1.1.7) variant (dominating variant according to WW and to epidemiological case surveillance data at the corresponding time) in the triplicates. Point 
colour indicates read depth at the respective loci. f, Scatter plot depicting the median mutation frequency and the individual mutation frequencies for each 
detected mutation (with median frequency greater than 2%) in the two replication sets. Samples at the baseline (y = 0) represent complete dropouts in 
one replicate. Point colour indicates read depth at the respective loci. As in panel d, some mutations with expected presence according to the replicates 
are absent even though the position is covered by a substantial number of reads.
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Extended Data Fig. 3 | Analysis workflow. Illustration of the main analysis workflow steps from the WW sampling point, the wet lab procedures (orange 
panels), via the bioinformatics analysis steps (blue panels) to the analysis results (green panels). Major readouts of the analysis are nucleotide diversity 
π, cluster of correlated mutation constellations, variant quantification and determination of reproduction number in the catchment area. Analysis steps 
implemented in the software tool VaQuERo are highlighted by red shading.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Dimensionality reduction of Austrian geolocations. Given the mountainous topography and the elongated shape of Austria two 
pronounced axes of transportation can be defined. a, Movements between municipals based on mobile communications, network records and the two 
main axes of movement following arterial roads defined thereof. b, Localisation of monitored WWTP and their association to the closest point on the main 
transportation axis. c, One-dimension representation of the WWTP along the two main axes of transportation and the distance to the defined axis.
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Extended Data Fig. 5 | Validation of WW-based variant quantification. a, Compendium of the development of the case-based variant surveillance 
programme conducted by the Austrian health authorities, Austria hospital associations and registered by the Austrian Agency for Health and Food Safety. 
Based on guidelines issued by the authorities, the fraction of positive cases within the examined WWTP catchments which were subjected to variant 
screening changed over the course of the pandemic. Between January 2021 and January 2022, on average 50.6% of the positive cases residing within a 
monitored catchment were conveyed to variant screening. b, Visualisation of the bimodal distribution of relative variant frequency with an accumulation 
close to zero and close to one and the two-sided Kendall rank correlation analysis thereof. c, Two-sided Kendall rank correlation analysis between relative 
variant frequencies deduced from clinical surveillance and from WBE, omitting extreme relative variant frequencies close to zero and one. d, Linear 
regression between magnitude of variant signal observed in case-based variant surveillance and missed in WW-based variant surveillance, and the 
population size of the respective catchment. For each WWTP the minimal, median and maximal absolute and relative size of the signal is plotted against 
the number of people served by the WWTP. Linear regression lines are calculated and drawn including the 95% confidence interval for the predicted linear 
model.
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Extended Data Fig. 6 | Comparison between clinical and WBE variant surveillance. The relative variant frequency of different variants for each WWTP 
catchment deduced with either of the two surveillance programmes is arranged along the two main transportation axes in Austria (x-axis) and the 
observation period (y-axis) and interpolated individually using B-splines. For each data point in this artificial plane, the two independently deduced 
frequency values are visualised by an additive colour encoding, as depicted in the right upper corner. Generally, the colour encode agreement on a low level 
(black, agreement on a higher level (green) is only observed in the WW programme (red) and only observed in the case-based programme (yellow).
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Extended Data Fig. 7 | Mutation constellation deconvolution. Mutations which are grouped into related mutation constellation based on their mutation 
frequencies, as depicted in Fig. 3a, are used as input for VaQuERo, instead of the normal GISAID trained variant defining mutations. The graphic illustrates 
the geographic distribution and the dynamics of the de novo inferred mutation constellation enriched in Alpha (B.1.1.7) associated mutations in all 
monitored WWTP from the examined province Carinthia.
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Extended Data Fig. 8 | Virus population diversity and mobility. Two-sided Kendall rank correlation analysis between nucleotide diversity measure π of 
all samples with dominated by one variant with a frequency above 95% and external data, describing (from left to right) the number of people in the 
catchment area a, people connected to the WWTP in the catchment area. b, the 14-day incidence rate per 100,000 people c, the proportion of in and out 
commuters (as officially registered) to the total number of people in the catchment area d, the number of registered over-night days in the hospitality 
industry in the catchment area e, the proportion of population leaving the commune f, or the federal state, as observed by mobile communications 
network records.
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Extended Data Fig. 9 | Reproduction number Rww deduced from WW. Selected WWTP with the variant-specific reproduction number Rww deduced 
from changes in virus load observed in the wastewater and relative variant frequency observed in sequencing data thereof. The grey area indicates the 
estimated Reff per respective federal state as deduced from epidemiological surveillance according to official records (https://wissenaktuell.ages.at/
fileadmin/AGES2015/Wissen-Aktuell/COVID19/R_eff_bundesland.csv).
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Extended Data Fig. 10 | Reproducibility of RNA extraction method between collaborating laboratories. To validate comparability of RNA extracts 
produced by different participating laboratories, namely, Medical University Innsbruck (GMI), Technical University Vienna (TU-Wien) and University 
Innsbruck (UIBK), a ring trial was performed. Samples at three locations selected based on a high, medium and low COVID-19 incidence rate as observed 
in epidemiological case surveillance were collected with n=1 in each group and shipped to the participating laboratories and independently processed 
with the respective routine protocol. Produced RNA extracts were transported to a centralised laboratory and quantified with a digital PCR (dPCR) system. 
Observed virus concentrations (gene copies per microliter) are depicted including the 95% confidence interval as deduced from the absolute count of 
responding single dPCR partitions assuming a Poisson distribution.
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