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Abstract

Motivation: Next Generation Sequencing (NGS) technology enables identification of microbial

genomes from massive amount of human microbiomes more rapidly and cheaper than ever before.

However, the traditional sequential genome analysis algorithms, tools, and platforms are inefficient

for performing large-scale metagenomic studies on ever-growing sample data volumes. Currently,

there is an urgent need for scalable analysis pipelines that enable harnessing all the power of parallel

computation in computing clusters and in cloud computing environments. We propose ViraPipe, a

scalable metagenome analysis pipeline that is able to analyze thousands of human microbiomes in

parallel in tolerable time. The pipeline is tuned for analyzing viral metagenomes and the software is

applicable for other metagenomic analyses as well. ViraPipe integrates parallel BWA-MEM read

aligner, MegaHit De novo assembler, and BLAST and HMMER3 sequence search tools. We show the

scalability of ViraPipe by running experiments on mining virus related genomes from NGS datasets

in a distributed Spark computing cluster.

Results: ViraPipe analyses 768 human samples in 210 minutes on a Spark computing cluster

comprising 23 nodes and 1288 cores in total. The speedup of ViraPipe executed on 23 nodes was

11x compared to the sequential analysis pipeline executed on a single node. The whole process

includes parallel decompression, read interleaving, BWA-MEM read alignment, filtering and

normalizing of non-human reads, De novo contigs assembling, and searching of sequences with

BLAST and HMMER3 tools.

Contact: ilari.maarala@aalto.fi

Availability and implementation: https://github.com/NGSeq/ViraPipe

1 Introduction

The metagenomics (Thomas et al., 2012) in the era of Next

Generation Sequencing (NGS) enables the complete sequencing of

all microbiological sequences that may be present in a sample. The

human microbiome (i.e. microbiota), defines the collection of micro-

organisms that reside in the human body (Rogers and Bruce, 2012).

Our microbiome is recently found to reflect our health, and

associate to infections and many diseases (Hall et al., 2017; O’keefe

and Greer, 2011; Robinson and Pfeiffer, 2014).

The viral fraction of human microbiome, i.e. virome (Wylie

et al., 2012a), constitute only a small part of human microbiota, but

the proportion and composition of viruses seem to vary in diseased

individuals (Thomas et al., 2012; Wylie et al., 2012b). Studies on

viral metagenomics require unbiased sequencing of all DNA in
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biospecimens, in contrast to studies of bacterial communities where

the conserved 16S rDNA is typically targeted. Viruses usually have

smaller genomes than other microbes and virus-related sequences

will usually constitute only a small fraction of all sequences.

NGS technolofy brings new opportunities for metagenome anal-

yses and enables analyzing of microbial DNA as a part of microbial

community directly from its natural environment, rather than from

laboratory cultured microbes. Viral metagenomics is nowadays rou-

tinely used for virus detection and is commonly used for discovering

of new viruses (Arroyo Mühr et al., 2017, 2015a,b; Bzhalava et al.,

2012, 2013, 2014; Smelov et al., 2016). NGS provides an opportu-

nity to perform a large-scale analysis of all infections that are

present in human biospecimens. Thus, metagenomics has now the

potential to further our knowledge of the role of viruses in human

diseases. However, this raises a great computational challenge for

performing genome-wide analyses with ever-growing data volumes

in tolerable time.

The concurrent computation is the growing trend and the con-

currency is increasing at multiple levels: the number of computing

cores in the processor, processors on the computer, and computers

in the cluster. The amount of NGS data worldwide is predicted to

double every 7 months (Stephens et al., 2015). However, the current

genome analysis pipelines are typically developed utilizing mixture

of command line tools together with the existing sequential algo-

rithms making analyses computationally inefficient, inflexible and

not executable on distributed systems and cloud computing environ-

ments. Hence, the analytical tools and algorithms need to conform

to exploit all this parallelism efficiently. Moreover, the existing

sequential algorithms and pipelines are run on expensive centralized

systems whilst cloud computing environments provide cost-efficient

computing power on demand.

In our previous work, we have been focusing on parallel process-

ing of human NGS data formats on Hadoop framework with

Hadoop-BAM (Niemenmaa et al., 2012) and SeqPig (Schumacher

et al., 2014). In this work, we design and implement a parallel

Apache Spark based pipeline, ViraPipe, for analyzing viral metage-

nomes from hundreds of NGS samples. ViraPipe includes read

aligner with standard BWA-MEM algorithm, De Novo genome

assembler with MegaHit (Li et al., 2016), NCBI BLAST and

HMMER hmmsearch (Eddy and Pearson, 2011) tools for discover-

ing nucleotide and protein sequences, as well as, data filtration and

normalization tools, and SparkSQL based interface for querying the

results. Moreover, we run the metagenome analysis experiment on

real NGS datasets generated from human samples and evaluate the

results.

2. Materials and methods

2.1 Distributed and parallel computation
Storing and processing of genomic data requires large amount of

high performance storage space, working memory, computing

power and network capacity. Distributed computation frameworks,

file systems and databases have been evolving while the price of stor-

age and memory has been decreasing and now it is economically via-

ble to move on to computing clusters and cloud computing. Cloud

computing frameworks enable scalable, reliable, efficient and rela-

tively low cost computing in a server clusters. Cloud services provide

infrastructures for deploying computing cluster easily and flexible

way. Parallel data analysis with multiple distributed computer nodes

brings huge performance advantage compared to a standalone

machines.

2.2 Parallel characteristics of genomic data
Back in the days when widely used algorithms and methods for com-

putational genomics were designed, the parallel computation was

not properly considered. Some of these are challenging to parallelize

such as BWA, Bowtie, BLAST, Hidden Markov Models and De

Novo assembly algorithms. However, data parallel processing is one

potential choice for parallelizing genome analysis pipelines without

rewriting the existing algorithms. Data locality in multiple nodes of

the computing cluster speeds up the processing as data is processed

in parallel in local memory without reloading or moving any data.

The existing general genomics file formats are not designed for dis-

tributed file systems and especially binary formats, such as BAM,

BCF and BED are not distributable without external tools.

However, Hadoop-BAM (Niemenmaa et al., 2012) library offers

functionalities to handle distributed BAM and BCF files on

Distributed Hadoop Files System (HDFS) in parallel and also in-

memory with Spark. Genomic data is usually parallelizable per read

sequence, chromosomes and regions by gene locus, which gives

opportunity to distribute the input data in most processing phases.

For example, NGS data can be distributed for read alignment if

reference assembly methods are used such as BWA (Li and Durbin,

2009) or Bowtie.

Index databases become challenging when distribution has to be

considered. For example, the index of the reference genome has to

be provided as whole at the read alignment phase for aligning reads

globally to a reference genome. Thus, the reference index is repli-

cated to every node in the computing cluster. The index database for

the local BLAST alignment can be distributed and queried in parallel

if the input data is relatively small and the input query is replicated.

Otherwise, the queries can be segmented and distributed to repli-

cated database for parallel search (Wang and Mu, 2003).

2.3 Apache Hadoop and Spark
The popular distributed computing framework, Apache Hadoop

(https://hadoop.apache.org/) and the MapReduce (Jeffrey and

Sanjay, 2004) programming model are based on parallel data proc-

essing of distributed data. MapReduce is intended for processing

large datasets. In particular, it is programming model for Big Data

processing in Hadoop framework, which can perform a wide variety

of real-world computing tasks. Computing with MapReduce is

performed in parallel on distributed nodes typically deployed in

Hadoop computing cluster. MapReduce has advantages as it pro-

vides easy to use template for programmers to perform parallel com-

puting tasks. Furthermore, MapReduce is a powerful tool for the

large scale fault tolerant data analysis.

Apache Spark (Zaharia et al., 2010) is open-source framework

developed for iterative parallel in-memory data processing on com-

puting clusters whereas MapReduce on Hadoop is based on acyclic

batch processing and thus deficient with iterative jobs and interac-

tive analysis. Spark accelerates large-scale data processing with iter-

ative analysis where same working sets of data are cached and

reused several times within same job. Computation in Spark is based

on Resilient Distributed Dataset (RDD) (Zaharia, 2012), which is

distributed and cached to working memory of multiple worker

nodes in a cluster. RDD is processed in partitions within parallel

tasks managed by YARN node managers. Each node then assigns

executor for local tasks which are run in parallel on multiple cores

inside a node. Spark supports reading and writing data to HDFS and

Apache HBase, which are provided with most Hadoop distributions.

Spark can be programmed with Scala, Java, Python and R program-

ming languages, and it includes extensions for parallel graph
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processing, machine learning and data streaming. Figure 1 shows

typical data reduction process in genomic data context in Hadoop

framework.

2.4 Hadoop and Spark based genomic data processing

frameworks
Hadoop-BAM is a library originally developed for processing NGS

data formats in parallel with both Hadoop and Spark. It includes

Hadoop Input/Output interface for distributing genomics file for-

mats into HDFS and tools for e.g. sorting, merging and filtering of

genomic file formats. Currently, supported file formats are: BAM,

SAM, CRAM, FASTQ, FASTA, QSEQ, BCF and VCF. Hadoop-

BAM (Niemenmaa et al., 2012) is widely used in parallel genome

analytics frameworks and libraries such as GATK4 (https://github.

com/broadinstitute/gatk), Adam (https://github.com/bigdatagenom

ics/adam), Halvade (Decap et al., 2015), Seal (Pireddu et al., 2011)

and SeqPig (Schumacher et al., 2014).

GATK (McKenna et al., 2010) is a software package for genomic

data analysis developed by the Broad Institute which has been origi-

nally focusing on large scale germline variant discovering of human

genomes, but nowadays it provides also tools for somatic variant

analysis workflows and also copy number analytic workflows are

under development. The current GATK4 (https://software.broadin

stitute.org/gatk/download/alpha) version is partly developed on

Apache Spark for supporting more scalable and rapid exploratory

genomic studies. The Broad Institute has also established open

source FireCloud platform for managing, sharing and analyzing

genomic data. GATK4 implements also parallel BWA aligner, but it

lacks specific filtering features and the FASTQ input format for

metagenomic analysis.

ADAM (http://bdgenomics.org/projects/adam/) is Apache Spark

based genome analysis toolkit developed in UC Berkeley for explor-

ing genomic data. ADAM includes basic tools for genomics file

transformations, k-mer counting, and allele frequency computation

on Apache Spark cluster.

Halvade (Decap et al., 2015) is a scalable Hadoop MapReduce

framework for parallel variant calling based on the Broad Institute’s

best practices variant discovery workflow. Halvade uses MapReduce

jobs for parallel BWA read alignment and for discovering variants

with GATK’s variant calling pipeline. SealSeal (Pireddu et al., 2011)

is a software suite developed in CRS4 for processing sequencing

data based on Hadoop framework and is written in Python. It

includes basic tools for aligning reads to a reference genome,

identifying duplicate reads, sorting the reads and read quality

controlling.

CloudBrush (Chang et al., 2012) and Contrail (https://source

forge.net/projects/contrail-bio/) are parallel De Novo assemblers

developed on Hadoop MapReduce framework. The both are based

on de-bruijn string graph processing. Spaler (Abu-Doleh and

Çatalyürek, 2015) is a De Novo de-bruijn graph assembler based on

Spark framework and GraphX API. However, the Spaler software is

not publicly available currently.

2.5 Viral metagenomics workflow
The workflow is preceded by read alignment process where billions

of short read sequences from donor sample are aligned to a reference

genome. The amount of NGS data coming from the sequencer

machine depends on the size of the donor genome, used sequencing

method and parameters given to a sequencer. For example the maxi-

mum read data output of Illumina NextSeq Series sequencing plat-

form is 120 gigabases consisting of 150 base pair long DNA or RNA

fragments (reads). These short reads are aligned to human reference

genome for filtering out human mapped reads and for assembling

metagenomes from the unmapped reads. The reference alignment

process requires every read to be aligned against every position in

the reference genome where the reference sequence is three billion

base pairs long for the human reference (resulting to 3 GB of refer-

ence data). There are a few standard tools for relatively fast

sequence alignment such as Burrows-Wheeler transformation based

BWA, Bowtie and SOAP aligners.

NGS technology provides relatively cheap and rapid Whole

Genome Sequencing (WGS), exome sequencing, and targeted

sequencing of DNA and RNA where millions of short reads are

sequenced from host sample in parallel. Metagenome analysis pipe-

lines typically implement re-sequencing of viruses or bacterial DNA

from donor NGS samples for further downstream analysis. A bioin-

formatics pipeline for analyzing viral metagenomic datasets starts

typically with aligning raw sequencing reads against a human refer-

ence genome, e.g. using the BWA aligner (http://bio-bwa.source

forge.net/bwa.shtml). The unmapped read sequences are then nor-

malized using e.g. digital normalization (http://ged.msu.edy/papers/

2012-diginorm) to discard redundant sequences. The normalized

reads are assembled with De Novo assembly tools such as

SOAPdenovo, SOAPdenovo-Trans (http://soap.genomics.org.cn/),

Trinity (http://trinityrnaseq.github.io), IDBA-UD (http://i.cs.hku.hk/

~alse/hkubrg/projects/idba_ud/) and MegaHit (https://github.com/

voutcn/megahit). The use of several assembly algorithms and re-

assembling of all singleton reads to contigs can be used to improve

assembly results. The assembled contigs are queried from human

genomic database with BLAST and contigs having identity greater

than 95% over 75% of their length to human, bacterial, phage and

vector DNA are removed from further analysis. The assembled con-

tigs are then subjected to taxonomic classification by comparing

them against BLAST nt and nr databases to classify them as i) previ-

ously known sequences, ii) related to previously known sequences or

iii) unrelated to any previously known sequences.

Zhou et al. propose MetaSpark (Zhou et al., 2017) framework

for fragment recruitment, i.e. finding the fraction of short read

sequences that are presented in the reference genome. This process

requires read alignment against already assembled metagenomes

and MetaSpark implements FR-HIT algorithm on Spark for read

alignment. FR-HIT algorithm is based on basic Smith-Waterman

local alignment algorithm and FR-HIT is developed especially for

fragment recruitment purposes.

EBI Metagenomics (Mitchell et al., 2016) is online service for analy-

sing and archiving metagenomic data. Their pipeline does not perform

reference alignment and is used mainly for analyzing environmental

samples rather than human samples and viruses. The pipeline itself is

based on identification of protein coding sequences with hidden mar-

kov models and searching of matches from multiple databases.

ViraPipe is specifically tuned for mining virus related genomes,

as well as detection of novel potentially virus-related sequences in

metagenomic datasets generated by NGS technologies.
Fig. 1. Data reduction process
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2.6 Implementation
ViraPipe utilizes data parallel computation strategy as genomic data

can be processed in partitions at many levels (divided by chromo-

somes, chromosomal regions and short read partitions) and this

approach enables us to use existing bioinformatics tools and algo-

rithms in the pipeline. The sequential methods and tools have been

developed for the most general processing phases such as read align-

ment, De Novo assembly and local alignment search with BLAST.

ViraPipe is implemented on Apache Spark and Hadoop with HDFS

file system as this provides flexible framework for scalable and effi-

cient parallel data processing and distributed data management. Key

requirements are partitioning of data for parallel execution with

existing genomic data formats, and piping of multiple tools and

algorithms together with minimal I/O operations. Moreover, low

latency for reading data from HDFS to in-memory RDD and writing

back to HDFS is important as bioinformatics pipelines usually proc-

ess thousands of separate files as well as big files together. This sets

high performance requirements for the deployment cluster disk I/O,

memory allocation, data warehousing and networking.

ViraPipe aligns distributed FASTQ formatted read chunks with

BWA-MEM from the HDFS read data partitions in parallel, and

utilizes Hadoop-BAM library for parallel I/O operations and read

filtering. Parallel read normalization is performed to remove redun-

dant sequences including similar k-mers for viral genome De Novo

assembly. ViraPipe integrates MegaHit assembler (https://github.

com/voutcn/megahit) for assembling normalized non-human reads

to contigs in parallel per sample. The well-known BLAST search is

executed in parallel per contig partitions to query the assembled

contigs from the BLAST human genomic and nt databases. The

BLAST results are filtered and classified by taxonomies. Finally, the

HMMER search is executed to find contigs matching to viral protein

sequences in vFam database. Figure 2 describes the workflow of the

pipeline at high level.

2.6.1 Pre-processing NGS input data

The sequenced paired-end reads are first decompressed and inter-

leaved by in parallel by sample and the interleaved reads are distrib-

uted to HDFS in FASTQ format using the Hadoop-BAM I/O

library. The indexed reference genome is replicated to each comput-

ing node for the BWA alignment process.

2.6.2 Reference alignment and filtering

Parallel BWA-MEM based aligner is implemented with JBwa

(https://github.com/lindenb/jbwa) library which binds the BWA-

MEM library through Java Native Interface to Spark implementa-

tion. Distributed FASTQ read data is first loaded from the HDFS to

Spark RDD. A Spark task loads the reference genome index and

read data partitions are aligned to reference with JBwa library in

parallel tasks. During the same task, the unmapped reads are filtered

and the SAM formatted sequences are transformed back to FASTQ

format for further processing. In addition, BWA output can be

stored in SAM/BAM (Li et al., 2009) format into HDFS.

2.6.3 K-mer normalization

Read normalization removes highly redundant sequences by search-

ing and discarding reads containing similar k-mer sequences.

Basically, the process performs digital normalization (Brown et al.,

2012) and filters out reads including k-mers that have abundance

above given cutoff threshold. The normalization is executed on

Spark over parallel read data partitions. At the end of this phase, the

normalized reads are grouped by sample for use in De Novo assem-

bly phase.

2.6.4 De novo contigs assembly

Normalized FASTQ reads are assembled in parallel per sample.

MegaHit is executed in parallel Spark tasks. To increase the concur-

rency MegaHit uses multiple threads in a task to assemble contigs

from each sample. After every task execution the results are stored

into HDFS. The same parameters are supported as native MegaHit

implementation provides.

2.6.5 BLAST search for viral genomes

Assembled contigs are searched with BLAST from the database

which is replicated in the local file system of each cluster node. The

input contig data is read from the HDFS in FASTA format produced

by MegaHit assembler and the contigs are repartitioned with Spark

RDD for parallel BLAST search. The same options and output for-

mats are supported as native BLAST implementation provides. With

fewer partitions, more threads are used to harness all of the cores as

BLAST is queried per file partition.

First, all the contigs are searched from the BLAST human

genome database with megaBLAST and the non-human contigs are

filtered and kept. The human matching contigs with identities below

given threshold are also kept. The candidate contigs are searched

Fig. 2. ViraPipe workflow
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from BLAST nt database and viral sequences are classified by taxon-

omy from the results. All other non-matching contigs are classified

to ‘unrelated to any previously known sequences’.

2.6.6 HMMER3 search for viral genomes

HMMER3 (Mistry et al., 2013) (hmmsearch algorithm) is used to

search homologous protein sequences from the assembled contigs

which are classified as ‘unrelated to any previously known

sequences’ by NCBI BLAST search. The contigs are queried with

hmmsearch from vFam reference database (http://derisilab.ucsf.edu/

software/vFam) that includes viral profile HMMs (‘vFams’) anno-

tated as viral proteins collected from RefSeq database (Skewes-Cox

et al., 2014). Similar to BLAST search, the partitioned FASTA files

are loaded to Spark RDD and hmmsearch is executed in parallel per

contig data partition. Multi-threading is supported by hmmsearch

to increase concurrency.

3 Results

The scalability is the focus of our experiments. First, we run an

experiment on a sequential pipeline and ViraPipe and compare the

results in Figure 3. Second, we run an experiment with ViraPipe by

varying the amount of samples (Fig. 4). Third, we run ViraPipe by

varying the amount of parallel Spark executors (Fig. 5) on 13 sam-

ples (105.5 GB) dataset. Finally, we evaluate all the processing

phases described in Table 2.

3.1 Patients and samples
The metagenomic sequencing datasets were generated by Next

Generation Sequencing (NGS) technologies applied to human bio-

specimens originating from several different patients groups and

were published elsewhere (Arroyo Mühr et al., 2015a,b; Bzhalava

et al., 2012, 2013, 2014; Smelov et al., 2016). In brief, all of these

analyses were designed to investigate the presence of viral sequences

or other microorganisms in human samples from individuals who

developed diseases or from matched healthy control subjects.

For testing the scalability, datasets of two, 13, 96 and 768

human samples are included totaling uncompressed dataset sizes of

10.1, 105.5, 372.1 and 570 GB respectively. The sample data has

sequenced from Swedish individuals during the projects between the

years 2011–2015. All the samples has sequenced from different indi-

viduals. The NGS read data of every sample was aligned to

GRCh19 human reference genome in the experiments.

3.2 Cluster setup
The experiments were run on dedicated Hadoop cluster maintained

by the department of Laboratory Medicine at Karolinska Institutet.

The cluster comprises 24 nodes including 2� Intel Xeon E5-2690v4

@2.6 GHz CPUs (56 cores per node) and 256 GB of RAM in each.

23 nodes were deployed as Spark worker nodes for computation,

totaling 1288 CPU cores and 5.12 TB of RAM. One node was

deployed as Hadoop Namenode and for cluster management pur-

poses. Each computing node has 2� 960GB SSD disks for local file-

system and operating system. HDFS uses JBOD disk array totaling

1.5 petabytes of storage space where 15� 6TB HDD disks are con-

nected to each node. The nodes were connected with 10 GB full

duplex Ethernet adapters. Linux Ubuntu 16.04 was used as an oper-

ating system on each computing node. The Spark configuration was

optimized for each processing phase (Spark job) in the pipeline sepa-

rately. The HDFS data partition size and memory usage of the paral-

lel tasks set the requirements for the number of executors, executor

cores and the executor memory. The HDFS partition size is constant

128 MB and the memory allocation for BWA-MEM alignment task

was 30 GB at maximum, thus, the parallel BWA execution is limited

to 170 tasks (each task was run on single core) with 5.12 TB of clus-

ter RAM. 170 executors with 30 GB of memory were found optimal

for the alignment phase regarding the experiment (Fig. 5) where run-

time on 105 GB dataset (13 samples) with increasing the number of

executors was benchmarked. Increasing the number of executor

cores does not improve the performance as available memory

restricts the number of parallel tasks. The same strategy was used

with other jobs in the benchmarked pipeline and the configuration is

shown in Table 1. The dynamic Spark executor memory allocation

was found suboptimal in preliminary tests. The sequential pipeline

was set up for comparing the performance with the ViraPipe. The

sequential pipeline uses the same bioinformatics tools and databases

as ViraPipe except the read normalization is done with Khmer

(https://github.com/dib-lab/khmer) tool. The Khmer is not utilizing

multithreading as does the other tools in the pipeline. The pipeline

Fig. 3. ViraPipe performance compared to the sequential pipeline with 13

samples (105.5 GB) dataset

Fig. 4. Scalability of the pipeline in respect to the sample dataset size

Fig. 5. Scalability of the pipeline in respect to the number of executors with 13

samples (105.5 GB) dataset
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was run on a single node with 256 GB of memory on 56 cores in

total using HDD storage. The sequential pipeline is available at

https://github.com/NGSeq/ViraPipe/tree/master/scripts.

3.3 Evaluation
Table 2 shows the ViraPipe runtimes and input data sizes in each

processing phase with different datasets as well as the total runtime,

pipeline throughput, number of samples, number of total reads, read

lengths and size of discovered contig data.

As a baseline for the evaluation, we run the experiment on 105.5

GB (13 samples) dataset with sequential pipeline and compare the

results with ViraPipe in Figure 3. The total running time for the

sequential pipeline is 513 min while ViraPipe performs in 46.7 min.

In the second experiment, we evaluate the runtime of the

ViraPipe in function of sample dataset size. The results (Fig. 4) show

that ViraPipe runtime increases linearly in proportion to dataset

size.

Decompression and interleaving of reads took from 3.9 to

10.6 min depending on the number of samples and compressed input

data size.

The BWA-MEM read alignment took 2.8 min with the smallest

dataset including two samples (10.2 GB from 39.3 million reads)

and 150 min with the largest dataset including 768 samples (570.9

GB from 2.07 billion reads). The read alignment process consumed

nearly 70% of the total execution time when dataset size was hun-

dreds of gigabytes. With smaller datasets, read alignment time was

not that dominant and BLAST search became more expensive. This

depends on the sample data, the more contigs are found the more

time is spent on the BLAST search. For example, from dataset of

two samples (10.1 GB) 150 kB of contigs were we assembled whilst

58 kB was assembled from 96 (105.1 GB) samples (Table 2). With

two and 13 samples the BLAST search took 1.4 and 1.1 min while

alignment took 2.8 and 33.8 min, respectively.

The normalization runtime grows linearly as the function of

dataset size showing good scalability. The normalization reduces the

size of data to 10–25% of the original unmapped reads.

Assembly time varies between 1.3 and 14 min (Table 2). The run-

time depends on the dataset size of a sample as assembly is per-

formed in parallel per sample. Thus with greater dataset size

assembly can take less time than with smaller datasets.

The BLAST search time varies between 1.1 and 5.4 min depend-

ing on the size of assembled contig data. 1.4 min running time was

achieved with 58.4 kB of contig data whereas 5.4 min was achieved

with 2.3 MB of contig data. Human genomic database was queried

with the megaBLAST. Input data was partitioned into 100 partitions

and each partition was queried in parallel with multi-threaded

BLAST algorithm.

HMMER3 search time varies between 0.7 and 2 min with same

contig datasets as BLAST search was performed with. The data was

partitioned into 100 partitions and each partition was queried in

parallel executors with hmmsearch algorithm using 10 threads.

Finally, we run an experiment by increasing the amount of Spark

executors with 13 samples dataset (105.5 GB). The total runtime in

Figure 5 shows that it decreases linearly in proportion to the number

of executors until 170 executors are reached.

3.4 ViraPipe assessment
For the metagenomics analysis assessment we run both a sequential

pipeline and ViraPipe with a single sample dataset. The ViraPipe

relies on data parallel computation where the NGS reads are parti-

tioned into blocks and processed in parallel. Thus, the BWA align-

ment is performed in parallel per sample read data partition, where

each sample is processed separately and the reads of the sample are

aligned in parallel. This reduces the parallelism to the number of

partitions generated per sample but is mandatory for avoiding false

mappings which occurs if the sample reads are merged before the

alignment. The normalization is done also in parallel per read

Table 2. Runtime measurements are reported in minutes at different processing phases

Samples 2 10.1 GB 13 105.5 GB 96 372.1 GB 768 570.9 GB

Runtime (min) Input size Runtime (min) Input size Runtime (min) Input size Runtime (min) Input size

Pre-processing 3.9 1.5 GB 2.5 22.3 GB 7.1 135.1 GB 10.6 189.3 GB

Alignment 2.8 10.1 GB 33.8 105.5 GB 110 372.1 GB 150 570.9 GB

Normalization 4.1 3.8 GB 6.1 5.1 GB 19 31.4 GB 28 137.1 GB

Assembly 1.5 0.326 GB 2.5 0.389 GB 1.3 6.7 GB 14 10.2 GB

Blast 1.4 150 kB 1.1 58.4 kB 2.5 278 kB 5.4 2.3 MB

HMMSearch 1.8 150 kB 0.7 58.4 kB 1.5 278 kB 2 2.3 MB

Total runtime 15.5 46.7 141.4 210

Throughput (reads/s) 42.3k 139.3k 193.6k 164.2k

Total input reads 39.3 M 390.4 M 1642.2 M 2068.6 M

Read length 16–150 bp 35–150 bp 101 bp 101 bp

Note: Input data size in each phase is reported in bytes. Total input reads describes the total amount of sequenced reads, the read length is the length of single

read in base pairs.

Table 1. ViraPipe experiment configuration

Job Executors Executor

memory

Tool parameters

Pre-processing 80–500a 10GB –

Alignment (BWA) 170 30GB mem -p

Normalization 80–250a 20GB �k16 -C15

Assembly

(MegaHit)

23–250 20–220GBa �t10-56a –12

Blast 100 50GB –threshold 70

–num_threads 12

–word_size 11

–gapopen 0

–gapextend 2

–penalty -1

–reward 1

–max_target_seqs 10

–evalue 0.001

HMMSearch 100 50GB –noali –cpu12

aThe amount is increased inversely proportional to the number of analyzed

samples.
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partition and this increases the amount of assembled contigs com-

pared to output of the sequential pipeline. That is, the parallel nor-

malization does not reduce the amount of reads as much as

sequential normalization, thus, the ViraPipe finds a greater number

(12.5%) of similar sequences than the sequential pipeline. With the

test dataset, ViraPipe found 12.5% more non-human sequences.

4 Discussion

The results in Figure 3 show that overall speedup is 11� with 13

samples (105.5 GB) dataset. It should be noted that the sequential

pipeline pre-processing phase includes read filtering operations

whilst ViraPipe does the read filtering within the alignment phase in

parallel. The ViraPipe pre-processing phase includes decompression

and read interleaving phases.

When the number of samples and dataset size increases the scal-

ability gets close to linear. Suboptimal performance with small

amount of samples (2 and 13 samples) indicates that data is divided

in too few partitions to harness all the computing power of available

cores. During the experiments, the load balancing was not equal

amongst the executors, thus some of the parallel tasks run longer

increasing the total running time, especially in BWA-MEM align-

ment phase the amount of mapping reads affects to task running

time greatly. More cores can be harnessed by decreasing the HDFS

block size (defaults to 128 MB) especially with small datasets. The

result of too big partition size can be observed from runtime of pre-

processing phase: the runtime was shorter with 96 samples than

with 2 samples (Table 2). Each sample is decompressed from read

files in parallel. If the read files are compressed into size of config-

ured HDFS blocks, the decompression would be considerably faster

also with fewer samples.

The read sequence length can affect the performance of BWA

algorithm, thus, the experiments with variable length reads may

introduce a slight runtime overhead as partitions can include differ-

ent amount of reads making task load balancing unequal. Also, the

JNI interface can slow down the alignment performance slightly.

However, the overall runtime grows linearly and aligner is perform-

ing great.

The normalization performance depends on the amount of the

abundant k-mers and the number of data partitions, which is shown

in the results (Table 2): 10 GB dataset (two samples) produced 82

partitions while 105.5 GB (96 samples) dataset produced 850 parti-

tions. However, the runtime increases only 1.5 times, indicating that

concurrency was not optimal with the smallest dataset, and thus,

data should be processed in smaller partitions.

MegaHit assembler is executed in parallel per sample and assem-

bly phase scales linearly. The assembly time varies and depends

greatly on the number of samples and the amount of assembled con-

tigs. However, the runtime of the 96 samples was shorter than with

13 samples resulting to 278 and 58.4 kB of assembled contig data

respectively even though input data size was almost 20 times larger

with 96 samples. That is, the contigs are assembled in as many parti-

tions as is the number of original samples. Thus, with the small

number of samples it is recommended to increase the number of

MegaHit threads to increase the concurrency. However, the assem-

bly phase consumes only a fraction of the total computing time.

The BLAST search is computationally intensive phase especially

against the BLAST nt database which is 50 GB in size. The query

time depends greatly on the query size which can be seen from the

Table 2. In the experiments, the contig data is partitioned into 100

partitions as default. The length of the assembled contigs can affect

to performance as long individual contigs can not be splitted for

searching. However, in our experiments the assembled non-human

contig length stays relatively small (under 5000 bp) thus, the query

length is not showing any significant bias to the results. It was noted

during experiments that too few memory increases the Blast runtime

dramatically. By increasing the executor memory from 20 to 60 GB,

the running time decreased to ten fold.

HMMER3 search runtime shows linear scalability. The

hmmsearch was performed in parallel per RDD partition against

vFam database which is relatively small (500 MB) compared to

Blast nt database (50 GB). To report, we run also HMMER3 search

against vFam database with 3.9 GB dataset and hmmsearch proc-

essed it in 22 min in parallel.

Scalability in respect to the number of Spark executors (Fig. 5)

shows linearity until the amount of 170 executors is reached. That

is, the total working memory of the cluster limits the amount of par-

allel execution of tasks. For example, at least 30 GB of memory is

required for alignment phase when HDFS partition size is 128 MB,

e.g. 170 executors each allocated with 30 GB of memory results to

5.1 TB of memory, which is near the total memory of the cluster.

A recent study of Unified Parallel Programming based alignment

tool reports that their solution aligns 246 million paired end reads in

16.64 min (Gonzalez-Domı́nguez et al., 2016) with CUSHAW3

aligner, which is reported to be fastest but not the most sensitive

read aligner in (Lin et al., 2011). Puckelwartz et al. (Puckelwartz

et al., 2014) performed variant calling on 240 human samples on

Cray XE6 supercomputer in 50 h with GATK variant calling pipe-

line. Halvade (Decap et al., 2015) is reported to process variant call-

ing with BWA-aln alignment on the 1.5 billion paired-end reads in

159 min with 360 cores @ 2.4 GHz on 15 nodes. ViraPipe aligned

768 human samples (2.1 billion 101 bp paired-end reads) in 150 min

with 1288 cores @ 2.6 GHz on 23 computing nodes. It should be

noted that BWA-MEM algorithm is computationally more complex

than BWA-aln and is thus slower.

5 Conclusions

To tackle the challenge of discovering viruses from thousands of

samples in tolerable time with existing tools, we propose ViraPipe, a

parallel pipeline for performing scalable viral metagenome analysis

with Apache Spark on a computing cluster. ViraPipe integrates

widely used genomics tools such as BWA aligner, MegaHit De

Novo assembler as well as BLAST and HMMER3 search tools in

flexible and reusable way. The experiments were run for assembling

viral contigs, searching viral sequences with BLAST, and profiling

sequences with HMMER3 in parallel from 768 human samples in

210 min with Apache Spark on Hadoop computing cluster including

1288 cores on 23 worker nodes. The results show 11� speedup on

23 computing nodes compared to sequential pipeline run on single

node. ViraPipe is capable to scale from tens of gigabytes to terabytes

of NGS data comprising thousands of human samples by harnessing

more computing nodes to the cluster. In addition, the pipeline

includes functionalities to search and manipulate NGS data in

FASTA, FASTQ, SAM/BAM and BLAST output formats in parallel.

The solutions in our pipeline are potentially applicable for any pur-

poses where large-scale read alignment, De Novo assembly or

BLAST sequence search is needed. Apache Hadoop and Spark based

architecture brings a great flexibility for harnessing ViraPipe to

cloud computing environment with the needed computing resources

on demand.
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