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Abstract

Background: The phosphorylation of virus proteins by host kinases is linked to viral replication. This leads to an

inhibition of normal host-cell functions. Further elucidation of phosphorylation in virus proteins is required in order

to aid in drug design and treatment. However, only a few studies have investigated substrate motifs in identifying

virus phosphorylation sites. Additionally, existing bioinformatics tool do not consider potential host kinases that

may initiate the phosphorylation of a virus protein.

Results: 329 experimentally verified phosphorylation fragments on 111 virus proteins were collected from virPTM.

These were clustered into subgroups of significantly conserved motifs using a recursively statistical method. Two-

layered Support Vector Machines (SVMs) were then applied to train a predictive model for the identified substrate

motifs. The SVM models were evaluated using a five-fold cross validation which yields an average accuracy of 0.86

for serine, and 0.81 for threonine. Furthermore, the proposed method is shown to perform at par with three other

phosphorylation site prediction tools: PPSP, KinasePhos 2.0 and GPS 2.1.

Conclusion: In this study, we propose a computational method, ViralPhos, which aims to investigate virus

substrate site motifs and identify potential phosphorylation sites on virus proteins. We identified informative

substrate motifs that matched with several well-studied kinase groups as potential catalytic kinases for virus protein

substrates. The identified substrate motifs were further exploited to identify potential virus phosphorylation sites.

The proposed method is shown to be capable of predicting virus phosphorylation sites and has been

implemented as a web server http://csb.cse.yzu.edu.tw/ViralPhos/.

Introduction
A virus is a biological agent capable of interrupting and

manipulating normal functions of a cell [1]. In humans,

viruses interfere with the normal cellular processes of its

host by perturbing the cellular regulatory networks [2].

As shown in Figure 1, viruses undergo phosphorylation

by host-cell kinases as a means of enhancing replication

and inhibition of normal cellular functions [3]. With the

high-throughput of mass spectrometry (MS)-based pro-

teomics [4], an increasing number of virus phosphoryla-

tion sites has been identified over the years, including

human influenza virus [5], human immunodeficiency

virus [6] and the human herpes virus [7].

Protein phosphorylation is a well-studied post-transla-

tional modification (PTM) process in eukaryotic cells [4].

The process is initiated by a protein kinase, which trans-

fers of a phosphate group to a target protein substrate -

commonly on a serine (S), threonine (T), or tyrosine (Y)

residue [8]. Protein substrate sites phosphorylated by a

protein kinase agree to a certain linear motif signature.
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These short linear motifs can be explored in order to

further elucidate the interaction between host-cell kinase

and virus protein substrates. Also, it will be useful to

identify the corresponding kinases that recognize these

motifs due to its potential as drug targets [9]. However,

previous studies do not consider the corresponding sub-

strate site specificities of catalytic kinases [10].

This study aims to analyze experimentally identified

virus phosphorylation sites by bioinformatics analysis. We

present a statistical method for identifying potential phos-

phorylation sites and its potential kinase substrate motifs

on virus proteins. In this work, substrate motifs were

identified and matched with several well-studied kinase

groups as potential catalytic kinases for virus protein sub-

strates. The identified substrate motifs were further

exploited to help identify potential virus phosphorylation

sites. The method is implemented as a web server, Viral-

Phos, accessible at http://csb.cse.yzu.edu.tw/ViralPhos/.

Material and methods
Data collection and preprocessing

Virus phosphorylation data were collected from major

protein databases: virPTM [1], dbPTM [11,12], Uni-

ProtKB [13], Phospho.ELM [14]. The virPTM database

Figure 1 Conceptual diagram of virus progression.
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contains a total of 329 experimentally verified phosphor-

ylation sites on 111 virus protein. Entries from virPTM

annotated as “phosphorylated by virus kinases” as well

as those not from literature were removed from the col-

lected data resulting to 233, 54, and 14 phosphorylated

S (pSer), T (pThr), and Y (pTyr) sites from 104 virus

proteins. In dbPTM version 2.0, experimentally verified

virus phosphorylation data were obtained and resulted

to 51, 15 and 2 phosphorylated S, T and Y sites, respec-

tively, from 32 phosphorylated proteins. Experimentally

verified virus phosphorylation data from UniProtKB/

Swiss-Prot were also filtered by removing entries anno-

tated as “by similarity”, “potential”, “probable”, and

“phosphorylated by virally-encoded kinases” were

removed from the original data set resulting to 43, and

12 phosphorylated S, and T sites from 22 virus proteins.

From Phospho.ELM version 9.0, experimentally verified

virus phosphorylation data were obtained by extracting

only entries annotated as “having been identified by

using low-throughput processes” resulting to 7, and 2

phosphorylated S, and Y sites from 6 proteins. In order

to avoid overlaps, each data obtained from one database

is compared to the data obtained from the other data-

bases based on its phosphorylation site position and the

UniProtKB accession number utilized by all four data-

bases. Redundancy was removed by retaining only one

record in the event of finding multiple records of the

same site position and accession number. A summary of

the data resources is shown in Additional File 1.

In order to investigate the surrounding residues, with

reference to KinasePhos [15,16], sequence fragments

were extracted using a window size of 11 centered on S,

T, and Y residues. Fragments centered on phosphorylated

residues were regarded as positive data while fragments

centered on non-phosphorylated residues were regarded

as negative data. As shown in Table 1, 233, 54, and 14

positive S, T, and Y fragments as well as 2588, 1170, and

65 S, T, and Y negative fragments were obtained from

virPTM. After the removal of redundant fragments

among dbPTM, UniProtKB and Phospho.ELM, we have

obtained 42, 12, and 2 positive S, T, and Y fragments as

well as 352, 106, and 16 negative S, T, and Y fragments

for independent testing. In order to avoid a biased pre-

diction performance, the positive data is balanced with

the negative data. With reference to previous phosphory-

lation prediction methods [17-21], a K-means clustering

method based on sequence identity [22,23] is employed

for acquiring a subset that represents the whole negative

data set. The number of corresponding positive data is

set as the value of K, which denotes the number of sam-

ples to be obtained from the negative set. This resulted

to an equal number of positive and negative S, T, and Y

fragments from the data sets as shown in Table 1. Finally,

the balanced non-redundant data from virPTM was

regarded as the training set while the balanced non-

redundant data from dbPTM, UniProtKB and Phospho.

ELM were regarded as the independent testing set.

Motif investigation

MDDLogo [23] was applied to the training data in order

to investigate substrate motif signatures in virus phos-

phorylation sites. MDDLogo groups a set of aligned

sequences to moderate a large group into subgroups

that capture the most significant dependencies between

positions. Previous works [17,24-26] have proposed the

grouping of protein sequences into smaller groups prior

to computationally identifying PTM sites. MDDLogo

adopts a recursive chi-square test to evaluate the depen-

dence of amino acid occurrence between two positions,

Ai and Aj, which surround the phosphorylation site. In

order to extract motifs that have conserved biochemical

property of amino acids, the twenty types of amino

acids are categorized into five groups: neutral, acid,

basic, aromatic, and imino groups, as shown in Addi-

tional File 2. Then, a contingency table of the amino

acids occurrence between two positions is constructed,

as presented in Figure 2. The chi-square test is defined

as:

χ
2(Ai, Aj) =

5
∑

m=1

5
∑

n=1

(Xmn − Emn)2

Emn

(1)

where Xmn represents the number of sequences that

have the amino acids of group m in position Ai and have

the amino acids of group n in position Aj, for each pair

(Ai , Aj) with i≠j. Emn is calculated as
XmR · XCn

X
, where

XmR = Xm1+ ... +Xm5, XCn = X1n+ ... +X5n, and X denotes

the total number of sequences. If a strong dependence is

detected (defined as X2 that is larger than 34.3, corre-

sponding to a cutoff level of P = 0.005 with 16 degrees of

freedom) between two positions, then the process is con-

tinued as described by Burge and Karlin [27]. As the

example shown in Figure 2, position +1 has the maximal

dependence with the occurrence of imino amino acids.

Subsequently, all data can be divided into two subgroups

where one has the occurrence of imino amino acids in

position +1 and the other having no occurrence of imino

amino acids in position +1. The clustering is a recursive

process, which divides the positive set into tree-like sub-

groups. A parameter, the minimum cluster size, is set

when applying MDDLogo to cluster the sequences in the

positive set. If the size of a subgroup is less than the

given parameter, the subgroup will not be divided any

further. In order to obtain an optimal minimum cluster

size, MDDLogo is executed using various values. For this

study, each subgroup resulting from MDDLogo was

represented using WebLogo [28]. These were then
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Figure 2 The analytical flowchart of applying MDDLogo.

Table 1 Data statistics of training set and independent testing set

Data set pSer pThr pTyr

Training set virPTM Positive data 233 54 14

Negative data 2588 1170 65

Balanced negative data 233 54 14

Independent testing set dbPTM Positive data 42 12 1

Negative data 679 186 11

Balanced negative data 42 12 1

UniProtKB Positive data 24 10 -

Negative data 217 159 -

Balanced negative data 24 10 -

Phospho.ELM Positive data 2 - 2

Negative data 67 - 16

Balanced negative data 2 - 2

Combined non-redundant dataset Positive data 42 12 2

Negative data 352 106 16

Balanced negative data 42 12 2
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visually analyzed to determine if they have conserved

motifs.

Model training and cross-validation

A five-fold cross-validation evaluation was performed in

order to determine which amino acid features were best

utilized in establishing models that can effectively identify

phosphorylation sites. Support vector machines (SVMs)

were generated from the positive data and negative data

of the training set. Based on binary classification, the

concept behind SVM is to map the input samples into a

higher dimensional space using a kernel function, and

then to find a hyper-plane that discriminates between the

two classes with maximal margin and minimal error. In

this work, a public SVM library, LIBSVM [29], was

employed to generate the predictive models for each

MDDLogo-clustered subgroups. With reference to the

encoding method of SulfoSite [30], the positional

weighted matrix (PWM), which specifies the relative fre-

quency of amino acids surrounding substrate sites, was

utilized in encoding the fragment sequences. A matrix of

m × w elements was used to represent each residue of a

training dataset, where m stands for the window size and

w consists of 21 elements including 20 types of amino

acids and one for terminal signal. Each MDDLogo-identi-

fied substrate motif contained a corresponding PWM

with m × w elements, as illustrated in Figure 3, and a

SVM classifier was learned from each PWM. The radial

basis function (RBF) K(Si, Sj) = exp(−γ ‖ Si − Sj‖
2) was

used as the kernel function of the SVMs. The LIBSVM

library could output a value of probability estimate ran-

ging from 0 to 1 for each prediction. Thus, the values of

probability estimates from each SVM classifier trained

with the PWM corresponding to a specific motif were

adopted to form an input vector for second-layered SVM.

Prior to the construction of a final model, the predic-

tive performance of models using different parameters

were evaluated by performing k-fold cross validation. In

doing so, the training data was divided into k groups by

splitting each dataset into k approximately equal sized

subgroups. During cross-validation, one subgroup

is regarded as the test set, and the remaining k-1

subgroups are regarded as the training set. The cross-

validation process is repeated k rounds, with each of the

k subgroups being used as a test set. The k results are

then combined to produce a single estimation. The

advantage of k-fold cross-validation is that all original

data are regarded as both training set and test set, and

each data is used for testing exactly once [31]. For this

study, k was set to five.

The following measures were used to gauge the predic-

tive performance of the trained models: Sensitivity (Sn) =

TP/(TP+FN), Specificity (Sp) = TN/(TN+FP), Accuracy

[2] = (TP + TN)/(TP+FP+TN+FN), and Matthews Corre-

lation Coefficient (MCC) =
(TP × TN) − (FN × FP)

√

(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)
,

where TP, TN, FP and FN represent the numbers of true

positives, true negatives, false positives and false nega-

tives, respectively. After the construction of the predictive

model, an independent test was carried out to further

evaluate the predictive performance of each SVM. This is

done to make sure that the models do not over-fit to the

training set [17].

System integration

The novel method we propose for identifying virus phos-

phorylation sites with its catalytic kinase was implemented

as a web server: http://csb.cse.yzu.edu.tw/ViralPhos/. Data

from UniProtKB were integrated into the system in order

to allow users to search for virus proteins. Users can query

virus protein sequences of interest in order to identify

potential phosphorylation sites and its catalytic human

kinase. As an output, the system presents virus protein

data along with related information including the virus ID,

virus name, validated protein interactions collected from

VirusMINT [2], and its corresponding literature ID. A

sequence comparison tool (BLAST) [32] is also integrated

into the system in order to search homologous virus pro-

tein sequences for a query sequence.

Results and discussion
Substrate motif investigation

Phosphorylated sequences in each MDDLogo-clustered

subgroup show a conserved motif representing substrate

site specificity. The minimum cluster size was set to 70

for the pSer data, which yielded 6 clusters as shown in

Additional File 3. Increasing the minimum cluster size

did not result to any clusters, while decreasing the mini-

mum cluster size only resulted to several similar clus-

ters. Based on the entropy plots, it can be observed that

some groups contain very similar motifs, some show no

conserved motif, and some groups have too little data,

which makes the motif unreliable.

For the pThr and pTyr data, the minimum cluster

size was set to 20. This resulted to 3 subgroups in

pThr and 1 subgroup in pTyr as shown in Additional

File 3. However, due to the very low number of pTyr

data, the resulting MDDLogo clusters show no con-

served motif and contain very few fragments to be con-

sidered reliable. Therefore, for this study, pTyr was not

further clustered using MDDLogo prior to training a

pTyr model. Additionally, to demonstrate the reliability

of the MDDLogo clustering method, the MDDLogo-

detected motifs were compared with a well-known

motif discover tools, Motif-X [33]. Additional File 4

shows potential virus phosphorylation motifs identified

by MDDLogo.
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Cross-validation performance

For each model, a threshold parameter was tuned to a

specific value that yields a high but balanced specificity

and sensitivity result. Table 2 shows the threshold score

selected for each model of pSer together with its

individual predictive performance and the predictive

performance of all MDDLogo-clustered SVM models.

MDDLogo clusters exhibiting conserved motifs are

shown to be able to yield high predictive accuracies.

Specifically, cluster S1, which has a conserved Proline

Figure 3 The conceptual diagram of two-layeredSVMs trained with MDDLogo-identified motifs.

Table 2 Five-fold cross validation results on pSer MDDLogo-clustered SVM models

SVM model Number of positive data Number of negative data Cost value Gamma value Sn Sp Acc MCC

All data 233 233 0.5 0.125 0.76 0.72 0.74 0.48

Subgroup S1 66 66 2 0.125 0.98 0.87 0.93 0.86

Subgroup S2 54 54 8 0.03125 0.94 0.92 0.93 0.87

Subgroup S3 34 34 0.5 0.03125 0.91 0.79 0.85 0.71

Subgroup S4 20 20 2 0.125 0.90 0.80 0.85 0.70

Subgroup S5 15 15 2 0.125 0.87 0.80 0.83 0.66

Subgroup S6 44 44 0.5 0.03125 0.75 0.61 0.68 0.37

Combined performance 0.90 0.82 0.86 0.72
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residue at position +1, yields an accuracy of 0.93. On

the other hand, MDDLogo clusters that do not seem to

have an obvious conserved motif yield a significantly

lower predictive performance. For instance, cluster S6,

which does not show a strongly conserved motif, only

yields an accuracy of a 0.68.

Based on a five-fold cross-validation evaluation, the

predictive performance of the MDDLogo-clustered

SVMs is significantly better compared to the perfor-

mance of an SVM model without MDDLogo. As shown

in Table 2, the SVM model trained with the combined

MDDLogo-clustered motifs yields a higher performance

with a sensitivity of 0.90, a specificity of 0.82, an accuracy

of 0.86, and a MCC of 0.72 as compared to the SVM

with all pSer data which yields a sensitivity of 0.76, a spe-

cificity of 0.72, an accuracy of 0.74, and a MCC of 0.48.

Table 3 shows the predictive performance of the pThr

models. It can be seen that the pThr SVM model

trained with the combined MDDLogo-clustered motifs

performs better yielding a sensitivity of 0.83, a specificity

of 0.80, an accuracy of 0.81, and an MCC of 0.63 as

compared to the SVM model with all pThr data which

yields a sensitivity of 0.70, a specificity of 0.70, an accu-

racy of 0.70, and a MCC of 0.40. Additionally, the cross-

validation results on pSer and pThr SVM models

trained with unbalanced positive and negative datasets

are presented in Additional File 5 and 6, respectively.

Due to a lack of virus pTyr data, MDDLogo could not

be performed to form SVM model for computationally

identifying pTyr sites; thus, a single SVM is used for

pTyr until sufficient experimentally verified virus pTyr

sites are acquired. The SVM models containing the best

predictive performance have been utilized to implement

a web-based prediction tool of ViralPhos.

Independent testing

The final non-redundant data set obtained from

dbPTM, UniProtKB, and Phospho.ELM consisting of 56

positive sites and 474 negative sites was utilized for

further evaluating the MDDLogo-clustered SVMs. As

shown in Figure 4A, the SVM model trained using all

pSer data yields a sensitivity of 0.54, a specificity of 0.66,

an accuracy of 0.60, and the MCC of 0.29. Additionally,

using all the pSer MDDLogo-clustered SVMs altogether

yields a sensitivity of 0.92, a specificity of 0.79, an accu-

racy of 0.86, and the MCC of 0.61. On the other hand,

Figure 4B shows that using the independent data on

Single pThr SVM model yields a sensitivity of 0.64, a

specificity of 0.82, an accuracy of 0.73, and the MCC of

0.38. Furthermore, the combined model using all pThr

MDDLogo-clustered SVMs was able to yield a sensitivity

of 0.95, a specificity of 0.90, an accuracy of 0.93, and the

MCC of 0.73.

To further demonstrate the effectiveness of the pro-

posed method, the independent testing set is used to

compare our method with three popular kinase-specific

phosphorylation site prediction tools, PPSP [21], Kinase-

Phos 2.0 [20], and GPS 2.1 [34]. Without any prior

information of catalytic kinases for the testing data, all

of the kinase-specific models in the prediction tools are

chosen for predicting the phosphorylation sites. Figure 5

indicates that all of the prediction tools containing mul-

tiple models have a high predictive sensitivity. However,

it should be noted that ViralPhos was able to yield a

higher specificity compared to the other tools. Since

potential kinase information for viral protein phosphory-

lation sites are still unknown, PPSP yields a higher spe-

cificity than KinasePhos and GPS. Overall, the proposed

method outperforms the other three tools.

Motif comparison

In order to identify potential host kinases for virus sub-

strates, the motif of each MDDLogo-generated virus

phosphorylation cluster was compared with well-known

human kinase substrate motifs from Phospho.ELM. A

positional weighted matrix (PWM) was used to represent

each MDDLogo-identified substrate motif or Phospho.

ELM kinase-specific motif. The measurement of Eucli-

dean distance [35] was applied to calculate the similarity

between the PWMs of MDDLogo-identified motif and

Phospho.ELM kinase-specific motif. As the scoring calcu-

lated by Euclidean distance, the smaller distance value

has a higher similarity between two PWMs. Thus, for

each MDDLogo-identified motif, the most similar kinase-

specific motif is regarded as the matched host kinase and

the sequence logo is visualized for further verification.

As shown in Additional File 7, CDK group and MAPK

group was found to match with cluster S1 due to a

Table 3 Five-fold cross validation results on pThr MDDLogo-clustered SVM models

SVM model Number of positive data Number of negative data Cost value Gamma value Sn Sp Acc MCC

All data 54 54 2 0.125 0.70 0.70 0.70 0.40

Subgroup T1 19 19 2 0.125 0.95 0.90 0.92 0.84

Subgroup T2 19 19 2 0.03125 0.95 0.95 0.95 0.89

Subgroup T3 16 16 0.5 0.125 0.68 0.75 0.72 0.44

Combined performance 0.83 0.80 0.81 0.63
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strong similarity with regard to the conserved Proline at

position +1. CK2 group was matched with cluster S2

due to a similarly conserved Aspartic acid and Glutamic

acid residues at position +3. Furthermore, PKB group

was matched with cluster S4 due to a conserved Argi-

nine in position -5 as shown in its respective motifs. In

terms of pThr, CDK group and MAPK group were

matched with cluster T1 due to a conserved Proline in

position +1 as shown in Additional File 8. Cluster T2

was matched to be potentially phosphorylated by CK2

group due to a similarly conserved Aspartic acid and

Glutamic acid residues at position +3.

In order to further investigate the identified kinases,

a literature survey was done. Reports have been

published that CDK group, especially the CDK2, is

involved in the transcription and replication of Human

Immunodeficiency Virus - 1 by means of phosphoryla-

tion [36,37]. Previous studies [10,38] also show that

CK2 group phosphorylates Hepatitis C Virus NS5A

proteins and Human Immunodeficiency Virus - 1

gp120, gp41, p27, and p17 proteins on both S and T

residues. These findings support our MDDLogo-identi-

fied groups S2 and T2 matched with CK2 group. With

regard to PKB which is matched with cluster S4, it is

Figure 4 Comparison of independent testing performance. (A) Comparison of independent testing results between Single pSer SVM model

and MDDLogo-clustered pSer SVM models. (B) Comparison of independent testing results between Single pThr SVM model and MDDLogo-

clustered pThr SVM models.

Figure 5 Comparison of independent testing performance between ViralPhos and other kinase-specific phosphorylation site

prediction tools.
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reported to be involved in the regulation of the Herpes

Simplex virus - 1 [39]. Additionally, experimental

research also claims that PKB signaling benefits cox-

sackie virus B3 replication [40].

Web interface of ViralPhos

To aid in the analysis of virus phosphorylation, Viral-

Phos has been implemented as a web-based resource

freely accessible at http://csb.cse.yzu.edu.tw/ViralPhos/.

As shown in Figure 6, users can submit their uncharac-

terized protein sequences and select the specific residue

whose characteristics are to be predicted. The system

returns the predictions, including phosphorylated posi-

tion and flanking amino acids. Users can also access the

substrate motifs used for predicting the phosphorylation

sites.

Figure 6 User interface of ViralPhos.
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Conclusion
We have developed a novel method for identifying poten-

tial virus substrate site specificities and give information

on its likely catalytic host kinase. We have identified infor-

mative motifs that matched with several well-studied

kinase groups including CDK, MAPK, CK2, and PKB as

potential catalytic kinases for virus protein substrates. A

five-fold cross validation evaluation shows that the pro-

posed method can identify virus phosphorylation sites

based on the MDDLogo-identified motifs. Furthermore,

an independent test done using data not included in the

model training confirms the ability of our MDDLogo-

clustered SVMs. The high sensitivity and specificity of

MDDLogo-clustered SVMs show that the substrate site

motifs are effective for the identification of potential viral

protein phosphorylation sites. Overall, this study provides

valuable information to the scientific community about

what kind of host kinases may be responsible for the phos-

phorylation of viral proteins. However, it should be noted

that the motif result is dependent on the experimentally

verified virus phosphorylation sites used as a training data

set. Future direction of this work would require the inclu-

sion of a more abundant set of experimentally verified

kinase-catalyzed virus phosphorylation sites.

Availability
ViralPhos can be accessed via a web interface, and is

freely available to all interested users at http://csb.cse.

yzu.edu.tw/ViralPhos/. All of the data set used in this

work is also available for download in the website.

Additional material

Additional File 1: Supplementary Table S1. Data resources of training

set and independent testing set

Additional File 2: Supplementary Table S2. The amino acids group

used in MDDLogo clustering

Additional File 3: Supplementary Table S3. MDDLogo-identified

motifs of virus phosphorylation data

Additional File 4: Supplementary Table S4. Comparison of pSer and

pThr motifs between MDDLogo and Motif-X

Additional File 5: Supplementary Table S5. Five-fold cross validation

results on pSer MDDLogo-clustered SVM models trained with

unbalanced positive and negative datasets

Additional File 6: Supplementary Table S6. Five-fold cross validation

results on pThr MDDLogo-clustered SVM models trained with

unbalanced positive and negative datasets

Additional File 7: Supplementary Table S7. Motif comparison between

MDDLogo-clustered pSer virus motifs and well-studied kinase substrate motifs

Additional File 8: Supplementary Table S8. Motif comparison between

MDDLogo-clustered pThr virus motifs and well-studied kinase substrate

motifs
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