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Abstract New applications are emerging every day exploiting the huge data volume

in community photo collections. Most focus on popular subsets, e.g . images containing

landmarks or associated to Wikipedia articles. In this work we are concerned with the

problem of accurately finding the location where a photo is taken without needing

any metadata, that is, solely by its visual content. We also recognize landmarks where

applicable, automatically linking them to Wikipedia. We show that the time is right

for automating the geo-tagging process, and we show how this can work at large scale.

In doing so, we do exploit redundancy of content in popular locations—but unlike most

existing solutions, we do not restrict to landmarks. In other words, we can compactly

represent the visual content of all thousands of images depicting e.g . the Parthenon

and still retrieve any single, isolated, non-landmark image like a house or a graffiti

on a wall. Starting from an existing, geo-tagged dataset, we cluster images into sets

of different views of the the same scene. This is a very efficient, scalable, and fully

automated mining process. We then align all views in a set to one reference image and

construct a 2D scene map. Our indexing scheme operates directly on scene maps. We

evaluate our solution on a challenging one million urban image dataset and provide

public access to our service through our online application, VIRaL.

1 Introduction

Images in community photo collections have scaled to billions over the last few years.

Searching into such huge collections traditionally depends on text and other community

generated data; state-of-the-art visual image retrieval has not yet scaled enough. On

the other hand, a number of data mining and clustering approaches have emerged

that exploit data like location, time, user (photographer) and tags. Such approaches

typically focus on popular subsets where visual representation can indeed help, e.g .

images containing landmarks or associated to Wikipedia1 articles.
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What is more interesting, new applications are emerging, for instance location esti-

mation as in Hayes and Efros [13], virtual tourism as in Snavely et al . [41], and landmark

recognition as in Zheng et al . [46]. Such applications are becoming part of larger ge-

ographical systems, creating a new experience. For instance, Flickr2 and Panoramio3

photos can already be seen directly overlaid in panoramas of Bing Maps Streetside

Photos4 and Google Street View5, respectively. While matching and alignment can

be done automatically with certain accuracy, photos have to be already geo-tagged.

History Pin6 goes further to collect a user-generated archive of the world’s historical

images and stories. The process here is manual and users need to “pin” photos on

Street View by themselves.

GPS-enabled devices can provide geo-tags automatically, but most photos are still

uploaded without geo-tags, let alone historical material. Automating the geo-tagging

process would be a leap for such applications. Unlike [13], which only estimates a

geolocation probability map, we are interested in location recognition, that is, accurate

matching to images of the same scene. This is typically possible in urban scenes, due

to their unique structural details. Along with triangulation, it may also lead to exact

localization as in Zhang and Kosecka [45]. Unfortunately, current approaches to location

recognition either do not scale well, or focus on popular locations like landmarks.

In our recent work (Avrithis et al . [2]) we have shown how large image clusters

of popular places may help in boosting the efficiency of retrieval, while a distortion

bound can guarantee that isolated images are still retrieved as in a generic retrieval

engine. This has opened the way to a scalable solution that is still able to retrieve

non-landmark photos. In this work we present our retrieval framework, we use it to

localize a new landmark or non-landmark photo, and recognize landmarks or points of

interest when they do appear. We also present our online application VIRaL7—Visual

Image Retrieval and Localization—that provides public access to all services via an

integrated interface.

Given a large set of geo-tagged images, we group them by location first, construct-

ing geographical clusters. The objective here is to identify images that potentially de-

pict views of the same scene. E.g ., two images taken 2km apart are unlikely to de-

pict the same building. We then use sub-linear indexing to compute pairwise visual

(dis)similarities efficiently within geographical clusters and group images depicting the

same scene into visual clusters. Given a visual cluster, we align all images to a reference

image by homography estimation and construct a 2D scene map by grouping together

similar local features of all images of the visual cluster. We extend the entire indexing,

retrieval, and spatial matching scheme to operate on scene maps rather than images.

This not only provides memory savings, but also increases recall significantly.

We experiment on a challenging one million urban image dataset containing images

from 22 European cities. The clustering and mining process is very efficient and entirely

automatic. It took about two days on a 8-core CPU, while the baseline visual index

was already available. At query time, filtering relevant scene maps takes place in the

order of milliseconds, whereas verification and re-ranking according to geometry takes a

2 http://www.flickr.com
3 http://www.panoramio.com
4 http://www.bing.com/toolbox/blogs/maps/archive/2010/02/11/new-bing-maps-application-streetside-photos.aspx
5 http://google-latlong.blogspot.com/2010/06/seeing-new-sights-with-photo-overlays.html
6 http://www.historypin.com/
7 http://viral.image.ntua.gr

http://www.flickr.com
http://www.panoramio.com
http://www.bing.com/toolbox/blogs/maps/archive/2010/02/11/new-bing-maps-application-streetside-photos.aspx
http://google-latlong.blogspot.com/2010/06/seeing-new-sights-with-photo-overlays.html
http://www.historypin.com/
http://viral.image.ntua.gr


3

couple of seconds. Given even a single verified match in the dataset, the location of the

query image is inferred and displayed on the map along with all similar images found.

Finally, locations and text (title, tags) of similar and nearby images are cross-validated

with relevant information in Geonames8 entries and geo-referenced Wikipedia articles.

Whenever a known landmark or point of interest appears in the photo, the relevant

article is automatically linked to the photo.

2 Related Work

2.1 Location Recognition

In one of the earliest works on multiview matching in urban scenes, Johansson and

Cipolla [17] estimate homographies between pairs of images and provide automatic

pose estimation. Using edges and corners as image features, this approach and the later

one by Robertson and Cipolla [35] are limited to simple geometric structures like those

in building facades. Using SIFT features [26], Zhang and Kosecka [45] search directly

in the descriptor space for the closest reference view in a small image database, thereby

providing coarse location recognition in urban environments. Pose estimation follows

by RANSAC using either a homography or a fundamental matrix model, whereas exact

localization in 3D relies on triangulation using the query and two reference views.

Using MSER regions [27] and fast nearest neighbor search, Steinhoff et al . [43]

build on the previous model to achieve pose estimation that is fast enough for real-

time, continuous positioning on a mobile device, with accuracy comparable to GPS.

Here the dataset scales to 600 reference images of an urban environment covering an

area of a few city blocks. Schindler et al . [37] are among the first to use inverted file

indexing by means of a vocabulary tree [30] for city-scale location recognition, scaling

up to 30, 000 images covering 20km of streetside views.

Hayes and Efros [13] advance to world-scale geographic estimation by searching into

a database of six million geo-tagged images downloaded from Flickr. The price to pay is

that images are now represented by global features like color/texton histograms, GIST

descriptors[31], etc. Matching accuracy is not even comparable to that of local features

and the output is a geolocation probability map. Kalogerakis et al . [18] build on the

previous result by exploiting the time each photo is taken, much like [10]. The output

remains a probability map and anyhow this only works for image sequences rather

than a single image query. More recently, precise location recognition approaches have

emerged that can work at world scale, but all are restricted to landmarks. Some of

them are examined in the following subsections.

2.2 Landmark Recognition

Kennedy et al . [19] are probably among the first to mine popular locations and land-

marks from a large scale (107) Flickr dataset including metadata like tags, geo-tags

and photographers. While clustering photo locations and frequent tags helps construct

tag maps for arbitrary areas in the world, subsequent visual clustering performs rather

8 http://www.geonames.org

http://www.geonames.org
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poorly due to the global features employed. Likewise, Crandall et al . [10], detect ge-

ographical regions of high density corresponding to popular locations and automat-

ically mine landmark names from tags. Relevant photos are then seen as a ground

truth dataset for a learning problem. This dataset turns out quite noisy; visual fea-

tures alone underperform text and in some cases are only comparable to chance. Li

et al . [24] slightly improve performance using a multi-class SVM classifier. Seen as an

object recognition task, this is a difficult problem with 30 million images, of which 2

million are labelled in one of 500 categories. Clearly, indexing approaches outperform

this learning alternative.

On the other hand, Simon et al . [39] focus more on visual clustering without lo-

cation data, but follow a more principled optimization approach to select a number of

canonical views and construct a scene summary for browsing. Clearly, this cannot scale

easily to more than 104 images. Image webs is a related idea by Heath et al . [14]. Par-

allelism is again the key in the high computational cost involved. Chum and Matas [6],

extend to web-scale visual clustering without using location data as well, relying on

hashing to detect near-duplicates. This leads to a dramatic increase in performance,

under the assumption that a popular location with a large number of associated photos

is likely to be discovered.

Quack et al . [34] divide the geographic areas of interest into overlapping square

tiles; similarly to [19] and contrary to [39] and [6], they perform visual clustering inside

each tile only, making the problem more tractable. On the other hand, they perform

exhaustive pairwise homography estimation, probably loosing the computational ad-

vantage. Even though landmarks, objects or events are mined in an offline process,

location recognition of a new image is severely limited, due to exhaustive linear search.

Gammeter et al . [11] improve this by inverted file indexing, but the mining process

is still quadratic in the number of images in each geo-cluster. There is now an in-

verse search by Wikipedia articles, while objects of interest are automatically detected

and labelled in photos. Finally, Zheng et al . [46] perform a similar combination of

geographic and visual clustering, as well as an inverse search by travel guide articles

containing landmark names. Again there is no indexing during mining and the huge

computational cost is simply handled by parallel computing.

2.3 Reconstructing 3D Scenes

Another interesting application is vision-based reconstruction and navigation of a 3D

scene from a collection of widely separated views. Targeting small unordered sets of

personal photo collections, Schaffalitzky and Zisserman [36] provide one of the earliest

approaches. Here local features are connected in tracks and pairwise image matches are

connected into a global view of the dataset. Such structure from motion is enhanced

by Snavely et al . [41] to scale to datasets of 103 images acquired by text queries from

Flickr. On top of that, scene rendering and object-based navigation are now targeting

virtual tourism applications.

While working on datasets of similar scale, Li et al . [23] attempt to speed up the

reconstruction process by a hierarchical approach, eventually constructing an iconic

scene graph. Because of the use of global descriptors, the increased speed comes at a

loss of accuracy. On the other hand, Snavely et al . [42] employ the idea of a skeletal

graph to speed up by summarizing data. An extreme application is reconstruction

of city-scale models by Agarwal et al . [1] from Flickr datasets in the order of 105
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photos. Here, a massively parallel architecture is designed to take advantage of cloud

computing.

What is interesting is that while the above applications are probably the most

computationally intensive, none actually uses existing geo-tags to guide the clustering

process. This is a waste not only because each clustering sub-problem would then be

smaller, but also because geo-tagged photos typically depict outdoor scenes more often,

compared e.g . to a text query for the term “rome”. Futhermore, despite the effort spent

in constructing a model, the output is not used in any way to help retrieval or location

recognition of a new photo.

2.4 Sub-linear Indexing

It is evident that local feature matching may provide accurate location recognition, so

scaling up largely depends on the efficiency of the employed image indexing and re-

trieval scheme. Using a bag of words representation, Sivic and Zisserman [40] show how

text retrieval techniques like codebooks, inverted file indexing, and TF-IDF weighting

can apply to visual search. Nister and Stewenius [30] extend to hierarchical codebooks

and construct a vocabulary tree that is also used to assign features to visual words.

Philbin et al . [33] show that, being more flexible, flat k-means in fact outperforms the

vocabulary tree. To construct a large (1M) codebook they employ the randomized kd-

tree of Silpa-Anan and Hartley [38] to assign points to cluster centers at each iteration

of k-means. Moreover, they exploit local feature shape to speed up spatial re-ranking.

Chum et al . [9] go a step further to exploit image similarities in the dataset and

boost recall by employing a number of strategies for query expansion. Also employed

in [1], this is a form of query-time clustering. It assumes multiple different views of the

same scene in the dataset, which is typical in geo-tagged datasets from Flickr. More

recent advances in image indexing include the work of Jegou et al . [15], Perdoch et

al . [32] and Jegou et al . [16], focusing on different aspects of geometric consistency,

visual codebooks and memory usage respectively. Furthermore, Chum et al . [8] focus

on small object retrieval, while Avrithis et al . [3] achieve sub-linear indexing of global

geometry. In general, while all recent methods are very fast, there is a trade-off between

indexing accuracy and memory requirements. Our choices are discussed in section 5.

3 View Clustering

As it is common in a number of recent approaches, we follow a two-layer clustering

scheme according to location (latitude, longitude) and visual similarity (number of

inliers arising from spatial matching). The two layers are termed geo-clustering and vi-

sual clustering, respectively. The objective of the latter is to identify photos depicting

views of the same scene. The final outcome is therefore a set of view clusters and the

overall process is termed view clustering. The idea of the two layers is that views of the

same scene are not expected in photos taken too far apart, so geo-clustering helps re-

duce the computational cost of visual clustering. We use the kernel vector quantization

(KVQ) approach of Tipping and Schölkopf [44] for clustering. We first summarize some

properties of KVQ below. We then discuss our specific two-layer clustering scheme and

give examples of geo-clusters and visual clusters mined from our urban photo dataset.

Finally, we discuss our choices in comparison to other solutions.
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3.1 Kernel Vector Quantization

Seeing KVQ as an encoding process, the maximal intra-cluster distance is the maximum

level of distortion. KVQ guarantees an upper bound on distortion and adjusts the

number of clusters accordingly. Given a metric space (X, d) and a finite dataset D ⊆ X,

the objective is to select a subset Q(D) that is as small as possible, under the constraint

that all points in D are not too far away from some point in Q. “Too far” is measured

by metric d and the maximal distance is specified by a given scale parameter r > 0. An

optimal solution would require combinatorial optimization; in practice, we can obtain

a sufficiently sparse solution by simply solving a linear programming problem and

applying a subsequent pruning step. Details are given in [44] and [2].

Given a point x ∈ X, define cluster C(x) = {y ∈ D : d(x, y) < r} as the set

of all points y ∈ D that lie within distance r from x. The codebook Q(D) obtained

by KVQ has the following properties. (i) Q(D) ⊆ D, that is, codebook vectors are

points of the original dataset. Alternatively, we shall refer to such points as cluster

centers. (ii) By construction, the maximal distortion is upper bounded by r, that is,

maxy∈C(x) d(x, y) < r for all x ∈ Q(D). (iii) The cluster collection C(D) = {C(x) : x ∈

Q(D)} is a cover for D, that is, D =
⋃

x∈Q(D) C(x). However, it is not a partition as

C(x) ∩ C(y) 6= ∅ in general for x, y ∈ D. That is, clusters are overlapping.

The latter property is particularly useful for geo-clustering where it is not desirable

to spatially separate views of the same scene. For visual clustering, it is useful in

case of gradual transitions of views that would otherwise be arbitrarily separated.

Contrary e.g . to k-means, the number of clusters is automatically adjusted to the

maximal distortion r. KVQ requires pairwise distances between all points in D; their

computation is quadratic in the dataset size |D|.

3.2 Geo-clustering

Given a set of photos9, we represent each photo p ∈ P by tuple (ℓp, Fp), where ℓp is

the capture location of the photo (latitude and longitude) and Fp its set of local visual

features. The latter includes feature position and shape, along with visual word labels,

as detailed in section 5.1. We perform geo-clustering by applying KVQ to P in metric

space (P, dg) with scale parameter rg, where P is the set of all possible photos and

metric dg is the great circle distance [2]. Given a photo p ∈ P , define a geo-cluster as

Cg(p) = {q ∈ P : dg(p, q) < rg}. That is, the set of all photos q ∈ P that lie within

geographic distance rg from p. Similarly, given the resulting codebook Qg(P ), define

the geo-cluster collection Cg(P ) = {Cg(p) : p ∈ Qg(P )}.

In practice, we use spatial bucketing by quantizing coordinates on a uniform grid

and keep one sample from each bucket to perform KVQ. The grid interval is small

compared to rg so geo-clusters are largely unaffected. The computational cost is con-

siderably reduced however, and eventually depends on spatial grid resolution rather

than |P |. This cost is negligible compared to that of the remaining clustering steps,

e.g . it takes a few seconds to complete geo-clustering on set of photos P , with |P | = 105

geo-tagged photos. If more speed-up is needed, one may always index coordinates e.g .

by a kd-tree and locate spatial neighbors in logarithmic time.

9 We shall use the terms photo, image and view interchangeably in the following.
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Fig. 1 Map of Athens illustrating geo-clusters at three different zoom levels. Black dots, red
markers and red circles stand for photos, codebook vectors and cluster boundaries, respectively.

In Figure 1, we illustrate a map of Athens depicting all geo-clusters at three different

zoom levels, for rg = 700m. Observe the density of photos e.g . in the city center and

particularly in the area of the Acropolis. Overlapping helps keep such dense areas in a

single cluster for subsequent visual clustering. Photos taken even e.g . 1km away from

a landmark may be included in the same cluster. The total number and position of

clusters is automatically inferred from the data.
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Fig. 2 Photos associated to the centers of the most populated visual clusters from Pantheon,
Rome.

3.3 Visual Clustering

As in [39], we will say that any two photos p, q ∈ P are connected if at least one rigid

object is visible in both, possibly under different viewpoints. A scene is then defined

as a subset S ⊆ P of connected photos. That is, for all p, q ∈ S, we may visually match

common objects under rigid 3D geometry regardless of viewpoint. Local visual features

and descriptors are employed for this purpose, as detailed in section 5.1. The output

of visual matching is typically the number of inliers I(p, q) between visual feature sets

Fp, Fq of photos p, q respectively.

We now apply KVQ to each geo-cluster G ∈ Cg(P ) in space (P, dv) with scale

parameter rv. Since I(Fp, Fq) is a similarity measure, any decreasing function will do

as a metric, e.g . dv(p, q) = exp{−I(Fp, Fq)}. The exact formula of dv(p, q) is not im-

portant; in effect, the scale parameter specifies a threshold τ = − log rv in the number

of inliers. Let Qv(G) be the resulting codebook, and define visual cluster Cv(p) = {q ∈

G : dv(p, q) < rv} for p ∈ G and visual cluster collection Cv(G) = {Cv(p) : p ∈ Qv(G)},

similarly to geo-clustering. Repeating over all geo-clusters, the complete codebook

Q(P ) over the entire dataset is the union Q(P ) =
⋃

G∈Cg(P ) Qv(G). Finally, the set of

all view clusters C(P ) is defined accordingly as C(P ) = {Cv(p) : p ∈ Q(P )}.

The main bottleneck the clustering process above is the computation of pairwise

distances, which is typically quadratic in the size of the dataset. This is not an issue in

geo-clustering but is critical in visual clustering. Our solution here is geo-cluster specific

sub-linear indexing. In particular, we use an inverted file indexed by both visual word

and geo-cluster. Given a query image q ∈ G, we find all matching images p ∈ G

with I(Fp, Fq) > τ in constant time that is typically less than one second. The entire

computation is now linear in |G|.

To illustrate the effect of visual clustering on a set of photos, we give an example

from Pantheon, Rome, following the examples appearing in [39] and [34]. In particular,

we select all Flickr photos geo-tagged in Rome. We then separate a seed set of photos

with tag pantheon and expand this set by adding all Rome photos that are visually

matching any other photo in the seed set. We end up with a total of 1, 146 images

that we consider to be a single geo-cluster. The resulting visual clusters are 258. The

average visual cluster size is 30 images and an image belongs to 4 visual clusters on

average, due to overlapping.

Figure 2 depicts photos corresponding to cluster centers for the most populated

clusters. Comparing to [39], the objective here is neither summarization nor canonical
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Fig. 3 Photos in a sample of visual clusters from Pantheon. The first image (on the left) of
each cluster corresponds to the cluster center.

view selection, and there is no requirement for orthogonality between cluster centers.

On the other hand, the maximal distance between photos in a single visual cluster is

such that we can subsequently align all of them in a scene map. Figure 3 depicts images

in a sample of visual clusters. Due to the strict matching process, images in each visual

cluster are quite similar. The last cluster at the bottom appear to be diverse, but close

observation reveals that all images are connected—that is, share a common rigid image

part—with the first image in the cluster, that is the cluster center.

3.4 Discussion

Different strategies are followed for clustering in existing research works. For instance,

Crandall et al . [10] and Li et al . [24] use mean-shift to perform geo-clustering alone

and mine high-density locations corresponding to popular places. On the other hand,

a second layer of visual clustering follows in other approaches, using different algo-

rithms including k-means ([19]) and agglomerative clustering ([34],[11],[46]). For geo-

clustering, [19] and [46] use the same algorithm as for visual clustering, whereas [34]

and [11] simply quantize locations into overlapping rectangular tiles. There are also

[23], [39] and [6] which perform visual clustering alone. Naturally, this does not scale

well.

The main drawback of k-means and agglomerative clustering is that there is no

control over the maximal intra-cluster distance. This is crucial because it may lead to

geo-clusters with photos taken too far apart, or visual clusters with photos that have

too few inliers. Note that k-means requires a vector space anyway, so it cannot use the

number of inliers as a similarity measure. On the contrary, KVQ controls distortion

and works in arbitrary metric spaces.
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Mean-shift [5], used in [10] and [24], has a similar property of controlling distortion:

in this case the upper bound is the bandwidth parameter of the kernel function, or

the scale of observation. However, mean-shift needs seeding and e.g . [10] uses spatial

bucketing and samples one photo from each bucket as a seed. There is no such need in

KVQ and this is fortunate because bucketing also assumes a vector space and would

not apply to visual clustering. The fixed tiles of [34] also control scale/distortion in

geo-clustering, but KVQ has the advantage of adjusting to data.

A similar use of KVQ in retrieval may be found in Lampert [20]. As a branch-and-

bound method, [20] relies on visual similarities within the dataset and would reduce to

linear search without visual clustering. With our inverted file index on the other hand,

we can still work with isolated images in sub-linear time and yet have the advantage

of clustering wherever similarities permit.

Finally, the bottleneck of pairwise distance computation in the visual clustering

process is typical in most related work. The same problem appears in Quack et al . [34]

who use quite small spatial tiles of 200m because they need to perform exhaustive pair-

wise homography estimation within each geographic tile. This will fail to capture scenes

that extend spatially to more than 200m, which is quite often. The same quadratic cost

appears e.g . in [11],[46],[39], while for [19] this is a reason for not using local features.

We use larger geo-clusters with rg = 700m, yet achieve a very fast implementation.

This implementation is not as fast as the on of Chum [6], but we do have the advan-

tage of geo-clustering. This lowers the cost and allows one query per image in each

geo-cluster. On the other hand, [6] employs hashing with low recall, and is thus limited

to popular locations—isolated photos are unlikely to be discovered.

4 Scene Maps

So far, we know that the image associated to the center of a view cluster shares at least

one rigid object with all other images in the cluster. We treat it as a reference image

for the cluster and align to it all other images by computing a relative homography

transformation, as detailed in section 5. We collect all aligned visual features and

construct a compact representation that we call a scene map, because it is a 2D spatial

map of features associated to different views of the same scene. It is now possible

to match a query image to an entire scene map under the same geometry. We thus

use scene maps directly for retrieval, instead of images. This saves on memory and

computations at query time, makes matching more robust by increasing inliers and

also increases recall, because for each matched scene map we return all its views. We

present scene map construction here, and then discuss our model in relation to existing

work.

4.1 Scene Map Construction

For each reference image p ∈ Q(P ) and corresponding view cluster Cv(p) we construct

a feature collection F (p) as the union of features over all images q ∈ Cv(p), after

aligning with the reference. In particular, let Hqp be the estimated homography from

q to p and assume each visual feature is represented by a tuple (x,w) with x being the
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Fig. 4 Scene map construction from 10 photos of Palau Nacional, Montjuic, Barcelona.

(a)

(b)

Fig. 5 Detail of point cloud in Montjuic scene map corresponding to the highlighted region of
Figure 4, (a) before and (b) after vector quantization. Colors represent different visual words,
modulo 9.

position and w the visual word label. Then this collection is constructed as

F (p) =
⋃

q∈Cv(p)

{(Hqpx,w) : (x,w) ∈ Fq}. (1)
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Here, x is assumed a 3-vector with the homogeneous coordinates of feature position.

The scene map S(p) is a sparse representation of F (p) such that a query will (ideally)

match a scene map whenever it would match any single image in the map. This gives

rise to vector quantization once more. As detailed in our previous work [2], it turns

out that we can break this up into a number of smaller subproblems. In particular, we

partition F (p) into a number of disjoint sets Fw(p) = {(x, u) ∈ F (p) : u = w}, one

for each a visual word w, and apply KVQ separately to each Fw(p) in (R2, d2) with

scale parameter rx. Here feature positions are in 2D Euclidean coordinates and d2 is

the Euclidean metric. Finally, we join the resulting codebooks Qx(Fw(p)) into a single

scene map, S(p) =
⋃

w∈W
Qx(Fw(p)). We set scale parameter to rx = θ, where θ is

the error threshold used in spatial matching. Hence, a feature f will be in the spatial

cluster Cx(f
′) of another feature f ′ whenever f, f ′ are inliers in spatial matching.

In order to provide an example of scene map construction, we use a visual cluster

containing 30 images of Palau Nacional, Montjuic, Barcelona, 10 of which are overlaid

in Figure 4, after alignment. Out of 11, 623 features in total, 9, 924 are retained in the

scene map after quantization, giving a compression rate of 15%. In terms of inverted

file entries (unique visual words), the figures are 11, 165, 8, 616, and 23%, respectively.

Detail of this scene map’s point cloud is shown in Figure 5. It is evident that features

are sparser after vector quantization.

4.2 Discussion

The above formulation bears similarities with several models in different contexts. To

name a few, Lowe [25] performs local feature view clustering by linking similar features

that are matched in adjacent views of an object, applying this representation to 3D

object recognition. Simon et al . [39] organize matching features of multiple images

into tracks, where a track corresponds to a single 3D point of a scene. They use this

representation to produce a visual summary of the scene by means of a set of canonical

views. Gammeter et al . [11] perform a similar alignment in visual clusters with the

objective of isolating bounding boxes of depicted landmarks. In image retrieval, Chum

et al . [9] collect the verified images from a query and build a latent model of the scene

by averaging term frequency vectors. This model is used on the query side to perform

query expansion. Leibe et al . [21] construct a set of spatial occurrence distributions in

an implicit shape model for object detection.

Comparing our model to [9], the latter does not encode feature position and is

constructed dynamically on the query side, whereas scene maps reside on the database

side and are static. Unlike the object-based approach of [11] we want to keep information

from all image regions. Matching features are linked into connected components in

[25], [39], and we need a similar compact representation, that is, more compact than

storing features of individual views. However, we also need to control the size of such

components, so that components in a scene map behave like features in a single image.

One way is to keep a minimal subset S(p) ⊆ F (p) such that no feature in F (p) is too

distant from its nearest neighbor in S(p). This justifies our use of KVQ in this case as

well.
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5 Visual Matching and Indexing

All processes used to match, align and index images or scene maps are described in

this section. These include: (i) the baseline visual representation, similarity, indexing

and spatial matching process. This is also a stand-alone retrieval solution that can

be used for location recognition as well. It forms the baseline for comparisons in our

experiments in section 8 and in fact, it is the underlying process of the current imple-

mentation of VIRaL application. (ii) The geo-cluster specific indexing process, used for

distance computations during visual clustering (section 3.3). (iii) The visual alignment

process that is employed during scene map construction (section 4). (iv) The scene map

similarity, indexing and spatial matching process. This is an extension of the baseline,

and can handle matching between images or scene maps.

5.1 Baseline

In the baseline process all images are treated individually. Images are represented by

local visual features and descriptors, which are quantized up to visual word against

a visual codebook. More details on features and visual codebook are given in section

8. We construct a bag of words representation and measure similarity by histogram

intersection and TF-IDF weighting. We then index images in an inverted file structure,

so query time is sub-linear in the number of images in the dataset. Ranking is based

on appearance only, not taking into account the spatial layout of local features.

A top-ranking shortlist of images is subsequently checked for geometric consistency

with the query image to verify there is common rigid object, or two views of the

same scene. We use a variant of fast spatial matching [33] over a 4-DOF similarity

model. This model makes a single correspondence assumption. In particular, tentative

correspondences between features of the query and an image in the list are generated

by matching visual words. Given a single correspondence, we use the position, scale and

orientation of the two features to compute similarity transformations T1, T2 that map

the features to a unit circle centered at the origin. Under no gravity-vector assumption,

an initial transformation hypothesis is T−1
2 T1. We count inliers over the tentative

correspondences and iterate over hypotheses. Whenever a new maximum is found, we

compute a least squares estimate of an affine transform from the given inliers and store

the best model so far—this corresponds to the “simple” method of Locally Optimized

RANSAC (LO-RANSAC) [7]. We have found that images with at least τ = 10 inliers

with the query typically depict the same object or scene.

Geo-cluster specific indexing. This is a simple variation of the baseline process,

where the inverted file is indexed by both visual word and geo-cluster. It is used during

visual clustering where, making a query for each image in a geo-cluster, we collect all

verified images giving I(p, q) > τ inliers. Because a geo-cluster is quite small compared

to the entire dataset, querying the index is significantly faster. Irrelevant images are

fewer so the top-ranking list can be shorter and spatial matching is faster as well.

Typically the query time is constant and on average an order of magnitude faster than

the baseline. It is also independent of the size of dataset.
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5.2 Alignment

In order to construct a scene map from the images in a view cluster, we need to

align their corresponding features first. We do this by estimating homography models

between matching images. Alignment is performed between a single reference image

and all other images in a view cluster; that is, it is linear in the size of the cluster.

Initial estimates are readily available from the responses of each query: for each pair

of matching images (p, q) in a geo-cluster, we store the best affine model Aqp that

transforms q to p. Therefore, when view clustering is complete, we only need a final

step of local optimization to estimate the homography.

More specifically, given a reference image p in view cluster Cv(p), we align p to each

image q ∈ Cv(p). We start from the stored affine model Aqp and perform a single step

of the “iterative” method of LO-RANSAC. The complete set of all points with error

smaller than threshold Kθ are used to estimate a homography with the Direct Linear

Transformation (DLT) algorithm [12]. We reduce the threshold and iterate until it is

equal to θ. We have found a maximum of 3 iterations to be enough for our experiments.

The final homography that aligns q to p is stored as Hqp.

5.3 Scene Map Indexing

Once all scene maps have been computed, we build a separate index for them. Even if

a scene map is typically larger than a single image, it has exactly the same represen-

tation, that is, a set of features. We therefore treat scene maps as images for indexing

and retrieval. By construction, we have already subsets Qx(Fw(p) of scene map S(p)

corresponding to each visual word w. The cardinalities of these subsets give directly

a term frequency vector for S(p). We then index all scene maps by visual word in an

inverted file. At query time, we compute a similar vector for the query image, and

retrieve relevant scene maps by histogram intersection and TDF-IF weighting.

A shortlist of top-ranking scene maps is again verified using the single correspon-

dence assumption, as in the baseline process. Even if the initial estimate is a similarity

transformation originating from the position, scale and orientation of local features, we

can still recover a correct affine transform by least squares fitting given at least three

inliers. To speed up the re-ranking process, we terminate and consider the scene map

verified if at least τh inliers have been found. On the other hand, we discard an image if

no more than τℓ inliers have been found for a predefined percentage of all hypotheses.

Moreover, we discard a hypothesis if the the inliers found for a predefined percentage

of correspondences are fewer than τℓ.

Whenever a scene map S(p) is found relevant, all images q ∈ Cv(p) are considered

relevant as well. This is exactly how recall is increased. To avoid the additional cost of

individual matching with each image, we consider all of them at the same rank, which

slightly affects precision.

5.4 Discussion

Our baseline visual indexing scheme is closest to [33], because it strikes a very good

balance between recall performance and memory footprint. On the other hand, our

scene map indexing is is beneficial in terms of both. It is analogous to the latent model
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for query expansion of [9], but executing offline on the database side. To draw an

analogy, recall that scene maps are statically computed in the off-line indexing process

and constrained within geo-clusters. On the other hand, a model is built dynamically

at query time in [9], increasing the computational cost. Without any constraint it is

prone to drift, especially when iterative. Most importantly, query expansion cannot

help at all when relevant images are too few (or just one) and initial query fails. We

compare our approach against two query expansion schemes in section 8.

6 Location and Landmark Recognition

Since retrieved images are likely to depict the same scene with the query photo, they are

also likely to be taken at a nearby location. Also, whenever any of the retrieved images is

associated to a known landmark or point of interest, we may infer a similar association

for the query photo as well. We explore these ideas below to provide automated location

and landmark recognition, respectively. We then discuss our choices in relation to

existing solutions.

6.1 Location Recognition

Once a list of verified images or scene maps is retrieved, we exploit their geo-tags to

recognize the location where the query photo is taken. Of course, geo-tags of the images

in the dataset have different levels of accuracy, and some may be completely wrong.

We make here the assumption that even in the presence of outliers, there is a subset of

photos that are correctly geo-tagged, and these geo-tags are not too far apart. Hence,

we apply agglomerative clustering to the retrieved image locations and terminate when

the minimum inter-cluster distance is above a certain threshold. If there is at least one

cluster that contains more locations (photos) than all the others, then the centroid of

these locations is provided as the estimate of the query photo location. Otherwise, one

cluster is chosen at random.

We employ the reciprocal nearest neighbor (RNN) [21] algorithm for clustering,

using the group average criterion and Euclidean distance—more precise geographical

distance is not necessary here because locations are assumed nearby. Typically, we set

the termination threshold to 200m to represent the area around a building, landmark,

or depicted scene in general. The choice of an agglomerative approach is appropriate

here because it allows the extent of clusters to adjust to how retrieved locations are

spread around depicted scenes, yet it does not allow two clusters to merge if they are

too distant. The number of clusters is inferred from the data, while computation is

fast enough to apply at query time. Choosing the most populated cluster makes our

estimate robust. Outliers, either due to wrong geo-tags or errors in visual matching,

are discarded and do not affect location recognition.

6.2 Frequent Tags

Recognition of landmarks or points of interest relies on existing user tags and photo

titles 10. Titles are typically more reliable, but tags can also be helpful, despite being

10 Photo titles and user tags are the ones provided by users at the Flickr website.
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rather noisy. To provide for robustness and efficiency, we represent terms using a code-

book and extract a set of frequent tags using this representation. We first filter all tags

of the entire dataset through a manually created stoplist containing terms that are

too generic (e.g . paris, france, holidays), describe the conditions of the photo-shoot

(e.g . night shot, black and white), or are typically irrelevant to the content of the

photos (e.g . nikon, geo-tagged).

We then construct the codebook in an offline clustering process that is initialized

using data from the Wikipedia Search11 web service of Geonames. For each city in

the dataset, we have collected all entries in the geographical bounding box of the city

center, as specified in section 8.1. Each entry corresponds to one landmark or point of

interest, so we create one cluster for each. To deal with typos or language diversity,

we compare strings using the Levenshtein distance [22]. Starting with a list of all tags

in the dataset, we iteratively pick one tag at random, remove it from the list, and

compare it to the current set of clusters. If it is within a specific distance T from some

cluster, we insert it in that cluster (choosing one cluster at random in case of multiple

candidates); otherwise, we create a new cluster represented by this tag. We repeat until

the list is empty.

This process is similar to canopy clustering [28]; however, we use a single threshold

and a specific initial set of clusters. Custom initialization is the reason we do not use

KVQ, which would otherwise fit to this problem as well. All tags are assigned to a

unique cluster at maximum distance T , while tags associated with known landmarks

are represented by their Geonames form, which is considered canonical. Now, given the

codebook, we assign each tag to a single codeword. As an offline process, we associate

each photo to the codewords of its tags. Then, at query time, we collect all codewords

of retrieved photos and keep the ones having at least two occurrences into a set of

frequent tags. No string comparison is required for this process.

6.3 Landmark Recognition

We consider a landmark or point of interest to be any item associated to a Wikipedia

article that is geo-referenced within the geographical bounding boxes of the dataset

cities. To construct a list of such items, we use the Geonames source mentioned above,

as well as the corresponding Wikipedia web service12. The two services are quite sim-

ilar and typically 90% of entries are identical in the sense that they share the same

Wikipedia article URL. There are differences however, so we have merged them into

a single, combined list. For each item, we have stored the article name, url and geo-

graphical coordinates.

Now, given a query photo and its estimated location we select a list of articles

located within specific distance from the photo location—typically 200m, as in location

recognition. Each article title is matched against all frequent tags, as well as all titles

of retrieved photos. The Levenshtein distance is used once more, and each article is

assigned the minimum distance found. We rank articles by ascending distance and

select the top ranking ones below distance T as the set of suggested tags. These tags

identify the landmarks found and the associated Wikipedia articles are automatically

linked in the VIRaL result page. We could of course follow a similar codebook approach

11 http://www.geonames.org/export/wikipedia-webservice.html#wikipediaSearch
12 http://de.wikipedia.org/wiki/Wikipedia:WikiProjekt Georeferenzierung/Wikipedia-World/en

http://www.geonames.org/export/wikipedia-webservice.html#wikipediaSearch
http://de.wikipedia.org/wiki/Wikipedia:WikiProjekt_Georeferenzierung/Wikipedia-World/en
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to avoid string matching for titles but in practice the computational cost is negligible

compared to visual search.

6.4 Discussion

Different approaches are followed in related work for tag processing and landmark

recognition. A learning framework is followed in [10], [24], where geo-clustering is only

used to construct a ground truth set. A classifier is trained on this set using text, visual

features, or both. This approach is mostly limited by the dataset being too noisy, and

recognition has scaled up to 500 landmarks, while no location recognition is supported.

By contrast, our solution supports approximately 8, 500 landmarks or points of interest

in the current dataset of 23 cities. It is also interesting that [10], [24] only use tags while

we have observed that photo titles are typically more reliable.

Quack et al . [34] follow a quite exhaustive offline process: for each visual cluster

they extract tags, query Google for related Wikipedia articles, download photos from

several such articles, and then match the two photo sets to verify. However, photos

within articles are not quite reliable and the mining process is too slow. By using article

location and matching to estimated query location, we can narrow down text search so

that verification is now achieved at query time. Article location is used during crawling

in [11], which is quite similar to our approach in this sense, although assignment of

articles to visual clusters is again offline.

Zheng et al . [46] also assign visual clusters to landmarks in an offline process, and

support approximately 5, 500 landmarks from 1, 300 cities in 144 different countries.

They search into a small subset of representative images in each cluster. By contrast,

we use scene maps to search efficiently into the entire dataset, can recognize any point

of interest within the supported areas and localize any photo, landmark or not.

7 Application: VIRaL

The proposed methods may be accessed through our online application, VIRaL. We

use a dataset of 1.1M Flickr images depicting content from 23 European cities, along

with their metadata (i.e. geographic location, user tags, image title and description).

We have crawled this dataset from Flickr by requesting only geo-tagged photos and

constraining the search with a bounding box around each city’s center. A subset of this

dataset is used for our experiments as described in detail in section 8.1.

The response to a visual query is a ranked list of visually similar images. The

integrated process for visual retrieval follows the baseline approach described in sub-

section 5.1. A visualization of the detailed matching between query and each similar

image is also possible. The query image gets localized on the map and associated with

a set of frequent tags and a set of suggested tags as well (see section 6). Suggested tags

come along with direct links to Wikipedia articles.

7.1 Walkthrough

The welcome screen of the online application (Figure 6) presents a random set of

dataset images. There are two ways to browse the image dataset: through the welcome
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Fig. 6 VIRaL home page. Images shown are randomly selected from the entire dataset.

screen and through the Cities page. The latter presents random images from each city.

After choosing a city name, VIRaL will only fetch random images from the selected

city. Clicking on any of the images will trigger a new visual query.

Figure 7 presents a result page. In this case, the query is the second image in the

second row of the welcome screen example of Figure 6. On the top left corner of the

result page, we can see a map that contains a blue marker for each similar image and

a red marker for the estimated location of the query image. The gray marker at the

rightmost part of the map corresponds to a visually similar but incorrectly geo-tagged

image, which does not participate in the location estimation and is thus treated as an

outlier. On the top right of the result page we can see the query image along with the

sets of frequent and suggested tags. At the bottom rows, VIRaL presents the retrieved

images, ranked by decreasing similarity. The similarity value shown is the number of

inliers, normalized in [0, 1] with the use of a sigmoid function. Still referring to the

example of Figure 7, the frequent tags are terreiro do paço, praça do municipio,

monument, stevie0020, arch. The final set of suggested tags is Praça do Comércio

and Lisboa. Both are automatically linked to Wikipedia and are valid suggestions as

shown in Figure 8.

An uploaded image or image URL can also be used as a visual query. Of course,

in order to get proper results, the query image must have been taken at one of the

cities included in the VIRaL dataset. We have tuned the VIRaL application for high

precision, in order to eliminate as many false positives as possible. To boost recall also,

we have integrated a query expansion method, which is referred to as QE1 in section 8,

and it produces the set of Similar of Similar images. This set is constructed in negligible

query time, since similar images for the complete dataset have been computed off-line.

Figure 9 depicts this set for the example query of Figure 7.
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Fig. 7 Results of successful visual matching, location and landmark recognition. Top left: map
depicting actual locations of the similar images (blue markers) and the estimated location of
the query image (red marker). Top right: query image along with the sets of frequent and
suggested tags. Bottom: visually similar images.

Along with the view of similar images, it is also possible to visualize the result of

spatial matching by clicking on the Details link, positioned under each retrieved image.

As depicted in Figure 10, the matching part of the two images that contains features

in correspondence is inside bounding boxes.

Figure 11 illustrates the case of a typical scene of a building in Amsterdam that is

correctly localized based on three similar images but does not correspond to any known

landmark or point of interest. The two suggested tags are Sint Antoniesbreestraat,

the name of the street, and Zwanenburgwal, the name of the canal.
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Fig. 8 Wikipedia article suggested for the query image.

Fig. 9 Similar of Similar results, for the example query of Figure 7.

8 Experiments

8.1 Dataset

We experiment on a challenging one million urban image dataset, namely European

Cities 1M 13. It consists of a total of 1, 037, 574 geo-tagged images from 22 European

cities, which is a subset of the dataset used in the VIRaL application. A subset of

1, 081 images from Barcelona are annotated into 35 groups depicting the same scene,

building or landmark. Well known landmarks of Barcelona are depicted in the 17

groups, while the rest 18 depict scenes or buildings around the city center. Samples of

13 We have published the dataset online at http://image.ntua.gr/iva/datasets/ec1m/.

http://image.ntua.gr/iva/datasets/ec1m/
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Fig. 10 Correspondences between the query image (left) and a similar image (right). Local
features identified as inliers are depicted in yellow circles with scale and rotation (green line).
Correspondences between inliers are drawn in red lines. The blue bounding box indicates the
common region of the two images.

Fig. 11 Localization and recognition result for an indicative non-landmark query image.

the annotated set of images are presented in Figures 12 and 13, depicting landmarks

and non-landmarks respectively. We will therefore refer to non-landmarks as scenes.

Since only a subset of the annotated images are landmarks, annotation cannot rely on

tags; it is rather a combination of visual query expansion and manual clean-up. We

have also assigned geographic information and relative Wikipedia article(s), whenever
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Fig. 12 Query images from the 17 groups of landmarks in the annotated dataset.

applicable, to each of the groups. This way the ground truth can be further used

for geo-estimation and landmark recognition evaluation. Five images are selected as

queries from each group. If the group contains less than 5 images, a frequent case for

non-landmark scenes, all of the group images are used as a query. In total, we used 157

queries. Table 1 presents the names of the landmarks selected for the evaluation and

the size of the corresponding group for each of them and for all the scenes contained

in the annotated dataset.

Our 1M dataset contains 128, 715 Barcelona images from Flickr. Since the 1, 081

annotated images are a subset of these, we have removed the rest Barcelona photos,

in order to be sure that no other image in the evaluation dataset depicts the same

scene/building as the ground truth. The remaining 908, 859 images are the distrac-

tors. Most of them depict urban scenery like the ground-truth, making a challenging

distractor dataset.

8.2 Evaluation protocol

For all experiments, we used the medium Flickr image size, which is 500 × 500 pixels

maximum. We extracted SURF features and descriptors [4] and kept a maximum of

1, 000 features per image. We built a generic 75K visual codebook from features of

urban scene images, that are not a part of the evaluation dataset. Larger codebooks

did not perform well in scene map construction. To construct the vocabulary, we used

approximate k-means [33], where nearest cluster centers at each iteration have been

assigned using randomized kd-trees [38]. Specifically, we used the FLANN library of

Muja and Lowe [29] both in vocabulary creation and to assign visual words to image
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Fig. 13 Query images from the 18 groups of non-landmarks in the annotated dataset.

Landmark Group size Non-landmark Group size

La Pedrera(a) 129 Scene1 5
Park Guell(a) 50 Scene2 3
Museu Nat. d’ Art 17 Scene3 22
Columbus Monument 18 Scene4 2
Carrer B.I.-El Gotic 36 Scene5 30
Port Vell 18 Scene6 5
Sagrada Familia 29 Scene7 4
Casa Batllo 16 Scene8 3
Arc de Triomf 20 Scene9 17
La Pedrera(b) 71 Scene10 14
Hotel Arts 106 Scene11 22
Hosp. de San Pau(a) 116 Scene12 7
Hosp. de San Pau(b) 73 Scene13 4
Park Guell(b) 17 Scene14 2
Torre Agbar 93 Scene15 2
Placa de Catalunya 48 Scene16 5
Cathedral (side) 70 Scene17 4

Scene18 3

Table 1 Ground truth group size for each landmark (17 items) and non-landmark (18 items)
of the annotated dataset.

features. Our bag of words implementation uses histogram intersection similarity on

L1-normalized vectors and TF-IDF weighting. Details on indexing and spatial matching

during visual clustering and scene map construction were presented in sections 3 and 4

respectively. We evaluate overall retrieval performance by measuring mean Average

Precision (mAP).
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Fig. 14 Mean Average Precision measurements for the four methods on the European Cities

1M dataset under a varying number of distractors.
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Fig. 15 Average Precision for each query vs. size of the corresponding ground truth group.

8.3 Results

The mining process that leads to retrieval with scene maps is entirely automated. Geo-

clustering on the European Cities 1M dataset takes less than 5 minutes and generates

1, 677 geo-clusters. Visual clustering creates 493, 693 visual clusters. Clustering takes

approximately 22 minutes; however, all queries required to compute visual dissimilarity

matrices take approximately 52 hours, clearly being the most time consuming process.

Construction of all scene maps takes another 5 hours. It is noteworthy that 351, 391

visual clusters are single images, hence do not need scene map construction. Given

larger datasets with more cities, the above times would increase linearly, while of course

computation can be made parallel. The inverted index of the new retrieval engine

requires 1.20GB of memory instead of 1.61GB for the baseline, providing a compression

of 25%. It is worth mentioning that all experiments are performed with our own C++

implementation on a 2GHz Quad Core processor with 8GB of memory. The total
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Method Avg. query time mAP

Baseline BoW 1.03s 0.642
QE1 20.30s 0.813
QE2 2.51s 0.686
Scene maps 1.29s 0.824

Table 2 Average query time and mean Average Precision (mAP) of the four methods on the
European Cities 1M dataset including all distractors.

number of tags in the entire dataset is 7, 764, 264 and the codebook contains 188, 989

and 181, 752 terms, before and after using a stoplist, respectively. A total number of

2, 396, 926 tags corresponds to the terms removed by the stoplist.

Visual similarity evaluation. To evaluate the performance of the proposed

method in terms of visual image retrieval, we compute mean average precision (mAP)

on the aforementioned European Cities 1M dataset. We compare our scene map re-

trieval efficiency against a baseline bag of words and two query expansion methods.

The first (QE1) is the naive iterative approach, where we re-query using the retrieved

images and then merge the results. In our experiments, this expansion was carried out

3 times iteratively for each query. For the second (QE2) we create a scene map using

the initial query’s result and re-query once more. All methods use the same spatial

re-ranking approach as described in section 4. The mAP measurements on the 157

ground truth queries for all four methods under varying size of distractor set are de-

picted in Figure 14. Observe that our method using scene maps (SM) outperforms all

other methods in terms of mean average precision.

As shown in Table 2, our method does not differ much from the baseline method in

terms of speed, which is clearly the fastest. The proposed method offers slightly faster

filtering of the inverted index because there are less scene maps than images, however it

requires slightly more time to re-rank, because scene maps have more features compared

to images. In general, filtering time only depends on the number of relevant scene maps,

while re-ranking time is constant. So query time is not a bottleneck when going to

larger scale. It is noteworthy that both query expansion methods require far more time

while yielding worse results. QE2 query corresponds roughly to two baseline queries

and a scene map construction, and QE1 to several baseline queries, resulting to quite

impractical query times.

The annotated dataset used contains variable sized groups of images depicting the

same scene. Small ones usually correspond to non-landmark scenes while large ones to

well known landmarks. Achieving high recall scores is challenging when we deal with a

large group of similar images. Re-ranking is only performed on the top ranked images

and this can lead to missing quite a few images with the baseline method. Figure 15

shows mAP values for each query, against the size of the corresponding annotated

group. Observe that scene maps can yield total recall even for scenes containing more

than 100 images. For the same scenes, the otherwise powerful QE1 fails to retrieve

all the scene instances, since some images were lost from the initial query before the

expansion. Furthermore, almost total recall is observed in the small clusters for scene

maps, the images of which are usually contained in a very small number of scene maps,

usually one or two.

Figures 16 and 17 show a query image, of a non-landmark and a landmark re-

spectively and top ranked retrieved and geometrically verified images. Geometrically
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Fig. 16 Sample queries and ranked geometrically verified images for a non-landmark image
with the four methods. Query image is on the left and retrieved images from the database on
the right. Each row correspond to one of the evaluated methods.

Query Retrieved images

BOW

QE1

QE2

SM

Fig. 17 Sample queries and ranked geometrically verified images for a landmark image with
the four methods. Query image is on the left and retrieved images from the database on the
right. Each row correspond to one of the evaluated methods.

verified images are more for scene maps leading to higher recall. Tables 3 and 4 contain

mAP values for each group of the landmarks and non-landmarks ground truth respec-

tively. Remarkable is the fact that for many groups scene map achieved perfect mAP

equal to 1.0 while other methods achieved a worse ranking of the similar images.

Location recognition evaluation. All European Cities 1M dataset images are

geo-tagged. Thus, given the outcome of visual retrieval, location recognition is per-

formed as described in section 6. To evaluate the proposed scheme, we compare the
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Landmark
Method

Baseline QE1 QE2 Scene maps

La Pedrera(a) 0.326 0.588 0.377 0.901
Park Guell(a) 0.795 0.794 0.812 0.847
Museu Nat. d’ Art 0.590 0.702 0.602 0.637
Columbus Monument 0.505 0.658 0.558 0.698
Carrer B.I.-El Gotic 0.449 0.917 0.555 0.739
Port Vell 0.332 0.746 0.380 0.480
Sagrada Familia 0.857 0.889 0.864 0.881
Casa Batllo 0.759 0.792 0.767 0.798
Arc de Triomf 0.840 0.889 0.847 0.882
La Pedrera(b) 0.651 0.921 0.939 0.903
Hotel Arts 0.560 0.773 0.573 0.633
Hosp. de San Pau(a) 0.317 0.580 0.423 0.838
Hosp. de San Pau(b) 0.421 0.776 0.502 0.709
Park Guell(b) 0.500 0.886 0.526 0.634
Torre Agbar 0.310 0.617 0.378 0.630
Placa de Catalunya 0.794 0.853 0.798 0.812
Cathedral (side) 0.487 0.864 0.546 0.972

Table 3 Mean Average Precision per landmark for the four methods. For each landmark 5
query images were used.

Scene
Method

Baseline QE1 QE2 Scene maps

Scene1 0.618 0.648 0.654 0.884
Scene2 0.667 0.847 0.730 1.000
Scene3 0.399 0.458 0.451 0.880
Scene4 1.000 1.000 1.000 1.000
Scene5 1.000 1.000 1.000 1.000
Scene6 0.800 0.969 0.848 0.802
Scene7 0.876 0.979 0.940 1.000
Scene8 1.000 1.000 1.000 1.000
Scene9 0.339 0.557 0.357 0.754
Scene10 0.351 0.482 0.428 0.687
Scene11 0.557 0.843 0.575 0.633
Scene12 0.577 0.857 0.639 0.755
Scene13 0.681 0.846 0.746 1.000
Scene14 0.875 1.000 0.880 0.885
Scene15 1.000 1.000 1.000 1.000
Scene16 0.791 0.883 0.798 0.812
Scene17 1.000 1.000 1.000 1.000
Scene18 0.800 0.972 0.810 1.000

Table 4 Mean Average Precision per scene for the four methods. For each scene 5 query
images were used (less if the total group size is below 5).

resulting estimation against the hand-picked geographic location information of each

annotated group of images in our European Cities 1M. Localization accuracy in com-

parison to baseline and other methods is shown in Table 5. As we see, localization

percentage is already high even for the baseline method. Still, our method using scene

maps reaches the highest percentage.

Samples of query images depicting well known landmarks and the corresponding

localization result on the map are presented in Figure 18. The first 6 cases achieve

successful recognition. However in the last two cases we present two examples, coming

from the evaluation queries, of unsuccessful recognition based on the ground truth geo-
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Fig. 18 Samples of query images and location recognition results on the map. For each pair
there is the map on the left and the initial query image on the right. Blue marker: Retrieved
image. Red marker: Geo-tag estimation.

Table 5 Percentage of correctly localized queries within at most 150m from the ground truth
location.

Method
Distance threshold

< 50m < 100m < 150m

Baseline BoW 82.5% 91.6% 94.2%
QE1 86.3% 93.5% 96.2%
QE2 86.7% 93.3% 96.5%
Scene maps 87.8% 94.2% 97.1%

tag which is the exact location of the landmark. Final estimation is far from the ground

truth location. This is derived from the fact that geo-tags of user images correspond to

the location where the photo was taken from. Thus, these are unsuccessful examples

of localizing the landmark but successful ones of localizing the photo.
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Table 6 Percentage of correct Wikipedia article suggestions for each landmark and average
percentage for the four methods.

Landmark
Method

Baseline QE1 QE2 Scene maps

La Pedrera(a) 100% 100% 100% 100%
Park Guell(a) 100% 100% 100% 100%
Museu Nat. d’ Art 40% 100% 60% 80%
Columbus Monument 100% 100% 100% 100%
Carrer del Bisbe Irurit-El Gotic 100% 100% 100% 100%
Port Vell 80% 100% 80% 100%
Sagrada Familia(b) 100% 100% 100% 100%
Casa Batllo 100% 100% 100% 100%
Arc de Triomf 100% 100% 100% 100%
La Pedrera(b) 60% 100% 80% 80%
Hotel Arts 40% 40% 40% 60%
Hospital de Sant Pau(a) 100% 100% 100% 100%
Hospital de Sant Pau(b) 80% 80% 80% 100%
Park Guell(b) 100% 100% 100% 100%
Torre Agbar 100% 100% 100% 100%
Placa de Catalunya 100% 100% 100% 100%
Cathedral (side) 80% 80% 80% 80%

Average 87% 95% 90% 95%

Landmark recognition evaluation. Since most photographers are taking pic-

tures of well known landmarks, we can safely assume that some of the annotated groups

of images in our European Cities 1M dataset can be linked with Wikipedia articles.

Given that the metadata of the images in our European Cities 1M dataset contain

user tags, we can use the method proposed in section 6 to analyze them and effectively

identify the landmark and suggest Wikipedia articles for each query.

The performance of the approach is shown in Table 6, where we see the percentage

of correctly discovered links. Experiments are carried on 17 of the groups, that is

the dataset subset which depict landmarks and has corresponding Wikipedia articles.

We regard a query link suggestion as correct, if the ground truth article link is one of

those suggested from the landmark recognition process. As the table shows, recognition

for landmark queries is really efficient both with the use of scene maps and query

expansion. Samples of query images and the corresponding suggested and frequent tags

are presented in Figure 19. These are examples of successful landmark recognition.

9 Discussion

While mining from user generated content in community photo collections is becoming

popular and new applications are emerging, several possibilities are still unexplored.

Sub-linear indexing is not typically exploited in landmark recognition applications,

while geo-tags are not typically exploited in large scale 3D reconstruction applica-

tions. We have combined both, along with a novel scene representation that is directly

encoded in our retrieval engine. The result is a considerable increase in retrieval per-

formance, even compared to query expansion methods, at the cost of a slight increase

in query time. Memory requirements for the index are also considerably reduced com-

pared to a baseline system. Contrary to landmark recognition applications, we can still
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Fig. 19 Samples of query images with suggested and frequent tags. Landmarks are recognized
successfully and corresponding Wikipedia links are provided.

retrieve any isolated image from the original database, allowing location recognition

at any region where geo-tagged photos are available. Our mining process is even faster

than other implementations that employ massive parallelism without exploiting geo-

tags. We also recognize landmarks and points of interest by cross-validating location,

photo title, frequent tags and geo-referenced Wikipedia article titles in an efficient

online process. Our VIRaL application is publicly available online and provides the

baseline visual search together with location and landmark recognition.

In the future we would like to investigate more precise methods in measuring dis-

similarity of feature appearance during scene map construction. This will enable much

more compression of the index, hence increased scalability, as well as more robust

matching. Though our visual clustering does not target perceptual summarization or

browsing, it may still be the first stage of such a process, exploiting its compact repre-

sentation and maximum distortion guarantee. Another immediate application can be

exact localization i.e. pose detection. Finally, regarding our online VIRaL application,

we intend to incorporate our scene maps indexing scheme in the interface. All evalua-

tion results on location and landmark recognition presented in this paper, together with

a summary of the proposed approach, can be found online in our project homepage14.
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