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ABSTRACT 
Background 

Advances in next generation sequencing make it possible to obtain high-coverage 

sequence data for large numbers of viral strains in a short time. However, since most 

bioinformatics tools are developed for command line use, the selection and accessibility of 

computational tools for genome assembly and variation analysis limits the ability of individual 

scientist to perform further bioinformatics analysis. 

Findings 

We have developed a multi-step viral genome assembly pipeline named VirAmp that 

combines existing tools and techniques and presents them to end users via a web-enabled Galaxy 

interface. Our pipeline allows users to assemble, analyze and interpret high coverage viral 

sequencing data with an ease and efficiency that previously was not feasible. Our software makes 

a large number of genome assembly and related tools available to life scientists and automates the 

currently recommended best practices into a single, easy to use interface. We tested our pipeline 

with three different datasets from human herpes simplex virus (HSV). 

Conclusions 

VirAmp provides a user-friendly interface and a complete pipeline for viral genome 

assembly and analysis. We make our software available via an Amazon Elastic Cloud disk image 

that can be easily launched by anyone with an Amazon web service account. A demonstration 

version of our system can be found at http://www.viramp.com. We also maintain detailed 

documentation on each tool and methodology at http://docs.viramp.com. 
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Chapter 1  

 

Introduction 

 

In this work we present VirAmp, a fast and efficient virus assembly pipeline that is able to handle 

high throughput sequencing datasets with highly variable coverage. VirAmp is a multilayered, 

semi- de novo assembly pipeline that makes use of multiple de novo assemblers that are 

integrated with a reference-guided scaffolding procedure as well as a k-mer based error correction 

model.  The VirAmp project’s goals are to create a methodology that allows non-technical users 

to easily assemble genomes of DNA viruses. We have validated our pipeline using data from 

multiple herpes simplex virus 1 (HSV-1) strains, that encompass a wide range of mutations, 

including SNPs, small and large INDELs, short sequence repeats (SSRs) that might occur in all 

virus genomes. We demonstrate that our approach can produce genomes with a quality that is 

better than that created with previously published methods while requiring substantially fewer 

computational resources  (~90 min using 4GB ram one single CPU).  In addition we also include 

other additional functionality to allow researchers to assess the assembly quality as well as 

visualize their results. Our pipeline is built upon the Galaxy system [5], a web-based 

computational platform packaged via the Amazon cloud in a format that can be deployed by other 

groups or institutions. 

The rest of the thesis is organized as below: 

Chapter 2 provides the necessary background information of the assembly algorithms.  

Chapter 3 describes the novel viral genome assembly pipeline VirAmp that we have 

developed.  
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Chapter 4 demonstrates the performance of VirAmp by using a typical example of an 

HSV genomic dataset.  This chapter compares the performance of VirAmp with several other 

popular assembly pipelines with both reference-based and reference-free evaluation. 

Chapter 5 discusses several problems related to viral genome assembly of high coverage 

data, such as dealing with gaps and repetitive regions. 

Chapter 6 highlights the conclusion of the study and proposes future work. 

The Appendix will provide technical details of the programming and tool parameter 

tuning and testing. 
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Chapter 2  

 

Background and Related Work 

Viral diseases have always had a significant impact on all living organisms.  From human 

perspective viruses such as HIV, influenza, HSV and many others have affected the lives of 

millions of individuals and thus societies as whole.  As a result, the study of viral genetic 

composition is critical for downstream pathology analysis, as it holds the potential for assisting in 

the development of vaccines and may provide alternatives to therapeutic approaches. With the 

fast development and spread of high-throughput sequencing, genome-wide variation analyses of 

these genomes have become possible.  In this chapter, major variation analysis strategies will be 

discussed, with a review of published assemblers as applied to viral genome data. 

Whole-genome variation analysis strategy 

Two approaches for detecting genomic variation are:  

1. Mapping against a reference genome and  

2. de novo genome assembly. 

Mapping against a reference genome 

Mapping against a reference genome for variation analysis is frequently used in humans 

and other complex organisms.  This strategy is suitable for the analysis of SNPs, small insertions 

and deletions (INDELs) and other mild mutations. However, when compared to human genome, 

the viral genome is mutating at a much faster rate and the variation rate is also much higher.  This 

means that the viral genomes we are sequencing may be too genetically distant from the reference 

we are comparing to. This could lead to the problem that results are biased to reference, 
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specifically like low quality mapping, information loss, and most importantly, mapping to 

reference cannot be used for structural variation discovery. [1] 

de-novo Assembly 

One possible solution to the issues mentioned above is de novo assembly.  Because of its 

reference-free strategy, de novo assembly may be able to solve the bias problem; and at the same 

time it is suitable for structural variation  (SV) discovery and annotation.   

    There are two major strategies for performing de novo assembly.  A more traditional 

approach is known as the overlap-layout-consensus algorithm. This algorithm starts by comparing 

the reads and attempts to overlap pairs by computing the similarity (overlap step). It then applies 

a multiple sequence alignment (MSA) algorithm to position the reads in the right order with 

respect to one another (layout step). Finally the MSA information is used to produce the 

consensus sequence (consensus sequence). [2] This strategy has been proven to produce fairly 

good results through numerous early assembly projects using Sanger sequencing.  However, a 

critical weakness of this strategy is that it is not suitable for high throughput sequencing, which 

produces large amounts of relatively short reads.  With reads commonly shorter than 200bp, the 

algorithm is unable to deal with the repetitive regions and decision which one really overlaps. 

This results in a much higher error rate.  In addition, the huge amount of high-throughput 

sequencing data compared to traditional Sanger sequencing, requires huge computational 

resources.  

   The de Bruijn graph algorithm is a completely different approach.  The methodology 

breaks down reads down into nucleotide sequence of length k, or k-mers, then sets the first (k-1) 

bases of one k-mer as prefix and last (k-1) bases as suffix, the algorithm then chains the k-mers 

according to prefix and suffix and constructs a graph. Within the graph the most efficient path is 
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identified. In this way the high redundancy problem is solved by handling k-mers rather than 

reads, which shortens the computational time as well as saving other computational resources.  In 

this strategy, the k-mer size becomes the most crucial parameter.  Smaller k-mer sizes usually 

result in contigs of small size, and repeats longer than k will tangle the graph; while k-mers that 

are too large often tend to contain errors which later may produce errors in the genome.  In 

general, assemblies generated from de Bruijn graph based assemblers tend to have contigs with 

smaller sizes compared to the traditional overlap-layout-consensus algorithms. 

   As recent assembler evaluations like GAGE[3] and Assemblathon 2[4] point out, 

depending on the variety of the input data and organisms to be assembled, the results can be very 

different. This indicates that there’s hardly an assembler that can perform “well” universally, 

even when allowing for parameter tuning. This, on the other hand, suggests that it is more 

advisable to create entire pipelines and methodologies for different categories.  

Viral Genome Related Assemblers 

The size of viral genomes can range from two kilobytes to two megabytes, and though 

this seems to span an order of magnitude, it can still be considered to be much smaller than the 

genome of other higher order species.  With today’s sequencing technology, a single run can 

generate shot-gun sequencing data with surprisingly high coverage.  Taking the Illumina 

HiSeq2500 machine as an example, one standard run can generate about 14 billion 150bp x 

150bp paired-end reads, that on average can produce at least ~100,000x fold coverage for one 

virus sample.  Taking the advantage of the fast-increasing capacity of the sequencing machine, 

researchers tend to sequence a large number of strains of the same virus to conduct population 

difference studies and variation analysis.  An extra advantage that this high sequencing capacity 

brings is that now scientists can perform very deep sequencing of one single strain, to ensure that 
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those regions in the viral genome that are difficult to sequence are covered with an adequate 

number of reads. 

 Because of the potentially high diversity in the genome, together with the technical 

difficulties of sample preparation, the resulting sequencing reads tend to be highly variable in 

coverage across the genome, and may potentially contain a large amount of contamination from 

host cells and artifacts.  Because of these issues, an efficient error correction step is necessary 

before applying the assembly process. 

VICUNA[10] is a de novo assembler designed for genome analysis of high mutation rate 

virus populations.  It assembles one set of sequences as the linear presentation of the mixed 

populations.  VICUNA is an overlap-layout-consensus algorithm based assembler aimed at non-

repetitive genomes.  As a result, though VICUNA is optimized for high mutation data by 

aggressively merging similar sequences, for situations as herpes simplex virus (HSV) which 

contains small and large repeats, and where the deep-sequencing depth varies greatly due to high 

GC content, VICUNA may be computationally inefficient. 

SPAdes[11] is another increasingly popular de novo assembler built upon the de Bruijn 

graph algorithm.  SPAdes implements a multisized de Bruijin graph by utilizing multiple k-mers 

to remove bulges and thus detect and fix the chimeric reads problem. SPAdes is primarily 

designed for the genome assembly of single-cell multiple displacement amplification (MDA) 

bacteria data, but also works well for standard multi-cell isolates of bacterial data and even 

smaller genomes.  Besides the core assembler, SPAdes also comes with an option of running the 

whole assembly pipeline, including a read error correction (BayesHammer) and a mismatch 

correction using Burrows-Wheeler Aligner (BWA) [11] by mapping the reads back to new 

assemblies to improve polymorphism detection rates.  



 

 

Chapter 3  

 

Assembly Pipeline Description 

Our major assembly pipeline contains three steps: Coverage Reduction, Genome 

Assembly and Information Recovery. Figure 1 demonstrates the standard pipeline of VirAmp. 

 

Figure 3-1 Overview of the VirAmp pipeline 

 

As stated before, one of the major issues that virus genome sequencing is facing is the 

uneven and extreme high coverage data.  The situation of coverage being too high often causes 

normal assemblers to fail, because they are unable to handle the entire dataset. We have 

developed a reduction-recovery strategy especially for this situation. We apply this coverage 
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reduction model before the assembly step, and add an information recovery step after assembling. 

  

  For the core assembly, we formulated a two-step, semi- de novo assembly strategy 

including both de novo assembly and reference-based assembly to help capture most of the 

variations while optimizing the running time to the least amount needed.  By using de novo 

assembly we assemble those short reads into short contigs using tools that implement the de 

Bruijn graph algorithm, which further reduce the number of sequences while still retaining the 

variations from the sequenced genome. We further scaffold the short contigs assembled from the 

de novo assemblers into a draft genome using a reference-based assembler AMOScmp[8].  

    Our two-step assembly strategy combining the two mainstream algorithms solves the 

drawbacks from both sides: Major structural change will be captured by the de novo assembly in 

the first step; while in the second step, the AMOScmp alignment process will orient the 

sequences into proper position and connect them by overlapping the ends of each neighboring 

sequence.  Further, the second-step reference-guided assembly also helps solve the high-error rate 

problem from de Bruijn graph algorithm.  During the consensus step in AMOScmp, one multiple 

sequence alignment will be applied to incorporate most of the shorter contigs into longer ones. 

Data preprocessing 

Raw shot-gun data directly from the sequencing instruments usually contain multiple 

errors, so a quality control process needs to be applied before further downstream analysis.  

Depending on various factors including sample preparation, type and quality of the 

instrumentation, reagent performance etc, different quality control strategies may need to be 

employed.  By default we assume the datasets used in our assembly pipeline have been already 

filtered and have met the quality control criteria designed by individual lab.  Due to the 
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differences in sample preparation and sequencing platform, the raw data can be in dramatically 

different shape, which normally requires human supervision and curation during quality control 

step. We do however provide a separate section containing a collection of common quality 

control tools, including polyA and adaptors clipping, base quality trimming and contaminating 

host genome filtering, for users to choose from. 

Error Correction and Coverage Reduction 

The cost of high-throughput sequencing has decreased remarkably in the recent years and 

for shorter genomes it is now possible to perform very deep sequencing at reasonable prices. 

Sequencing coverage however can deviate greatly from the theoretical averages and occasionally 

extremely high read coverage is required to cover certain, so called “hard to sequence”, regions of 

a genome. In turn this very high coverage causes new problems.  Assemblers may fail because 

they cannot handle the entire dataset. We employ a method called Digital Normalization, or 

Diginorm to reduce very high coverage regions to more manageable values.  Diginorm breaks the 

reads down into k-mers by utilizing the median k-mer abundance to estimate the coverage. This 

allows the algorithm to reduce high coverage to a predefined cutoff, while retaining most of the 

reads covering low coverage regions.  The reduction also helps to reduce the sequencing error 

since it redefines the coverage by breaking down the reads into smaller k-mers.[6] 
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Figure 3-2 Demonstration of Read coverage before and after digital normalization 

 

Figure 3-2 shows the three main features of Diginorm’s performance.  The figure demonstrates 

the dataset coverage when mapping the reads back to the reference.  The blue curve on the top is 

after Diginorm and the red below is before Diginorm.  Feature-1 shows the scale for the blue 

curve is 0-580bp while for the red graph is 0-45884bp, suggesting an overall large reduction at 

coverage.  Feature-2 indicates a curve at around 129500bp position for the original data, but after 

Diginorm the curve disappeared, indicating Diginorm’s ability to scale the variation of coverage 

into a uniformly low but balanced level.  Feature-3 actually points out two extreme situations.  At 

the position to the right of 121,300bp there’s a large peak at both graphs, but this is demonstrated 

at different scale. After Diginorm the coverage is only 149bp while before it was 1720bp.  This 

suggests Diginorm’s ability of reducing high coverage into desired level.  While another position 

about 200bp upstream in the same view has low coverage when sequencing, but Diginorm is still 

able to keep 39bp out of 41bp after coverage reduction, this suggests the algorithm’s ability to 

retain reads at those extremely low abundant regions, which most time is the hard-to-sequence 

region.  These three features demonstrate that Diginorm is different from random subset and 
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produces a smart coverage reduction process that can reduce the redundant data while keeping the 

critical information. 

Two-step semi- de novo assembly 

We introduce a two-step assembly strategy that includes both de novo assembly and 

reference-based assembly methods to help capture most of the variations while optimizing the 

running time.  In addition our assembly strategies include both de novo and reference-guided 

assembly correction steps. 

De Novo Assembly 

As stated, de novo assembly is used to assemble a new genome from the sequencing 

dataset without reference information.  Viral genomes tend to evolve at a faster rate eukaryotic 

genome and thus a particular strain could be very distant from the standard reference in the 

database.  Processing the sequencing reads by aligning to the reference genome could bias the 

results and lead to the reads being oriented incorrectly or be mapped to the wrong location when 

structural variations such as large insertions and deletions exist.  By using de novo assembly we 

combine the short reads into contigs using tools that implements de Bruijn Graph algorithm. With 

this approach we both reduce the number of sequences while keeping the variations inside the 

sequence. Moreover, as mentioned above, larger k-mer size in de Bruijn graph often results in 

longer contigs but also incorporate errors in the assembled contigs; while small k-mer size can 

achieve more precise local assemblies but often collapse repeats and results in smaller contigs.   

Here we run multiple rounds of the de novo assemblers with different k-mers sizes and combine 

them into a single set that will serve as the input for the second-step assembly. It is possible that 
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multiple small contigs corresponding to one position or region are stored in the dataset.  We 

provide choices of three popular assemblers for this step: 

Velvet [7] is one of the earliest assemblers implementing the de Bruijn graph 

algorithm. Velvet is designed as a general assembler for shot-gun sequencing 

with no specialization on any better performance of particular organisms or 

datasets.  Since we are only expecting contigs with criteria of larger than 1kb, 

Velvet is set as default assembler at this step for its stable performance as well as 

its high performance in running speed.  

SPAdes[11] is an increasingly popular assembler designed for both standard 

isolates and single-cell MDA bacteria assemblies.  SPAdes uses an iterative 

approach to implement a multi-sized de Bruijn graph algorithm with multiple 

sizes of k-mer.  It is reported to retrieve good results in small size genomes such 

as bacteria.  SPAdes has its own pipeline, although here we only integrate the 

core assembler into our platform. Moreover, since SPAdes already makes use of 

multiple k-mers, we only run SPAdes once with multiple k-mer size fed in. 

SPAdes is set as an alternate assembler in parallel to Velvet. 

VICUNA[10] uses a modified OLC algorithm and specifically targets high 

mutation rate virus genome assembly. It can handles deep sequencing data with a 

high variation rate but takes longer than the above two de Bruijn graph 

assemblers.  Besides the assembler, VICUNA also has a full pipeline from 

contamination removal (reference sequence required) to de novo assembly. Here 

the VICUNA core assembler is also set as an alternate assembler. 

Reference-based scaffolding 

AMOScmp[8] is used to assemble the contigs output from the de novo assembly step.  

AMOScmp is part of the AMOS consortium projects (v 3.1.0), and was originally designed as a 

reference-guided assembler using an alignment-layout-consensus algorithm similar to the 

traditional overlap-layout-consensus assembly algorithm. Multiple steps of AMOScmp may be 

adjusted to make the algorithm better suited for contig scaffolding. The first step is orienting 

contigs’ position by aligning them to the reference genome or genome of related species using 

MUMmer [9] aligner. Then a layout refinement step casm-layout carried out to deal with partial 

matches caused by large INDELs and other structural rearrangements.  Repetitive reads are then 

placed randomly into one of the copy locations (-r option) to allow the assembly of genomes with 
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large repetitive regions (such as the complete strain of HSV-1). Finally a make-consensus step 

performs a multiple alignment to generate consensus sequences; this step is particularly important 

as this will help incorporate variations that were assembled with small k-mers into large contigs. 

This multiple sequence alignment result will provide the final consensus sequences with more 

accurate structural information.  The minimum overlapping bases (-o option) is set to be 10.   

Information Recovery 

To ensure that all the information is devoted to the assembly, an extra scaffolding & 

contig extension tool SSPACE [17] is used at the end of the pipeline.  SSPACE is a stand-alone 

scaffolding tool using Bowtie [23] as the underlying aligner to map the reads back to the contigs.  

 

Figure 3-3 Demonstration of SSPACE scaffolding and extension 

 

As shown in Figure 3-3, SSPACE uses the information from the paired-end reads that are 

properly mapped to the end of the sequences to scaffold two contigs. The insert size of the paired 

reads is used to estimate the gap size in between.  An optional step is to extend the contigs when 

only one read in the pair can be properly mapped.  SSPACE uses the original dataset before 

Coverage Reduction step (Digital Normalization) to make up any potential information loss 

during previous steps.  The extending or scaffolding of contigs is called the “recovery step”. 
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 The final assembly is created at the end of this step. These contigs are listed in one multi-

fasta file as the order of the genome, forming a linear genome potentially with several gaps.  An 

optional step is provided to connect the contigs into one sequence by adding Ns in between.  The 

number of Ns is estimated based on the alignment to reference genome.  This step is provided for 

the convenience of downstream functional analysis and is advised to be taken at the end of the 

whole analysis, after evaluation and variation analysis. 

Assembly Assessment and Variation Analysis 

Upon the completion of assembly, we also provide draft genome assessment and 

variation discovery, to help researchers understand and interpret the assembly results, as well as 

provide information and directions for further analysis. 

Assembly Assessment 

Basic reference-free assembly evaluation metrics, such as contig length and N50, are 

provided as a data summary. When a reference is present, reference-based evaluation, such as 

genome fraction and NG50, are also listed in the summary.  The evaluation matrices are powered 

by QUAST[12], a genome assemblies evaluation tool using MUMmer[13] as the underlying 

aligner to compute various metrics.  A full version of QUAST report is also available for 

downloading. 
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Assembly-Reference Comparison Report 

A table-formatted report comparing the new assembly with reference genome is provided 

for the whole genome comparison and analysis.  This is done by using the MUMmer[13] package 

and generates pairwise local alignments between the final assembly and reference sequence. 

As shown in Table 3-1, the coordinates and percentage identity information of the aligned 

regions between new assembly and reference genome are given in the table. This helps the users 

to figure out any structural variations like large insertions and deletions, as well as other complex 

genome structure which is hard to identify. 

 

Table 3-1 Example of Assembly-Reference Comparison Report 

 

Circos Graph for genome alignment visualization 

Circos [11] has become increasingly popular in comparative genomics visualization, as it 

provides a straightforward way to show structural and other variations of large datasets, which are 

usually hard to visualize. In VirAmp we provide this assembly visualization step using Circos, 

projecting the assembled draft genome to the aligned part of the reference to create a 

straightforward visualization for large structural variation. Users only need to submit a draft 

genome and a reference genome via the web interface. As shown in Figure 3-4, the assembly and 

reference are listed as two halves of a circle, represented by colored and grey bars respectively.  

Ref_start Ref_end Contig_start Contig_end % Identity References Contigs 

1 62457 288 62722 99.46 JN555585_

truncated 

Ctg_1 

53191 53334 53597 53454 100.00 Ctg_1 

62638 108009 62722 108094 99.15 Ctg_1 

108111 108301 186 1 92.75 Ctg_1 
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The colored ribbons represent the projected alignment, and the color of each ribbon corresponds 

to the contig in the new assembly. 

Circos can also be used for visualization of two sets of contigs to assess the differences 

and similarities between two assemblies. 

   

Figure 3-4 Circos graph projecting the comparison between assembly and reference genome 

Variation Analysis 

VirAmp also provides a collection of tools built upon the MUMmer aligner for variation 

identification.  SNP analysis produces a VCF formatted SNP records between the reference and 

new assembly.  Repeats and tandem repeats can also be identified using tools we provided.  BWA 

is integrated in the platform both for data preprocessing (for example, host contamination 

removal) and to detect minor variations.  
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Recognising Errors in Assemblies using Paired Reads 

Recognising Errors in Assemblies using Paired Reads, or REAPR [18], is a tool that 

evaluates the accuracy of a genome assembly, specifically focused on the detection of mis-

assembly, without using a reference genome for comparison. REAPR first uses aligners to map 

the paired-end reads back to the new assembly to test each base of a genome sequence for both 

small local errors and structural errors.  The errors are detected based on the changes to the 

expected distribution of inferred sequencing fragments, termed Fragment Coverage Distribution 

(FCD). 

    

Figure 3-5 Demonstration of REAPR core algorithm FCD calculation [18] 

 

Figure 3-5 shows the core algorithm of REAPR FCD calculation.  REAPR locates all the 

fragments (fragments in red) constructed by the paired-ends reads covering one particular base 

(pointed by the black arrow), then flanks the sequence to both directions that any of those 

fragments covered (blue line), then computes the total coverage (red curve) and comparing with 

the theoretical coverage (green lines), which is the fragment coverage distribution (FCD).  The 

difference, which is the grey area between the two curves, is the FCD error. The bases having 

higher FCD errors than the predefined cutoff are determined as wrong bases.   
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   Figure 3-6 Gap identification in REAPR[18] 

 

Gaps are identified when the coverage is similar as shown in Figure 3-6.  In this way, a 

correction will be applied and enable the scaffolding error identification. 

REAPR summary is given as an evaluation report for each assembly, this includes the 

original and broken N50, number of gaps and total gap length, and scaffold errors called by 

REAPR.  Particularly, the broken N50 is the N50 of the newly generated contig set after REAPR 

correcting the mis-assemblies. 

Finally a REAPR summary score is computed for multiple assembly comparison, using 

REAPR version 1.0.16. The first step is to map the original paired-end reads back to the assembly 

using smaltmap function, which integrates SMALT[24] version 0.7.5 as map engine.  The option 

–y is set to 0.9, which requires 90% percent of the reads to map perfectly.  

Since on average the insert size of our library is about 280bp, in the second step we chose 

the perfectmap function to generate perfect and uniquely mapping read coverage.  The 

perfectmap function is designed specifically for small insertion sizes (<300bp) thus this filter will 

keep only those reads that are properly paired. The reads that pass the cutoff will have to fulfill 

other criterions like minimum Smith-Waterman alignment score and mapping quality scores.  

  The final step is to run the pipeline function using the default setting.  The REAPR 

summary score is computed as following: 



19 

 

 

REAPRscore = NumberOfErrorFreeBases*
(brokenN50)

2

originN50
[17] 

The three parameters: Number of Error Free Bases, broken N50 and origin N50 are all 

related to score ranging from 0 to 1, which for each statistics, the assembly of the largest value is 

given 1 and the remaining is calculated as the percentage of that value.  All the original value of 

these three parameters are given in the REAPR pipeline result files for each assembly.



 

 

Chapter 4  

 

Example analysis 

Data and Computational Resources Description 

We evaluated our protocols by assembling data obtained from a lab strain of Herpes 

Simplex Virus 1 (HSV-1). Among all the human-infecting viruses, HSV-1 is one of the most 

common human pathogens in terms of its global distribution, longevity in the host, and its 

generally mild symptoms[19]. The reference strain HSV-1 17 has a genome of 152 kb (GenBank 

Accession JN555585). The genome consists of a 108 kb unique long (UL) and a 13 kb unique 

short (US) region, with each unique region flanked by inverted copies of large structural repeats 

(termed repeat long (RL) and repeat short (RS), with lengths of 9.2 kb and 6.6 kb 

respectively)[20].  For evaluation purposes, we used a modified or trimmed version of this 

reference, where the terminal copies of RL and RS have been removed, leaving a sequence of 136 

kb. The removal of terminal repeats facilitates alignment of de novo assembled contigs to the 

reference genome.  

For evaluation, most of the analysis is built upon one virulent HSV-1 laboratory strain 

which contains 33 million reads.  In the assembly pipeline comparison section we selected two 

more datasets, a variant laboratory strain with a fluorescent protein inserted into the genome, and 

a clinical isolate of HSV-1. These two datasets as well as the first datasets contain from 33 to 87 

million Illumina HiSeq reads of paired-end, 100 bp x 100 bp sequence. Using previously 

published approaches[21, 22], we de-multiplexed these sequence reads, trimmed off adaptor 

sequences, removed low quality bases and sequencing artifacts, and removed sequences matching 

the genome of the host cells used for growing viral stocks. The computational resources applied 
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here is an Amazon instance of one CPU of 4Gb RAM.  The completion of the whole pipeline 

process ranges from 90 to 240 min. 

Comparing the performances at each step of the assembly pipeline 

To demonstrate the necessity and contribution of each step during the assembly, we 

performed an assembly assessment using QUAST[9].   

   We used NG50 as our assessment metric, since as shown in the Assemblathon 2 paper, 

NG50 is a better measurement when reference genome is known[17].  The N50 metric is an 

integer number that corresponds to shortest length for which the sum of all contigs longer than 

this length contain at least half of the total number of bases in all contigs. NG50 is calculated in 

the similar way as N50, the only difference is that it uses reference genome length for the value 

that determines half coverage rather than the sum of all assembled contigs. 

   Velvet is used for the de novo assembly step, and multiple k-mer sizes (k=35,45,55,65) 

are used for providing the contigs for the second-step assembly. Statistics for this step is from one 

best assembly of the above four sets (k=65), using NG50 as evaluation. 

Table 4-1 Statistics of assemblies at each step of the VirAmp pipeline 

# step #contigs 

(>=0) 

#contigs 

(>=500) 

Total length Largest 

contig 

NG50 #INDELs 

#1 de novo 

assembly 

52 47 126990 14080 4197 91 

#2 reference-

guided 

assembly 

14 9 135040 62437 32695 86 

#3 scaffolding 5 5 135772 108094 108094 98 

 

Table 4-2 The contigs coordinates in reference genome 

Ref_start Ref_end Contig_start Contig_end Contig_ID 

Contig coordinates using step#3 contigs (after SSPACE scaffolding) 

1 108009 288 108094 Ctg_1 

108111 117634 5 9181 Ctg_2 
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117897 123237 1 5261 Ctg_3 

123245 134543 1 11337 Ctg_4 

134593 136376 1 1754 Ctg_5 

Selected contig coordinates using step#2 contigs (after AMOScmp assembly) 

75278 108004 14 32695 AMOSctg_3 

108111 108281 9 174 AMOSctg_4 

… … 

117476 117634 1 159 AMOSctg_10 

117897 119760 1 1864 AMOSctg_11 

1119846 123229 1 3387 AMOSctg _12 

123251 134537 1 11325 AMOSctg_13 

134595 136376 1 1752 AMOSctg_14 

Selected contig coordinates using step#1 contigs (after velvet assembly) 

101276 108004 6723 1 NODE_25 

109208 109807 1 597 NODE_45 

… … 

115768 116021 252 1 NODE_50 

120582 120928 347 1 NODE_52 

121397 122313 1 915 NODE_34 

123396 128815 4 5429 NODE_21 

… … 

131850 134423 1 2579 NODE_32 

134595 136376 1791 40 NODE_26 

   

 As shown in Table 4-1, the total length, largest contig, and NG50 are all increasing after 

each step, and after step3, the largest contig size is raised up to 108kb. This is similar size as the 

Unique Long region (UL) in the reference genome, and makes up about 80% of the whole 

reference.   

   Table 4-2 displays the starting and ending coordinates of selected contigs in each step.  

The table is in the ascending order of the coordinates, the records next to each other reflect the 

physical location when mapped back to the reference.  From Table 4-2, we can figure out that the 

gaps (distance between the ending coordinates and next starting coordinates) have been generally 

closed or narrowed, indicating those gaps in the last version are indeed coming from previous 

assembly.  This again proves that our reference-guided assembly (step#2) does not influence the 
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assembly by integrating any information from reference, but is more likely using the reference 

genome only as a guide to orient the contigs. 

   Also there is an improvement from step#2 to step#3, where we further close 9 out of 13 

gaps, and narrow down the rest of them, showing the necessity of the last step.  With the 

Diginorm step before assembly and scaffolding after the assembly, we are able to integrate the 

most information from the short read sequencing data into the assembly. 

   When mapping the contigs back to reference genome, we can see after the final step, 

the five contigs have very short overlaps, suggesting this is almost a linear genome.  We do 

provide an option to connect those contigs into one linear genome.  This will be helpful for 

downstream functional analysis; on the other hand, we strongly recommend users to keep the 

contigs separately, or at least take an extra look at those gaps.  More information and concerns are 

provided in the discussion section.  

   The number of insertions and deletions (INDELs) stays very similar at each stage, 

suggesting the reference-guided assembly step does not remove the variations when using 

reference genome as assistance to orient the contigs into the right position. 

Comparing the final assemblies to the reference genome 

The final assembly is a multi-fasta file containing five contigs, with lengths ranging from 

1.7 kb to 108kb.  MUMmer is then used to align the new assembly back to the reference genome 

to evaluate the quality of the new assembly. 

 

Table 4-3 Comparison report between the final assembly and reference genome 

Rec# Ref_start Ref_end Contig_start Contig_end % Identity References Contigs 

1 1 62457 288 62722 99.46 JN555585_t Ctg_1 
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2 53191 53334 53597 53454 100.00 runcated Ctg_1 

3 62638 108009 62722 108094 99.15 Ctg_1 

4 108111 108301 186 1 92.75 Ctg_1 

5 108299 108496 5 193 92.96 Ctg_2 

6 108497 116585 296 8423 97.10 Ctg_2 

7 116652 116924 8421 8687 93.04 Ctg_2 

8 117090 117383 9718 9042 86.50 Ctg_2 

9 117497 117634 9044 9181 100.00 Ctg_2 

 117897 123237 1 5261 97.37 Ctg_3 

 123245 134543 1 11337 98.74 Ctg_4 

 134593 136376 1 1754 97.42 Ctg_5 

 

Table 4-3 shows the comparison report generated by VirAmp and indicates alignment 

between the reference and new assembly. Each row is one record of alignment between one piece 

of sequence in reference to one part in one contig; the six columns from left to right contains the 

following information: starting and end coordinates of the reference region, starting and end 

coordinates of one region in the new assembly, percentage identity between two sequence, name 

of the reference sequence and contig name in the new assembly. 

 

Figure 4-1 Comparing the final assembly with the reference genome 

 

Figure 4-1 further visualizes the alignment in Table 4-1’s alignment.  Figure 4-1-a is a 

model of the reference genome, which is a modified HSV-1 reference (JN555585) made by 
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truncating out the Repeat Long and Repeat Short regions at the beginning and end of the 

sequence.  The modified reference is mainly composed of four elements, a 108kb long Unique 

Long region (UL) and a 13kb Unique Short region (US); the UL is flanked by 9.2kb Inverted 

Repeat Long Region (IRL), which is the inverted copy of the Terminal Repeat Long region 

(TRL) at the beginning of the sequence and truncated for analysis convenience; similarly, US is 

flanked by the 4.4kb long terminal and inverted copies of Repeat Short regions (TRL/IRL).   

Figure 4-1-b shows the start and end coordinates where the new assembly aligns to the 

reference genome.  As shown in the figure, among the five contigs of the final assembly, the first 

three each cover about one whole element of the reference, with contig-4 (Ctg_4) and contig-5 

(Ctg_5) adding up together covering the US region.  As stated, the sequences between each 

element are hard to sequence and assemble, the gap between contig-1/contig-2 and contig-

2/contig-3 both occur in those regions, with contig-3 actually flanking over the gap and ending up 

inside the US1 gene region.  This suggests VirAmp’s ability to rescue some information in those 

hard-to-retrieve regions.   

VirAmp allows users to visualize alignments.  Our pipeline can make use of the Circos 

tool to generate circular graphs that can display the alignment between the final assembly and the 

reference.  The grey bar on the right indicates the reference whereas the colored bars on the left 

represent the contigs in the final assembly.  Each color indicates one contig, and the ribbon with 

the same color inside the circle demonstrates alignment between the specific contig and reference 

genome. This makes it easy to read out the start and end coordinates of each contig from Table 4-

3. When shown in the Circos graph, users can easily identify structural variations that occur from 

genomic rearrangements.   First of all, there’s a very thin ribbon connecting the starting region of 

contig-1 with the regions between UL and IRL in the reference.  This represents the record 4 in 

Table 4-3, because the reference is a truncated sequence while the reads for assembly is from the 

full sequence, so we are able to flank the sequence at the beginning into the TRL.  During the 
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alignment phase, the assembled TRL region will be aligned to the IRL, creating record#4 in Table 

4-3 and the ribbon. There is another line inside contig-1 among the coordinates 53191-53334 

when aligning to the reference, corresponding to record#2 in the table 4-3.  This region can be 

aligned both forward and reverse to the reference, suggesting it could be a palindrome.  This 

assumption is further validated in the reference sequence.  The last interesting region to be 

pointed out is at 62457-62638 in the reference.  This corresponds to an 181bp deletion in the new 

assembly, as we can only identify a gap at the reference side, but no breaks at contig-1.  

 

Figure 4-2 VirAmp visualization of the alignment between the final assembly and 

reference genome. 

Comparing VirAmp with other approaches 

To assess the performance of our assembly pipeline, we use three different sets of 

sequencing data of HSV-1 to run through our pipeline and compare the results to that of two other 

assembling pipelines, SPAdes and VICUNA.  The SPAdes assembler utilizes multiple k-mer 
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sizes and takes advantage of both small and large kmer, to improve the performance; while the 

assembler of VICUNA, on the other hand, is a de novo assembler developed by the Broad 

Institute specifically for virus genome assembly. One of the advantages in the VICUNA pipeline 

is that it does a pre-filtering step before feeding into the assembler to keep only reference-genome 

like reads. This is extremely useful in contamination-rich samples(though our testing data is after 

our manual filter with by mapping back to the reference). Also VICUNA assembler uses a 

modified overlap-layout-consensus algorithm, which though it takes a longer time, can be applied 

to the mix-population with relatively high mutant rate.  

   Single-Cell Mode is applied in SPAdes, as this is the most similar situation as virus 

genome sequencing, with k=21, 33, 55 given as the kmers according to the recommendation from 

the manual.  We did multiple rounds of VICUNA assembly and chose the best assembly with 

kmer=21 for comparison.  

 

Table 4-4 Comparing VirAmp results with three other popular Assembly pipelines 

 

We compared the assemblies back to the trimmed HSV-1 reference genome (136 kb), and 

used several commonly accepted metrics to evaluate performance of each assembly method, as 

recommended by Assemblathon 2 [4]. We considered any contigs longer than 500 bp as a valid 

Virus1 
# reads 

(x 106) 
Pipeline #contigs 

Largest 

contig 

(bp) 

N50 NG50 

#fully un-

aligned 

contigs 

Run  

time (h) 

# thread 

(4GB/ 

CPU) 

HSV-1 

laborator

y strain 

33 VirAmp 5 108,094 108,094 108,094 0 1.5 1 

SPAdes 9,609 107,857 258 107,857 9582 6 4 

VICUNA 266 19,285 5,654 8,704 163 8 6 

HSV-1 w/ 

fluoresce

nt insert 

37 VirAmp 4 63,109 49,971 49,971 0 2.5 1 VirAmp 4 63,109 49,971 49,971 0 2.5 1 

SPAdes 5,946 39,441 273 13,888 5898 7 4 

VICUNA 101 33,391 9,822 7,644 60 13 6 

HSV-1 

clinical 

isolate 

87 VirAmp 3 117,134 117,134 117,134 0 4 1 

SPAdes 74,927 93,771 256 82,041 74,608 21 4 

VICUNA 424 23,611 2,786 7,136 383 30 6 



28 

 

assembly output. All basic statistics except REAPR are done by using QUAST[12], and our 

pipeline produces a full version of the QUAST report at the end of the assembly.  

According to the evaluation statistics, the VirAmp pipeline achieves the highest NG50 in 

all three HSV-1 datasets (Table 4-4), further demonstrating the rationale for this project that 

applies judicious use of multiple tools that can radically improve the quality of the results. In two 

of the three datasets, the largest VirAmp contig coveres about 80% of the whole genome. SPAdes 

retrieved one large contig with a length similar to the longest contig of VirAmp, but in all three 

testing datasets more than 95% of the SPAdes contigs cannot be properly aligned back to the 

reference. This causes SPAdes to receive the lowest N50 and REAPR score among the three 

assemblers. VICUNA retrieves an assembly with a size similar to the reference and an acceptable 

number of contigs, but the largest contig it produced is only around 20kb, which is much shorter 

than the other two assemblers. 

In terms of computational resources, VirAmp analyzed the above datasets on a single 4 

GB RAM CPU machine, while neither SPAdes nor VICUNA could finish the job successfully 

using the same machine. For a dataset with ~20,000x coverage on average (e.g. HSV_1 lab strain, 

Table 2), VirAmp finished the assembly within 1.5 hours, while the other two assemblers ran the 

same dataset with multiple CPUs (4 for SPAdes and 6 for VICUNA) with 4GB RAM and took 

more than double the time to complete. 

REAPR reference-free evaluation of genome assembly 

We use REAPR to describe the assemblies produced in the previous chapter, the tool 

produces additional details about the assembly quality including statistics like per-base errors and 

mis-assemblies and REAPR scores. 
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Table 4-5 REAPR evaluation of assemblies from different pipelines 

 

Table 4-5 continue 

 

Table 4-5 shows the REAPR evaluation of assembly results from the three pipelines 

listed.  REAPR uses the fragment coverage distribution (FCD) algorithm to evaluate per-base 

correctness and mis-assemblies.  Both original and REAPR corrected assembly metrics are listed 

in the table. As it’s shown, VirAmp achieves the largest N50 both before and after REAPR 

correction, VirAmp only has a single minor mis-assembly in the shortest contig and just one gap 

with mis-estimated length FCD error over a gap.  Similar situations are present for the error free 

bases, where 92.19% in VirAmp is considered to be correct, followed by VICUNA at 58.06%.   A 

poor performance of SPAdes in REAPR evaluation suggests too many mis-assembled sequences 

even though it retrieves a compatible longest contig of 107kb.  All the three pipelines have fewer 

than 50 reads mapped in wrong orientations, compared to the original datasets of millions of 

reads, this is considered to be an acceptable rate.  The REAPR score at the end can be viewed as a 

summary of the above information, as indicated before, it contains comparison information of 

original and corrected N50, as well as per-base accuracy. 

The last column of Table 4-5 lists the minimal computational resources that each pipeline 

needs to complete the assembly task; VirAmp shows a huge advantage with only 1 CPU and 

Assemblers Original Assembly REAPR corrected Assmebly 

Total 

length 

#seq N50 #gaps Gap 

length 

Total 

length 

#seq N50 #gaps Gap 

length 

VirAmp 135722 5 108094 8 145 135722 6 108094 8 599 

SPAdes 2715404 9609 258 60 3107 2678194 9083 259 96 13745 

VICUNA 212586 266 5654 7 62 212524 266 5654 12 5522 

Assemblers Error free bases FCD error 

within a contig 

FCD error 

over a gap 

Wrong read 

orientation 

REAPR score Computational

resources 

VirAmp 92.19% 1 1 18 1 1 CPU; 90min 

SPAdes 5.6% 18 0 36 0.016 4 CPU; 6h 

VICUNA 58.06% 11 1 5 0.029 6 CPU; 8h 
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finishing in 90 min.  This means assembly tasks similar to the testing dataset can be accomplished 

with a desktop using VirAmp, a task that is impossible for all the other assemblers.



 

 

 

Chapter 5  

 

Discussion 

Final Gap Filling 

We provide two kinds of draft genome as output.  By default the draft genome is 

normally a multi-fasta file that usually contains 4-10 contigs in the orientation according to the 

references.  The alternative is a single fasta file containing only one linear genome sequence.  The 

single fasta file simply connects the contigs by Ns according to the alignment result towards 

reference genome.  Single fasta file is provided for users who are not familiar with computation 

especially alignment assessment and text manipulation.  The single fasta will provide 

convenience for them to do downstream functional analysis.  However, we strongly recommend 

more experienced users to take the multi-fasta file and look into those gaps and then decide how 

to close them.  There are several common reasons why the final gaps are not closed. 

   First, at the last step of reference-guided scaffolding, when generating the consensus 

genome, even though the gap region is overlaid by multiple short contigs, the multiple sequence 

alignment receives a very low score at the region and thus can not pass the threshold if the 

program can not generate consensus bases, then the program will set a break point, and run two 

multiple sequence alignment for two regions at the left and right side of the break point.  So even 

though in the end, the gap might be covered by the flanking sequences from both sides, those two 

sequences may not be connected together if the program cannot generate a high consensus score.  
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   Second, the presence of repetitive regions is known to cause difficulties when aligning 

sequences. Though our two-step assembly improves the accuracy in those regions, issues still 

remain in some mostly low complexity regions.  Contigs from de novo assembly tend to end at 

those repetitive regions.  Then in reference-guided scaffolding, the coverage of those regions is 

significantly lower than normal regions, and alignment scores tend to be lower due to the fact that 

these regions, even when assembled tend to contain more errors. As a result repetitive regions 

often introduce gaps in the final assembly. 

   The gaps can also be introduced by low sequencing quality or insufficient read 

coverage caused by the low complexity of the region.  For example, regions that contain repeat 

sequences are not only hard to assemble, but also hard to sequence with the current 

instrumentation.  Highly repetitive regions tend to use up the labeled nucleotide or cause enzyme 

slippage, which both lead to system bias and low sequencing quality.  Moreover, those low 

quality sequences are likely not pass the quality control step of the pipeline; which may result in 

even lower coverage for those regions in the assembling process. 

   The gaps do not affect the assessment and variation discovery of our pipeline, but one 

may want to create one single sequence for the conveniences of downstream analysis.  For quick 

assessment, users could assign Ns to the gaps to connect the contigs into a single draft genome 

sequence.  A more prudent way would be to further investigate the gaps via alignments and/or 

database searches or even conduct experimental validation.  We did not implement these steps in 

our main pipeline because these require human decision making and do not lend themselves to 

automation.  But we do provide the BWA[14] aligner in the utility section, a tool that can be used 

to produce alignments against reference genomes. A more comprehensive approach would 

require experimental validation via a PCR verification on those specific regions to look into the 

real structure and biological meaning. 
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Repetitive Region 

Large repetitive regions cause substantial difficulties for genome assembly.  Take the 

HSV-1 genome as an example, one of the most significant structural features are the two sets of 

large repeating regions, Repeat Long (RL) and Repeat Short (RS), residing in the middle and two 

ends of the genome.  Normally researchers will simply trim off the set of the RL and RS at both 

ends to create a truncated genome without large repetitive regions.  This simplifies the process 

and also fits our pipeline.  Since the structural variation discovery depends on the genome 

alignment between draft genome and references, or against itself, including large repeat regions 

could create additional problems for the alignment as the large repeats will also align to the other 

repeat regions, and, depending on the situation may lead to competing alignment scores that the 

programs need to account for. However, for demonstrative reason, or if users want to specifically 

study the repeat regions, the pipeline can construct the repeats when large repeats are provided.  

As we already discussed above, de novo assemblers will produce small contigs for repetitive 

regions, then during the reference-guided scaffolding step, if a contig can be aligned to multiple 

positions, the AMOScmp program will randomly assign it to one of them.  One advantage of 

feeding de novo assembly contigs instead of short reads into AMOScmp, is that longer contigs are 

more likely to contain unique regions. 

Assembling genomes using single-end reads 

We also provide an alternative assembly pipeline for single-end reads.  In this pipeline, 

the SSPACE scaffolding step will be missing, since that program requires the paired-end 

information for connecting contigs.  All the other modules will be running in a single-end module 

(diginorm, velvet and AMOScmp).  Since single-end sequencing is normally about 2/3 the price 
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of paired-end, it is commonly used when sequencing simple organisms like viruses.  However, 

we still strongly recommend paired-end sequencing for all projects as it typically leads to higher 

quality assemblies. For deep sequencing datasets, like the one demonstrated in the paper, we keep 

about 20x coverage from the dataset using diginorm. This is because most programs cannot 

handle high coverage over 1000x, which will also utilize extremely high computational resources 

and time. Therefore, paired-end reads with slightly lower coverage may preserve more 

information, e.g. large structural variations, than trying to cover every corner of the genome.  

Furthermore, when using single-end reads, any information missing from the diginorm process 

will not be retrieved, since no paired-end information can be provided to SSPACE.



 

 

 

Chapter 6  

 

Conclusion 

We have described a web-based virus genome assembly platform, VirAmp, that can be 

used to assemble high throughput sequencing data. Our pipeline makes use of several existing 

programs and connects them in a convenient interface. The pipeline makes use of recommended 

practices and can assemble extremely high coverage viral genome data with minimal 

computational resources. In addition we provide a series of reporting and genome assembly 

analytic tools for evaluating the assemblies. All of our tools are wrapped into a Galaxy instance 

that individual research groups can run themselves. The Galaxy platform and default pipeline 

makes the approach usable by researchers without advanced programming skills or limited access 

to high-performance computing clusters. 

Future work will first focus on improving the assembly process.  We plan to integrate 

more evaluation tools like REAPR as well as downstream analysis tools, that can assist with 

functional annotation.
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Appendix  

 

Demonstration of VirAmp platform 

VirAmp is stored as an Amazon image and deployed into the Amazon Cloud.  For 

demonstration purposes, we also have a public VirAmp platform at http://viramp.com/.  One 

demo dataset is placed under ‘Shared Data -> Data Libraries -> HSV-McKr’, which is a paired-

end read dataset in two separate files; a results gallery from the demo dataset is placed under 

‘Shared Data-> Data Libraries -> Results Gallery’.  We provide two ways to run the VirAmp 

pipeline: working via the pre-packaged tool and via published workflows.  Appendix Figure 1 

shows the parameter setting panel for running the whole VirAmp pipeline. 

 

 

Appendix Figure 1 Settings to run the VirAmp pipeline 

Input'files'
OpCons'to'change'

seYngs'
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With default settings, users only need to upload the paired-end sequencing data in 

FASTQ format and a reference genome in FASTA format.  If users feel it necessary to navigate 

the pipeline to create more suitable settings for their data, they can simply change the option 

“Assembly Setting” to “Advanced Setting” to set other parameters. 

Appendix Figure 2 shows the second way to run the pipeline, which is via existing 

workflows.  We have one published workflow under ‘Shared Data -> Published Workflows -> 

viramp_workflow_pe’, which works for paired-end read assembly.  Users can simply click on the 

workflow and choose ‘run’ on the dropdown menu, and a screen similar as Appendix Figure 2 

will show up.  One only needs to select paired-end read files in step-1 and step-2 respectively; 

select the proper reference genome in step-3 and hit run. Then the system will run the necessary 

tools in the workflow sequentially using results generated from previous steps.  At the very end, a 

final result files the same as the pre-packaged tool will be generated. To be noted, since this is 

actually running the individual tools listed in the platform, in addition to the final results as in the 

prepackaged pipeline, the results generated between tools will also show up in the history, which 

is the green panel located at the right.  
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Appendix Figure 2 A published Galaxy workflow connects individual tools in the 

platform and demonstrates VirAmp paired-end assembly. 
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 The default results of the pipeline will produce five files listed in the green panel on the 

right. One can hit the “view data” button to inspect the specific result file in the main panel or hit 

“download” button to save it to local disk. 

 

Appendix Figure 3 VirAmp with result file at pipeline complete status 

 

 For more details, please refer to the VirAmp online document: 

http://viramp.readthedocs.org/en/latest/ 
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