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Abstract

Background: Identifying viral sequences in mixed metagenomes containing both viral and host contigs is a critical
first step in analyzing the viral component of samples. Current tools for distinguishing prokaryotic virus and host
contigs primarily use gene-based similarity approaches. Such approaches can significantly limit results especially for
short contigs that have few predicted proteins or lack proteins with similarity to previously known viruses.

Methods: We have developed VirFinder, the first k-mer frequency based, machine learning method for virus contig
identification that entirely avoids gene-based similarity searches. VirFinder instead identifies viral sequences based
on our empirical observation that viruses and hosts have discernibly different k-mer signatures. VirFinder’s
performance in correctly identifying viral sequences was tested by training its machine learning model on
sequences from host and viral genomes sequenced before 1 January 2014 and evaluating on sequences obtained
after 1 January 2014.

Results: VirFinder had significantly better rates of identifying true viral contigs (true positive rates (TPRs)) than
VirSorter, the current state-of-the-art gene-based virus classification tool, when evaluated with either contigs
subsampled from complete genomes or assembled from a simulated human gut metagenome. For example, for
contigs subsampled from complete genomes, VirFinder had 78-, 2.4-, and 1.8-fold higher TPRs than VirSorter for 1,
3, and 5 kb contigs, respectively, at the same false positive rates as VirSorter (0, 0.003, and 0.006, respectively), thus
VirFinder works considerably better for small contigs than VirSorter. VirFinder furthermore identified several recently
sequenced virus genomes (after 1 January 2014) that VirSorter did not and that have no nucleotide similarity to
previously sequenced viruses, demonstrating VirFinder’s potential advantage in identifying novel viral sequences.
Application of VirFinder to a set of human gut metagenomes from healthy and liver cirrhosis patients reveals
higher viral diversity in healthy individuals than cirrhosis patients. We also identified contig bins containing
crAssphage-like contigs with higher abundance in healthy patients and a putative Veillonella genus prophage
associated with cirrhosis patients.

Conclusions: This innovative k-mer based tool complements gene-based approaches and will significantly improve
prokaryotic viral sequence identification, especially for metagenomic-based studies of viral ecology.
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Background
Viruses are the most abundant biological entities with

more than 1031 particles on Earth, most of which are

viruses that infect bacteria and archaea (prokaryotes) [1].

Viruses infect and replicate within host cells, and

through these infective interactions, they play important

roles in controlling bacterial population size, altering

host metabolism, and have broader impacts on the func-

tions of microbial communities, such as human gut, soil,

and ocean microbiomes [2]. For example, viruses in the

human gut microbiome have been found to profoundly

influence inflammatory bowel disease and severe acute

malnutrition [3, 4]. In aquatic and soil habitats, viruses

also have important roles in affecting the biogeochemical

functioning of their hosts [5].

However, our understanding of virus-host interactions

for large portions of viral communities has been limited

due to the difficulties of using traditional virus isolation

techniques, especially for those that infect uncultivable

hosts. Isolation approaches have to date only yielded a

small portion of known viral diversity–viruses have been

isolated on less than 15% of known phyla of prokaryotic

hosts (based on data in [6]). While the term virus

broadly includes those that infect prokaryotic and

eukaryotic hosts, throughout we use the term virus (and

provirus in the case of integrated viruses), to refer to

viruses that infect bacteria or archaea (the focus of this

study) rather than the terms phage or bacteriophage,

which specifically refer to viruses that infect bacteria.

Metagenomic studies using high throughput sequencing

technology can now generate massive amounts of short

read sequences from prokaryotic cells in microbial

communities regardless of cultivability of the cells, and

viruses are inevitably captured at the same time in these

samples. Many metagenomic studies specifically focus

on selectively capturing and sequencing viral particles,

but sequencing cellular fraction samples frequently

recover viral sequences along with prokaryotic host

sequences. For example, viral sequences were estimated

to comprise 4–17% of human gut prokaryote metagen-

omes [7]. Viral sequences found in cellular prokaryotic

samples will include lysogenic viruses integrated into

prokaryotic host genomes, or proviruses, as well as viral

DNA within actively infected cells and those outside

cells but still collected by the sampling method. Like-

wise, single cell sequencing methods can sometimes sim-

ultaneously capture host and virus sequences [8].

Potentially large numbers of new viruses can be dis-

covered from prokaryotic cellular fraction metagenomes

leading to marked advances in our knowledge of virus-

host interactions. The first crucial step is the identifica-

tion of viral sequences from the mixture of virus and

host sequences. Current tools for identifying virus and

provirus sequences have largely taken the same general

approach—identifying query sequences with significant

similarity to vetted databases of viral sequences (lytic vi-

ruses and/or proviruses). Tools for identifying proviruses

from within prokaryotic genomes were first developed

before the metagenomic era. While identifying provi-

ruses is a different problem than finding viral sequences

within mixed metagenomic samples, provirus finding

tools laid the groundwork for current approaches and in

general use the same principles used in current metage-

nomic tools. These provirus finding programs include

Phage_Finder [9], Prophinder [10], PHAST [11], and

PhiSpy [12]. They generally use sliding windows analyses

to scan for regions that have high densities of genes with

significant similarity to databases of known virus genes

and predict those regions as proviruses. Phispy [12] fur-

ther integrates multiple information sources other than

similarity-based methods such as protein length, AT and

GC skew, transcription strand direction (long stretches

of genes in viral genomes are frequently encoded on the

same strand), and unique virus k-mers to further in-

crease the detection accuracy. These prophage detectors

are not well suited for identifying viral sequences from

assembled metagenomic data, because most assembled

contigs are short, fragmented contigs and possess few or

no complete predicted genes. Additionally, most of these

prophage predictors are not optimized to process large

numbers of contigs in a reasonable time (see [13]), the

exception being PHASTER, an updated version of

PHAST [14].

Studies and tools aimed at identifying viral sequences

in mixed metagenomic datasets likewise often use simi-

larity searches of reads or assembled contigs to known

virus reference genomes. For example, Waller et al. [15]

detected 15 virus genera in 252 human gut metagenomic

samples by mapping short reads to known phage marker

genes, and numerous novel virus-host interactions were

subsequently established. The tool VIROME, while built

to specifically analyze viral fraction metagenomes, cate-

gorizes predicted proteins as microbial or viral via blast

searches against metagenomic databases and UniRef

proteins [16]. Metavir [17] is a web server tool that can

rapidly compare metagenomic reads to complete viral

genomes from the Refseq database, and this tool has

addressed the issue of processing large amounts of

sequence data not implemented in most virus or

provirus finding tools. The tools Centrifuge [18] and

DIAMOND [19] can rapidly map metagenomic reads to

optimally indexed nucleotide or protein databases

respectively, and can be useful in identifying viral genes

in metagenomics. Such reference-based inferences,

however, are hampered by the limited extent to which

current reference databases represent the extant diversity

of natural viral communities, i.e., this approach only finds

viruses closely related to those we already know about. It
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is estimated that only about 15% of viruses in human gut

microbiome and 10% in the ocean have similarity to the

known viruses [3, 20].

VirSorter [13] is the most recent and best performing

program for detecting viral sequences in assembled

metagenomics data. It can detect both proviruses and

lytic viruses. Beyond simply identifying regions enriched

in genes with similarity to viral sequence databases, it

follows in the footsteps of PhiSpy by integrating multiple

types of evidence including presence/absence of viral

hallmark genes, enrichment of viral-like genes, enrich-

ment of uncharacterized genes, and depletion of Pfam-

affiliated genes. VirSorter relies heavily on similarity

searches to available viral databases, but it has an added

advantage that it uses a manually curated database of

virus reference genomes augmented with metagenomic

viral (virome) sequences sampled from freshwater,

seawater, and human gut, lung and saliva. Another ad-

vantage is the use of the strand switching and short gene

criteria that are characteristic viral phenomena that do

not require similarity searches. VirSorter, however, is still

gene-based and requires at least three predicted genes

within a contig to make a prediction, thereby excluding

many shorter contigs. It is known that some viruses have

about 11–14% non-coding regions [21, 22], and this too

could hinder gene-based virus prediction programs. In

addition, high confidence VirSorter predictions (categor-

ies I and II for “most confident” and “likely” predictions)

rely on the presence of a hallmark viral structural gene,

which again will limit detection of fragmented viral con-

tigs. Similarly, VirSorter may miss many novel viruses

for which their hallmark genes have not been character-

ized or are poorly represented in reference databases,

and novel viruses not well represented in existing

viromes can also be missed.

Sequence signature methods provide a promising and

wholly different new avenue for improved identification

of viral contigs. Characterization of sequences using

frequencies of k-mers (or k-tuples, k-grams) regardless

of coding and non-coding regions, have been used with

great success for many sequence discrimination and

classification applications. Several k-mer based tools, in-

cluding Glimmer [23], Phymm [24], PhyloPythiaS [25],

Kraken [26], CLARK [27], k-SLAM [28] exist for identi-

fying or classifying prokaryotic metagenomic sequences,

but they notably do not attempt to discriminate or

classify viral sequences. For example, Glimmer uses in-

terpolated Markov models learned from distributions of

k-mers to identify bacterial genes from mixed samples

containing eukaryotic sequences [23], and Phymm taxo-

nomically classifies bacterial sequences as short as

100 bp using the same type of models [24]. PhyloPythiaS

is another web server for taxonomic assignment of

bacterial sequences that uses an ensemble of machine

learning classifiers trained on k-mer frequencies [25].

Moreover, Kraken, CLARK, and k-SLAM use k-mers to

index genomic sequences and speed up sequence com-

parison for taxonomically assignment of prokaryotic

metagenomic sequences [26–28]. In general, sequence

signatures-based methods characterize sequences using

k-mers from the whole sequence, coding or not, and

then build a classification model based on the distribu-

tion of k-mers. Since no gene finding or gene similarity

comparisons are needed, these methods can have super-

ior performance for short sequences that have only a

few or incomplete genes. The use of discretized k-mer

patterns also avoids the reliance on hallmark genes or

alignment to known viruses. Finally, if viruses universally

use some k-mer patterns distinct from prokaryotes, then

word-based methods may be more powerful in identify-

ing novel viruses that are distantly related to currently

known viruses and lack homologous sequences at the

gene level.

The motivation for developing a k-mer based tool for

viral sequence was inspired during development of

another tool, VirHostMatcher [29], that matches query

viruses to their probable hosts based on k-mer frequency

similarities. We and others have shown that viruses

often share higher similarity in k-mer patterns with its

specific host than with random hosts [29, 30], presum-

ably because of evolutionary selection to share similar

codon usage. VirHostMatcher utilizes this phenomenon

to predict the probable host of a query virus by iden-

tifying to which host sequence the virus has the great-

est k-mer similarity (using the d2* measurement [29]). In

the process of developing VirHostMatcher, we noted other

virus sequences often had greater k-mer similarity

scores to the query virus than any of the other host

sequences. This initially suggested that in addition to

specific viruses and hosts sharing k-mer patterns, vi-

ruses themselves may share some characteristic k-mer

patterns that could potentially be used to distinguish

viral and host sequences.

In this paper, we have developed VirFinder, to our

knowledge, the first k-mer based program for identifying

prokaryotic viral sequences from metagenomic data.

VirFinder uses machine learning methods to identify

sequence signatures that distinguish viral sequences

from host sequences, and as a result, constructs a scor-

ing system to predict viral sequences based on sequence

signatures. We have evaluated VirFinder for its perform-

ance in detecting viral sequences over a range of short

(500 bp) to long ≥ 3000 bp sizes, including novel viruses.

VirFinder exhibits improved performance over VirSorter

in correctly identifying novel viruses, especially for short

(1000 bp) contigs. VirFinder was applied to find and

analyze viral sequences in human gut metagenomic data

from healthy and liver cirrhosis patients. Diseased
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patients exhibited lower viral diversity, and 15 viral con-

tig bins could be used to predict the disease status of

liver cirrhosis with high statistical power, demonstrating

the potential use of metagenomic viral diversity in the

diagnosis of human disease states. VirFinder is available

at https://github.com/jessieren/VirFinder.

Results

To build and test VirFinder, two separate sets of viral

and host sequences were used for training and testing of

the machine learning tool: RefSeq virus and prokaryotic

genomes sequenced before 1 January 2014 for model

training and after 1 January 2014 for testing. The parti-

tioning of training and evaluation sequences by date was

used to evaluate the ability of the tool to discover novel

viruses based on patterns of previously known viruses.

The 1 January 2014 break point was selected to make fair

comparisons in performance to VirSorter, which makes

predictions based on a database of viruses sequenced

before January 2014. To mimic fragmented metagenomic

sequences, RefSeq virus genomes were split into non-

overlapping fragments of various lengths L = 500, 1000,

3000, 5000, and 10,000 bp, and the same number of non-

overlapping fragments were randomly subsampled from

the prokaryotic genomes (Table 1). See Methods for

details.

The effects of k-mer length and contig length

We first determined the best word length to use with

VirFinder and how contig length of both training

sequences and query sequences affected prediction

performance. A logistic regression model with lasso

regularization was chosen for its good interpretability

and flexibility. The machine learning model was trained

using equal numbers of sequences subsampled from

prokaryotes and viral genome sequences at several

contig lengths: 500, 1000, 3000, 5000, and 10000 bp. For

prediction of each query sequence, VirFinder first

extracts the k-mer features from the sequence and then

generates a score between 0 and 1 based on the trained

machine learning model, with a higher score indicting

higher possibility that the sequence is viral. The tool also

outputs a statistical measure of how distinct it is from

prokaryotic hosts contigs: the p value from comparing

the query score to the distribution of scores for all host

contigs used in the training dataset.

Evaluation of VirFinder with contigs subsampled from

known virus and host genomes

After training the model, VirFinder was evaluated on

equal numbers of viral and host contigs subsampled

from genomes sequenced after 1 January 2014. To evalu-

ate VirFinder’s performance, we used receiver operating

characteristic (ROC) curves typically used to evaluate

performance of classifiers. ROC curves were generated

by setting a score threshold and calling contigs as viral if

their scores were above that threshold. Over a range of

incrementally decreasing thresholds (or increasing

thresholds for p value), we calculated and plotted the

fraction of true viral contigs that were correctly called as

viral or the true positive rate (TPR) and the fraction of

prokaryotic contigs that were incorrectly called as viral

or the false positive rate (FPR). The area under the curve

of these ROC curves (AUROC) was used to evaluate

performance whereby high values indicate good per-

formance. A score of 1 represents perfect identification

of all true viral contigs with no false positives, and a

score of 0.5 represents a random classification. For

VirFinder, AUC values and thus performance increased

as k-mer length increased (Fig. 1a). For contigs with

length ≥ 3,000 bp, performance was relatively stable at

k-mer lengths ≥ 6. For 1000 bp contigs, AUROC

values began to stabilize for k-mer size ≥8, and for

500 bp contigs, performance appeared to still increase

appreciably above k-mer size 8. Based on these results,

k-mer length 8 was chosen for all subsequent applica-

tions of the tool. At k-mer length 8, AUROC score first

increased somewhat from 0.91 for 500 bp contigs to

0.94 for 1000 bp contigs and then were relatively stable

for higher lengths (0.97, 0.98, and 0.99 for 3000, 5000, and

10000 bp contigs). Overall, these high AUROC scores

demonstrate the strong ability of our VirFinder tool to

correctly identify newly obtained viral sequences.

Metagenomic assembly produces contigs of various

lengths ranging from hundreds of bp to 105 bp or more,

so we wanted to determine the sensitivity of VirFinder’s

performance to different contig lengths used for training

and evaluation. As before, the model was trained using

contigs subsampled from genomes sequenced before 1

January 2014 and then tested on contigs subsampled

from genomes sequenced after 1 January 2014. For a

given query contig length, AUROC scores in general

were highest when the query contig length matched the

contig length on which the model was trained, and per-

formance dropped as the training model contig length

was increased or decreased (Fig. 1b). Performance was

more sensitive to changes in the training contig length

Table 1 The number of fragments generated from the virus
genomes discovered before and after 1 January 2014

Fragment
length (L)

Before 1
January 2014

After 1
January 2014

Total

500 bp 154,640 50,350 204,990

1000 bp 77,014 25,087 102,101

3000 bp 25,263 8246 33,509

5000 bp 14,881 4878 19,759

10000 bp 7120 2357 9477
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for smaller query contig lengths. In particular, for query

contigs ≥ 3000 bp, AUROC scores did not appreciably

change across the different training contig lengths. Based

on these results, we subsequently used the 500 bp

trained model to predict contigs <1000 bp; the

1000 bp trained model to predict contigs of 1000–

3000 bp; and the 3000 bp model predicts contigs with

length ≥ 3000 bp.

Because metagenomic datasets may contain different

proportions of viral and host contigs, this potentially

could affect prediction performance for a tool that is

trained on equal proportions of viral contigs. In practice,

the fraction of viral contigs will vary with different types

of samples, so VirFinder was evaluated as above using

subsampled host and viral contigs sequenced after 1

January 2014, but with 10 and 90% viral mixtures.

Within each contig size class, AUROC scores had no

obvious differences (≤1.8%) between different fractions

of viral mixtures (Additional file 1: Figure S1A). Area

under precision-recall curves (AUPRC) were used as a

complementary method to evaluate the prediction per-

formance, as they are more sensitive for imbalanced

data. In these plots, precision or the fraction of predicted

viral contigs that are truly viral is plotted against and re-

call the fraction of viral contigs that are correctly called

(also known as true positive rate (TPR)). As with

AUROC scores, they range from 0 to 1 with higher

values indicating better performance. For each contig

size class tested (as in Fig. 1), AUPRC values increased

with increasing fraction of viruses in the contigs tested

(Additional file 1: Figure S1B), and these increases were

more pronounced for smaller contig sizes. For example,

AUPRCs were all nearly 1 (perfect prediction) with

samples containing 90% viral contigs regardless of contig

length, while they were 0.71, 0.94, and 0.99 for 1000 bp

contigs for 10, 50, and 90% viral contig datasets,

respectively.

Comparison of VirFinder and VirSorter performance

We assessed the ability of VirFinder to correctly identify

viral contigs in comparison to VirSorter, the top per-

forming viral classification tool [13]. Both VirSorter and

VirFinder were tested using the same set of evaluation

contigs as above: equal numbers of contigs subsampled

from host and virus genomes sequenced after 1 January

2014. This provided a fair comparison as both methods

use databases of viruses sequenced before 1 January

2014 to make their predictions. We first assessed the

true positive (TPR) and false positive rate (FPR) for

VirSorter using category I and II VirSorter predictions.

Categories I, II, and III represent “most confident”,

“likely”, and “possible” predictions (see [13] for details).

In comparing the performance of two methods, it is im-

portant to use the same criteria for a fair comparison,

namely, comparing the true positive rate under the con-

dition of both methods having equivalent false positive

rates. To do this, we first determined the true and false

positive rates for VirSorter with category I and II results

(or when noted, with different levels). By selecting the

VirFinder score threshold that produces the same FPR

level as the corresponding VirSorter results, we then

determined the true positive rate (TPR) for VirFinder.

At all query contig lengths, VirFinder’s TPR exceeded

that of VirSorter (Fig. 2a) at comparable FPRs, and based

on 30 replicate bootstrap samples, this difference was

statistically significant (p ≤ 6 × 10−5, Wilcoxon signed-

rank one-sided test). The relatively large standard errors

of TPRs were primarily due to the large range of FPRs

from VirSorter’s results and thus the subsequent deter-

minations of VirFinder’s TPRs. Note that for 500 bp

contigs, VirSorter made no predictions so its FPR and

Fig. 1 The impact of k-mer size and contig length on the performance
of VirFinder. VirFinder was trained using contigs sampled from viral
and host genomes sequenced before 1 January 2014 and predictions
were made on contigs from genomes sequenced after 1 January 2014.
Error bars depict standard error determined from 30 bootstrap samples
from the testing dataset. a Area under the curve for receiver operator
curves (AUROC) are shown when VirFinder was trained using several
k-mer lengths and contig lengths. b AUROC values for VirFinder results
when using k-mer length 8 and several combinations of contig
lengths used for training and testing
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TPR were both 0. VirFinder correctly identified 944 con-

tigs as viral (TPR = 1.9%) at 0 FPR in this case. VirFinder

correctly identified 78, 2.4, 1.8, and 1.2 times more viral

contigs than VirSorter for 1000, 3000, 5000, and

10000 bp, respectively (Fig. 2b), and therefore VirFinder

had a substantially larger TPR for 1000 bp or shorter

contigs. TPRs for VirFinder were also evaluated at three

specific fixed FPRs. At FPRs of 0.01 and 0.005, VirFinder

had higher TPRs at all contig lengths than VirSorter. At

the more conservative FPR of 0.001, VirFinder had TPRs

18, 19, 31, and 39% for 1000, 3000, 5000, and 10000 bp

contigs, respectively.

Along with the tests above on equal numbers of virus

and host contigs, we also tested VirFinder and VirSor-

ter using highly skewed contig datasets: host-enriched

(10% viral) and virus-enriched (90% viral). At all contig

lengths and both viral fractions, VirFinder’s TPR exceeded

that of VirSorter (Additional file 1: Figure S2A, S2B). For

example, for 1000 bp contigs, VirFinder predicted 1.2, 3.6,

and 11% of true viral contigs while VirSorter predicted

0.04, 0.05, and 0.26% for 10, 50, and 90% viral samples,

respectively. This translates to 26-, 78-, and 41-fold higher

TPRs for VirSorter. For long contigs >3000 bp, the fold

difference in VirFinder over VirSorter TPRs were lower,

on average 1.1, 1.8, and 3.8 for 10, 50, and 90% viral

samples, respectively.

Sensitivity of VirFinder to mutations

Because VirFinder relies on nucleotide k-mer analyses

and sequencing technologies can contain errors, the

sensitive of VirFinder to mutations was tested. This also

served as a test of the ability of VirFinder to identify vi-

ruses that may rapidly diverge over time from previously

sequenced virus strains in the training datasets due to

high mutation rates in viruses. Random mutations were

introduced into the 30 replicate subsampled contigs

used above in the analyses in Fig. 2 at three different

rates (0.0001, 0.001, and 0.01), and AUROC values were

compared to the results with no mutations. Within

each contig size group, only at the highest rate of

0.01 mutations per bp were AUROC values significantly

lower (p < 0.01, t test) (Additional file 1: Figure S3). Vir-

Finder’s ability to correctly identify viral contigs is insensi-

tive to virus mutation rates of ≤0.001 as suggested in [31].

The reported rates for sequencing errors generated by the

Illumina platform are about 0.001 [32].

Virus prediction for sequences from different host

domains and phyla

Recognizing the unevenness in the taxonomic diversity

of hosts from which the training set of viruses were

isolated, we evaluated how the performance of our tool

varied for several groups of viruses. The model was

trained on all viruses in the training set regardless of

host taxonomy, and AUROC curves were plotted for

identification of viruses that infect different domains

and major bacterial phyla using 1000 bp subsampled

contigs. AUROC scores were markedly lower for ar-

chaeal viruses versus bacterial viruses (Fig. 3a). Only 3%

of viruses in the training set are archaeal. Similarly, iden-

tification of Firmicutes viruses had a notably lower

AUROC score, 0.88, than those for Proteobacteria (0.97)

and Actinobacteria (0.96). The patterns for other contig

lengths were consistent with results shown for 1000 bp

contigs (data not shown).

VirFinder vs VirSorter cat. I, II & III

VirFinder vs VirSorter cat. I & II
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Fig. 2 Performance of VirSorter and VirFinder virus prediction for
contigs subsampled from virus and prokaryotic genomes. As input
to each evaluation, equal numbers of contigs subsampled from virus
and prokaryotic genomes were used for 30 replicate bootstrap samples.
a The fraction of true viral contigs (true prediction rate (TPR)) identified
by VirSorter using category I and II predictions and VirFinder at the
same false positive rate (FPR) as VirSorter (listed in or above the VirSorter
bars) and at FPRs of 0.001, 0.005, and 0.01. Bars depict mean values for
30 replicate bootstrap samples and error bars depict the standard error.
Asterisk indicates the TPR of VirFinder is significantly higher (p < 0.001)
than that of VirSorter at the same false positive rate (Wilcoxon signed-rank
one-sided test). b The ratio between mean VirFinder and VirSorter
true positive rates for category I; I and II; and I, II, and III where VirFinder
FPRs were set at the corresponding FPRs of VirSorter predictions. Since
VirSorter had no predictions for 500 bp contigs (TPR = 0), the ratio is
infinite (not shown). Error bars depict mean standard error, and
the red line shows a ratio of 1
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Assessment of the identification of novel viruses

To assess the ability of VirFinder and VirSorter to iden-

tify novel viruses, predictions were also made on whole

virus genomes sequenced after 1 January 2014 (n = 337),

and we paid particular attention to 45 viruses (13%) that

had no significant nucleotide similarity (blastn search,

E value <10–5) to previously viral genome sequences,

which we used as a proxy for what we refer to as novel

viruses. Using a p value cutoff of 0.01 for VirFinder pre-

dictions and category I and II VirSorter predictions, Vir-

Finder and VirSorter both predicted most of the viruses

(n = 26, 58%), and 3 were not predicted by either (Add-

itional file 1: Table S1). VirFinder uniquely predicted 4 vi-

ruses that VirSorter did not, and VirSorter correctly

predicted 12 viruses that VirFinder did not.

We also assessed the ability of VirFinder to identify

novel viruses by excluding viruses that infect a particular

group of hosts (four major phyla and eight major gen-

era) and the hosts of that taxon group from the training

dataset and then predicting those viruses from among

mixed sets of subsampled virus and host contigs. As

above, predictions were made on 30 replicate datasets

with equal numbers of total host and viral contigs. Pre-

diction results of the selected viruses that were excluded

from the training set were assessed with AUROC values

and compared to control results of predictions made for

all other viral contigs using that same trained version of

VirFinder (Fig. 3b). AUROC scores for predicting viruses

infecting Firmicutes, Staphylococcus, Streptococcus, Acti-

nobacteria, and Mycobacterium decreased by >5% when

they were excluded from the training dataset. Viruses in-

fecting other taxa such as Proteobacteria, Cyanobacteria,

and Escherichia had reduction in AUROC of <5%,

suggesting that they can be predicted reasonably well

even when they were excluded from the training data.

VirFinder’s performance on assembled contigs from

simulated metagenomic samples

To evaluate performance on a more realistic dataset,

VirFinder and VirSorter were evaluated on contigs

assembled from simulated human gut metagenomic

samples. A simulated human gut metagenome with 20

million reads was generated using NeSSM [33] by sub-

sampling reads from host and viral reference genomes

found in a real Human Microbiome Project gut metage-

nomic sample at their respective relative abundances

(see Methods). Assembly with metaSPAdes [34, 35]

generated 190,079 contigs ≥500 bp in length, and each

contig was definitively assigned as prokaryotic (88%),

viral (10%), or ambiguously chimeric (1.8%) (see

Methods). VirFinder’s performance was first assessed

using AUROC values as before for contigs 500–1000 bp,

1000–3,000 bp, and ≥3000 bp in length. Viral contigs

from genomes sequenced after 1 January 2014 paired

with the same number of randomly sampled host contigs

were evaluated. AUROC scores were all very high, >0.9,

and increased with increasing contig length. For 1000–

3000 and ≥3000 bp contigs, the AUROC scores were as

high as 0.94 and 0.98, respectively (Fig. 4a). Including

chimeric contigs decreased performance slightly. To
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Fig. 3 Differences in VirFinder’s performance for different groups of
viruses and when excluding particular viruses from the training of
VirFinder a ROC curves for VirFinder prediction results based on
contigs subsampled from viruses isolated on particular host domains
and phyla. Curves depict mean results for 30 replicate samples each.
Numbers in the legend indicate mean AUROC values and numbers in
brackets indicate the upper 2.5% quantiles for 30 replicate bootstrap
samples. b Viruses that infect four major phyla and eight major genera
of hosts were each excluded from the dataset of sequences used to
train VirFinder. AUROC scores were then determined when making
VirFinder predictions on contigs of the excluded viruses when they
were mixed with equal numbers of contigs of other viruses and equal
numbers of host contigs as the total number of viral contigs. As a
control, AUROC scores were compared to results of predictions of all
other viruses. Contigs for the training and evaluating datasets were
sampled at a length of 1000 bp, and predictions were made for 30
replicate datasets for each taxon analysis
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study the effects of sequencing depth and the fraction of

viral sequences in the sample, simulated metagenomic

samples were generated for 10 and 20 million total reads

and using 3 different viral and host proportions (10, 50,

and 90% viral reads, see Methods). The AUROC scores

based on 10 and 20 million reads are similar, indicating

that within the sequence depth levels investigated, se-

quencing depth does not markedly affect the viral contig

prediction results (Fig. 4b). As before, AUROC values

generally increased noticeably with contig length, but

within size classes, they did not appreciably differ

between 10, 50, and 90% viral samples tested (<8% for

500–1000 bp and <5% for all other size classes). To

make fair comparisons across scores predicted using dif-

ferent models trained using contigs of different lengths,

VirFinder p values rather than VirFinder scores were used

for generating ROC curves and corresponding AUROC

scores. The AUROC scores using p values were 0.90–0.93

for contig >500 bp and 0.92–0.95 for contig >1000 bp.

AUPRC results showed increasing values with increased

proportion of viral contigs present in the sequences being

tested (Additional file 1: Figure S4).

VirFinder and VirSorter’s TPRs were next compared

using assembled contigs from simulated 20 million read

metagenomes. TPRs were compared at the same FPRs

levels as found for VirSorter considering various VirSor-

ter category results (I, “most confident; II, “likely”, III,

“possible”). VirFinder correctly identified more viral con-

tigs than VirSorter at all ranges of contig lengths and for

all three combinations of VirSorter categories used when

tested with samples with equal numbers of viral and

host contigs (Fig. 5a). As before, use of 30 replicate

bootstrap samples showed that these differences were

statistically significant (p ≤ 10−5, Wilcoxon signed-rank

one-sided test). VirSorter identified almost no viral

contigs of 500–1000 bp viral contigs at the 3 category

combinations used (I, I and II, and I–III) (TPRs were 0,

0.2, and 0.5%, respectively). At the same FPRs levels as

VirSorter, VirFinder successfully identified 5.9, 5.9, and

6.0% true 500–1000 bp viral contigs for the 3 VirSorter

category combinations, respectively, which are undefined

(VirSorter TPR was 0%), 30 and 13 times higher than

VirSorter’s TPRs. For contig lengths 1000–3000 and

>3000 bp, both methods had higher TPRs. VirSorter’s

TPRs were 2.5 and 19% for 1000–3000 and >3000 bp,
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(Wilcoxon signed-rank one-sided test, p < 10−4)
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respectively, using categories I and II. At the same con-

trolled FPR, VirFinder’s had TPRs of 7.4 and 67%, or 3.0

and 3.5 times higher than VirSorter’s TPRs.

Viral prediction performance was also evaluated using

unbalanced fractions of viral and host contigs. Overall,

VirFinder’s TPRs were significantly higher than VirSorter’s

TPRs for all 3 ranges of contig length, all 3 VirSorter

category combinations considered, and all datasets with

different viral fractions (p ≤ 10–3) (Additional file 1:

Figure S5). Performances were also evaluated when

parsing the results for all contigs >500 bp or all con-

tigs >1000 bp. The simulated assembled contig data-

set contained on average 41% 500–1000 bp contigs,

38% 1000–3000 bp contigs, and 20% >3000 bp con-

tigs. When considering all contigs >500 bp, VirFinder

had significantly greater TPRs than VirSorter except

when comparing category I or category I and II Vir-

Sorter results with 10% viral samples and when comparing

category I and II VirSorter results with 50% viral samples

(Additional file 1: Figure S6). When considering all contigs

>1000 bp, however, VirFinder had significantly higher

TPRs than VirSorter under all scenarios at equivalent

FPRs (Additional file 1: Figure S6).

Example application: identification and analysis of viral

communities in human gut metagenomes from a liver

cirrhosis study

We applied the VirFinder tool to study real human gut

metagenomes of healthy and liver cirrhosis patients. Qin

et al. [36] previously reported the alteration of human

gut microbiomes associated with liver cirrhosis. Their

analysis only focused on the bacterial microbiome by

mapping reads to reference bacterial genomes. Roughly

40% of the reads were unaligned, indicating that the

remaining reads represent unknown bacterial or archaea

or more importantly prokaryotic viruses. We reanalyzed

the Qin et al. dataset using VirFinder (and VirSorter) to

identify viruses in these metagenomes and any potential

differences in the prokaryotic viromes of healthy and

diseased patients.

Reads from 40 healthy and 38 liver cirrhosis patients,

comprising 316 Gb of total sequence data were cross-

assembled. Only the resulting 325,020 contigs that were

>1000 bp in length were retained to achieve high predic-

tion accuracy. The majority (76%) of contigs were 1000–

3000 bp long (Additional file 1: Figure S7). VirSorter

predicted 2657 contigs as viral using category levels I

and II. To make fair comparisons, we also analyzed the

2657 contigs with the highest VirFinder scores. The false

positive rate for these VirFinder contigs was estimated at

15% using q values estimated by the positive false dis-

covery rate (pFDR) method [37, 38].

Contigs were binned using COCACOLA [39] based

on k-mer frequencies and abundance patterns across

samples to group similar contigs. This produced 86 and

116 bins for VirSorter and VirFinder contigs, respect-

ively. The abundance profiles of contig bins across 78

samples of health and diseased patients were used to

train classification models to distinguish health status.

The logistic regression model with lasso regularization

was used in order to enhance the prediction accuracy

and interpretability. These models were then tested on

an independent set of 230 samples from the same study

[36] using ROC curves and AUROC scores. Model

results using VirFinder binned contigs had a larger

AUROC score, 0.87, than those for VirSorter bins, 0.77.

The ROC curve for VirFinder was above that of VirSor-

ter for most of the plot (Fig. 6). The high AUROC scores

demonstrate that virome data mined by virus prediction

software can predict with good confidence the health

status of patients. The ROC results furthermore indicate

that viral contigs predicted by VirFinder can better dis-

tinguish between healthy individuals and liver cirrhosis

patients.

Similarity searches of contigs and their predicted

proteins against NCBI’s non-redundant nucleotide (nt)

or protein (nr) databases were conducted to determine if

contigs and bins do not have any similarity to previously

known sequences and thus potentially represent novel

viral sequences. Searches against nt and nr assessed if

contigs are closely or distantly related to known se-

quences, respectively. Only 12% of contigs were ≥95%

similar to another bacterial or viral sequence in the nt

database (requiring an E value <1e−10 for ≥100 bp). It

has recently been suggested that virus species distinguish
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Fig. 6 ROC curves and AUROC scores for classifying healthy and
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contig bins. The models were trained using averaged bin coverage
(averaged RPKM of contigs in the bin) of 78 samples of health and
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from each other by ~95% nucleotide identity [40] thus

the majority of the contigs probably represent new viral

species. Analyzed in another way, 64% of contigs did not

have any significant blastn matches to the nt database

(E value <1e−10 for ≥100 bp), such that 17% of the

bins had no contigs with any significant similarity to

nucleotide sequences in this database. For blastp

searches, only 8% of contigs did not contain any predicted

encoded protein with significant similarity (E value <1e−5,

bit score ≥ 50) to any protein in the nr database. This

translated to all but two bins that had at least one

protein with significant similarity to a previously

reported protein sequences. These 2 bins were com-

prised of 1 short contig each, 1119 and 1182 bp, with

1 and 3 predicted proteins on those contigs,

respectively. We also note that, of 2657 contigs, ~10%

had at least 1 protein for which its best hit to nr was

a viral protein or has significant similarity to a viral

Pfram domain. This resulted in 57% of bins having at

least 1 viral protein, supporting that these binned

contigs indeed are viral sequences.

Hierarchical clustering was used to cluster contig bins

and patient samples (80 from healthy and 76 from cir-

rhosis patients) according to the relative abundance of

bins (Fig. 7). Viral bins (rows) formed three major

groups broadly reflecting the degree to which the bin

was present across samples. Bins belonging to cluster 1

(green), 2 (purple), and 3 (blue) were found, respectively,

in nearly all samples (95% of samples on average), most

samples (82% on average), and only some samples (33%
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Fig. 7 Two-way hierarchical clustering of viral contig bins and human gut metagenomic samples from a liver cirrhosis study [36]. Rows are contig
bins (n = 116) comprised of 2657 viral contigs predicted by VirFinder, and columns are samples from healthy (blue) and cirrhosis (red) patients
(n = 80 and 76, respectively). The heatmap depicts bin coverage across samples calculated as the averaged Reads Per Kilobase per Millions
mapped reads (RPKM) of contigs in each bin. Bins form three coherent clusters that generally correspond to bins that are found in nearly all
(95% on average), most (82% on average), or some (33% on average) samples. With the exception of two outliers (in grey), samples belong to
three major clusters, A, B, and C, and clusters A and B each have two coherent subgroups (A1, A2, B1, B2). Stars depict bins that are positively
(red) or negatively (yellow) associated with cirrhosis samples chosen using the lasso method for subset variable selection
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on average), respectively. For bins in clusters 2 and 3,

their prevalence in cirrhosis patient samples was signifi-

cantly lower than those of healthy patients, 76 vs. 88%

and 27 vs. 39%, respectively (Wilcoxon signed-rank one-

sided test, p < 0.001), while there was no difference for

cluster 1 (95 vs. 96%, p = 0.30) (Fig. 8). Overall fewer bins

were detected in diseased than healthy patients (89 vs.

93% bins detected on average, respectively, p < 10−4).

Except for two outlier samples (in grey) for which few

bins were detected, samples clustered into three major

groups (A, B, and C), and the A and B groups contained

two coherent subgroups each (A1, A2, B1, and B2;

Fig. 7). The A1 subgroup (in blue) contained 70 samples

that were comprised mostly of healthy patient samples,

while samples from cirrhosis patients primarily fell into

the other subgroups. Among the samples in all groups

except for the 2 outliers, 10 healthy and 14 cirrhosis

patients had multiple (>1) samples. The Pearson cor-

relation coefficients between contig coverages (Reads

Per Kilobase per Million mapped reads (RPKMs)) of

viral bins of samples within those individuals were

significantly higher than that between samples from

different individuals (Wilcoxon rank-sum one-sided

test, p < 10−4), even when evaluated separately using

the 3 different groups of viral bins.

Using the lasso regularization method for variable

selection [41, 42], we identified 7 and 8 bins that were

positively or negatively associated with the disease sta-

tus, respectively (Table 2). Nine of these bins had at least

one protein for which its best blastp search results

against nr was a viral protein or the protein had signifi-

cant similarity to a viral Pfam domain. Of particular note

were bins 2 and 64 that were negatively associated with

cirrhosis and had 8 and 19 proteins, respectively, that

from blastp searches against nr were most similar to

crAssphage proteins. Bin 64 in particular contains 2

large contigs (10 and 12 kb) that have several predicted

proteins with similarity to (26 to 66% protein identity)

and in similar order to large regions of the crAssphage

genome (Additional file 1: Figure S9). Also of note is bin

41; the bin most strongly associated with cirrhosis

(Table 2), that contains a large 121 kb circular contig.

Nearly all (95%) of the prediction proteins on this contig

have significant similarity (78% identity on average) to

megaplasmid pMP1046B from the Firmicutes strain

Lactobacillus salivarius strain JCM 1046, representing

91% of the proteins on pMP1046B. This bacterium was

isolated from swine intestines. The 121 kb circular con-

tig was only predicted at category level III by VirSorter.

Several of these predicted proteins have similarity to

Pfam motifs for phage proteins (phage integrases, phage

tail tape proteins, phage holins), suggesting that it is a

lysogenic phage that is stably maintained in the host as a

replicating plasmid like P1 phage [43]. Four other large

(40–72 kb) circular contigs were among the 2657 Vir-

Finder predicted viral contigs, and each have several

proteins with similarity to phage related Pfams. Bin 41

also contains a 21.6 kb contig that possesses several

structural phage genes (capsid, heal-tail adapter genes).

Twenty nine of the 32 predicted proteins on this contig,

including the structural phage proteins, are most similar

to sequences of the genus Veillonella, strongly suggest-

ing that this viral contig occurs as a prophage in this

genus. A recent analysis of the Qin et al. dataset also

found that host sequences of the genus Veillonella were

more abundant in cirrhosis patients [28], consistent with

the higher association of this viral bin with individuals

with cirrhosis.

Discussion

We have presented the development, validation, and ap-

plication of VirFinder, a machine learning based tool

that uses k-mer frequencies to accurately identify viral

contigs. To our knowledge, VirFinder represents the first

virus identification tool that solely uses a nucleotide

k-mer frequency based approach and stands in
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Fig. 8 Box plots summarizing the number of healthy or cirrhosis patient samples in each viral bin. Results are summarized from the three bin
clusters shown in Fig. 7. Horizontal bars indicate median values, boxes depict the first and third quartiles, whiskers depict minimum and maximum
values, and outliers are shown as points. p values for Wilcoxon signed-rank one-sided tests comparing results for healthy and cirrhosis samples
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contrast to previous methods that primarily use simi-

larity searches of predicted genes to known viral se-

quences (e.g., Phispy, Phymm, VirSorter). We do note

that PhiSpy uses AT and GC skew, a coarse form of

k-mer analysis, for prediction, but this is one of sev-

eral search criteria PhiSpy uses. VirFinder adds to the

growing number of recently developed tools that use

powerful, alignment-free k-mer frequency approaches

to rapidly categorize and/or analyze the similarity of

sequence datasets [24–29, 39, 44–49]. We note here

that VirFinder has been trained to identify prokaryotic

viruses, but in the future, it potentially could be utilized to

identify eukaryotic viruses as well. We note that users

applying VirFinder to eukaryotic host associated micro-

biomes should first filtered out eukaryotic host sequences

as VirFinder may potentially misidentify those sequences

as viral, since eukaryotic sequences were not included in

VirFinder’s training datasets.

VirFinder is trained using a logistic regression model

with lasso regularization in order to enhance the predic-

tion accuracy and interpretability. Other regularization

methods such as ridge and elastic net had similar per-

formance with no significant difference. We also tested a

few other machine learning methods before selecting the

logistic regression approach. Performance with a Naïve

Bayes classifier was worse than that of logistic regression

(data not shown), possibly because of the violation of

the independence assumptions for k-mer patterns. We

also attempted to use the support vector machine

(SVM) with kernels, one of the most widely used non-

linear classification methods, but it failed because the

training sample size was too large (>300,000 sequences)

for the regular SVM to handle.

In side-by-side comparisons, VirFinder exhibited

superior performance in terms of identifying true viral

contigs when evaluated at the same false discovery rates

as VirSorter, the current state-of-the-art, gene-based

virus prediction tool. VirFinder in particular exhibited

much better performance in virus identification for

shorter contigs in part because VirSorter is limited to

making predictions on contigs that have at least three

coding genes. VirFinder’s success is also probably due to

its use of k-mer frequencies that allows it to extract pre-

dictive sequence informative without requiring the pres-

ence of specific hallmark genes on the query contig.

VirFinder also provides a statistical framework to evalu-

ate if the output score is significantly different from the

distribution of host contig scores, which in turn can be

used to estimate the false positive rate when selecting a

particular VirFinder score threshold (the q value ap-

proach). Similarly, an additional benefit of our study is

that we provide estimates of the false positive rates for

VirSorter for contigs of various sizes, which was not

extensively evaluated previously. Finally, VirFinder

generates prediction scores that are static for each contig

regardless of the other contigs being tested at the same

time. VirSorter results in contrast are influenced by the

particular collection of sequences being analyzed. This is

Table 2 Summary information for 15 viral contig bins associated with cirrhosis (+) or healthy (−) patients samples

Bin Coefficients of association
with cirrhosisa

No. of
contigs in bin

Total nucleotides
in bin (bp)

No. of predicted
proteins in bin

No. of contigs with
significant blastn
hit to ntb

Bin contains proteins
with similarity to
viral proteinsc

2 −0.04 46 82431 92 3 Y

6 0.06 88 295063 357 2 Y

35 0.00 1 1214 2 1 N

41 0.23 40 259266 360 15 Y

48 0.05 3 4940 5 0 N

51 −0.19 36 84134 112 6 Y

59 −0.10 68 184455 245 3 Y

64 −0.05 29 130154 148 1 Y

66 0.12 6 8500 7 5 N

69 0.00 1 1197 1 0 N

72 −0.05 29 77421 110 6 Y

78 −0.05 21 43329 48 1 Y

93 0.03 1 1295 1 0 N

106 −0.06 2 5243 7 0 N

127 0.01 18 72694 110 0 Y
aCoefficients determined by the logistic regression with lasso regularization method for variable selection (see Methods)
bContig had at least one blastn hit to NCBI’s non-redundant nucleotide database (nt) with an E value of ≤1e-10 and an alignment length of ≥100 bp
cBin contains at least one protein for which its best blastp search results against NCBI’s non-redundant protein database (nr) was a viral protein or the protein had

significant similarity to a viral Pfam domain (see Methods). Similarity requirements: E value of ≤1e-5, bit score ≥ 50
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because VirSorter first uses all contigs to estimate the

background distributions for the various metrics it eval-

uates (for example, enrichment of hypothetical genes),

and virus predictions are made by comparing individual

contig values to these background distributions. There-

fore, VirSorter results of individual contigs are not stable

and are dependent on what other contigs are included in

the query dataset.

VirFinder’s reliance on k-mer patterns also gives it a

practical advantage over other gene-based methods

when analyzing binned contigs. Recent binning methods

have advanced analysis of assembled metagenomic con-

tigs by grouping together fragmented contigs belonging

to the same or closely related organisms with high fidel-

ity based on tetramer frequencies and abundance pat-

terns across multiple samples [39, 49, 50]. Here, we have

used the binning approach COCACOLA that exhibits

improved binning accuracy with reduced computational

times. Although we have not implemented this here,

VirFinder could be applied to binned contigs. Since each

bin collectively contains more sequence data than the

individual contigs within them, this would presumably

result in more robust predictions. Other current

methods only make predictions for individual contigs

and are not implemented to handle predictions for

binned contigs.

VirFinder works by training a machine learning model

on known viral and non-viral (prokaryotic host) sequences

to detect the additive effect of many subtle differences in

the frequencies of k-mers specifically used by viruses. A

helpful analogy is that viruses and hosts use the same

“language”; the genetic code of nucleic acids, but the two

have slightly different “accents” or “dialects” in their use of

that code, which VirFinder is able to detect. While VirFin-

der clearly works well in practice, it will be interesting to

understand in more detail, the evolutionary phenomena

underpinning its success. VirFinder works in principle due

to the reasonable underlying assumption that viruses and

hosts use different k-mer patterns. While there were no

individual k-mers identified that are unique to viruses or

hosts, VirFinder’s machine learning model instead uses

the cumulative effect of slight differences in frequencies

over many k-mers to distinguish virus and host sequences,

and the cumulative frequencies of these k-mers are signifi-

cantly different between viruses and hosts (Additional file

1: Figure S8). Viruses and their hosts are very different

biological entities, so the different evolutionary selective

forces they experience likely shape the k-mer space they

explore. We hypothesize that evolutionary constraints in

particular on capsid structural genes that are unique to

viruses may impart some of the k-mer signal that allows

VirFinder to distinguish virus and host sequences.

In future studies, it will be interesting to determine if

there are particular k-mer patterns that are universally

shared across all viruses, or if it is more the case that

distinct patterns exist for each larger group of viruses.

The former appears to be the case at a broad level, as

viruses exhibit slightly lower GC contents than host

genomes [51]. We likewise find that the informative

k-mers for predicting viruses are significantly more

AT-rich (p < 10−4). It was previously hypothesized that

the AT shift was due to the limited availability of G

and C nucleotides and higher energetic costs imposed

on viruses for utilizing these bases. Further examin-

ation of any discernable pattern among the inform-

ative k-mers could be instructive in understanding the

evolutionary and mechanistic reasons for how and

why viruses and hosts use k-mer space differently.

If the model that viruses universally share certain k-mer

usage patterns is true, this suggests that VirFinder could

have a strong advantage in extending viral prediction to

novel virus groups for which we have no sequences. This

model is partly supported by results obtained when par-

ticular viruses were excluded from the training dataset

(Fig. 3b). Most viruses showed differences of <10% in pre-

diction performance as compared to controls, suggesting

that VirFinder can readily predict them based on k-mer

patterns present in the other viruses that were not

excluded. While prediction performances for viruses in-

fecting Firmicutes and Staphylococcus were 21 and 13%

lower than controls, AUROC scores were still generally

high, often >0.75. We also found that VirFinder could cor-

rectly predict many recently sequenced, novel viruses that

lack any significant nucleotide similarity to previously

sequenced viruses in the training dataset. Likewise, a sig-

nificant portion of predicted viral contigs (~30%) from the

cirrhosis study have no significant nucleotide or protein

similarity to known sequences, and the cirrhosis study

recovered several contigs that appear to be variants of

crAssphage that were not predicted by VirSorter

(Additional file 1: Figure S8).

If instead it is more the case that large subgroups of

viruses each have different distinguishing patterns,

VirFinder like other virus prediction methods will still

be sensitive to the diversity of known viruses represented

in the training sequence database. This may explain in

part why VirFinder had somewhat lower performance

for archaeal viral contigs for which there are relatively

few sequenced representatives. Interestingly, VirFinder

similarly had somewhat lower performance in identifying

Firmicutes viruses compared to other groups even though

there were many Firmicutes viruses in the training set. It

is unclear why this is exactly the case. As discussed above,

the exclusion of certain groups of viruses from the train-

ing set did diminish prediction results, suggesting that

the viruses that infect particular host taxa do have

some signal of k-mer patterns that are specific to that

group and not shared “universally” (Fig. 3b). We
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anticipate that VirFinder’s accuracy will improve over

time as additional virus isolates are sequenced, espe-

cially for archaeal viruses, and available to be added

to the training sequence database. To this end,

VirFinder can be periodically updated by training it

on new, available sequences, and the current release

allows users to select and train VirFinder on host and

viral databases of their choosing.

One potential counterpoint to the paradigm that

viruses and host have distinct k-mer patterns is that co-

evolution of viruses and their hosts leads to sharing

somewhat similar k-mer patterns. This is likely due to

the evolutionary pressure on viruses to adopt similar

codons used by their hosts since they are dependent on

host machinery for replication [6, 30, 52–55]. In fact, we

and others have previously utilized this phenomenon

to predict the probable host of query virus sequences

[6, 29, 30]. These two phenomena, virus-host k-mer

amelioration and viruses and hosts possessing distin-

guishing k-mer patterns, however, may not be mutu-

ally exclusive, as some specific distinct viral k-mer

patterns could still be maintained even in the midst

of co-evolutionary pressures to share similar codon

patterns with their hosts. In support of this, results

obtained during testing of the host-matching tool Vir-

HostMatcher, as discussed in the introduction, indicated

that virus-host pairs share some k-mer similarity but

viruses often appear to share even higher similarity with

each other. This supports a model that viruses simultan-

eously possess distinguishing viral k-mer patterns and

patterns of virus-host amelioration.

An important consideration in the application of

VirFinder is the potential problem of provirus sequences

within the host genome training sets and host genes that

are present in the genomes of viruses. These “contamin-

ating” sequences in the training set could be expected to

potentially reduce TPRs and elevate FPRs, respectively,

of virus prediction results. For the case of proviruses,

however, we found negligible difference in prediction

performance when training VirFinder on a smaller

14,722 host genome dataset [6] vs. training VirFinder on

that same database with VirSorter-predicted provirus

sequences removed (Additional file 1: Figure S10). This

is likely because proviruses only comprise a small

proportion, 0.64%, of those prokaryotic genomes. We

predict similar, limited impact on proviruses present

in our larger host genome database, assuming the

fraction of proviruses is similar. Congruent with this,

prediction performance as assessed by AUROC values

was diminished by <0.5% when random virus isolate

contigs were spiked into our host training dataset at

5% (~8-fold larger amount of viruses than found in

the Roux et al. dataset) (Additional file 1: Figure S11).

Moving forward, we are currently working on

“cleaning” our larger host genome database of pro-

virus sequences using VirSorter for a future, updated

release of VirFinder.

The presence of host genes in the viral training set is

potentially more problematic as this is predicted to

inflate the FPR for viral prediction. False positives (true

host contigs that are called as viral) should not be an

issue for long contigs, but short contigs could potentially

be called as viral if they contain a host gene that occurs

as a horizontally transferred host gene in the viral train-

ing set. A prime example of such genes are auxiliary

metabolic genes (AMGs) encoded in viruses that are ac-

quired from their hosts and used to bolster the metabol-

ism of the host for increased virion production [56–58].

The best-studied example of an AMG is the photosyn-

thesis gene, psbA, that is encoded in many cyanophage,

viruses that infect cyanobacteria [59–61]. Host and viral

versions of psbA form distinct phylogenetic clusters [62]

and have different GC contents and codon usage pattern

[63], suggesting that k-mer analysis may readily distin-

guish viral and host psbA genes. Using the set of host

and viral psbA genes from [62], VirFinder correctly pre-

dicted 62% of the viral psbA genes with no false positives

on (using a p value cutoff of 0.05). The process of

“cleaning” such host genes from viral genomes is not

trivial, but based on the results above, host genes in viral

genomes likely do not significantly impact VirFinder’s

performance.

It was observed that the balance of viral and host con-

tigs can impact the magnitude of prediction perform-

ance. The reason for these differences can be explained

using the simple Bayes rule. Suppose a contig is ran-

domly picked from the testing dataset. Let Z = 1 if the

contig is predicted as virus. Let the probability that the

contig is a true viral sequence be P(V|Z = 1), where V

denotes viruses and H denotes hosts. By the Bayes rule,

P V jZ ¼ 1ð Þ ¼
P Z ¼ 1jVð ÞP Vð Þ

P Z ¼ 1jVð ÞP Vð Þ þ P Z ¼ 1jHð ÞP Hð Þ

¼
P Z ¼ 1jVð Þ

P Z ¼ 1jVð Þ þ P Z ¼ 1jHð Þ P Hð Þ
P Vð Þ

:

where P(V) and P(H) are the fractions of viral and host

contigs, respectively. Here, P(Z = 1|V) is the probability

that a virus can be correctly predicted and P(Z = 1|H) is

the probability that a host is falsely predicted as virus.

Both P(Z = 1|V) and P(Z = 1|H) do not depend on the

ratio
P Hð Þ
P Vð Þ . As viral fraction P(V) increases, the ratio

P Hð Þ
P Vð Þ

decreases, and the probability of having a correct predic-

tion P(V|Z = 1) increases. In fact, P(V|Z = 1) is equiva-

lent to precision, the fraction of predicted viral contigs

that are true [64]. Therefore, AUPRC increases as viral

fraction increases. For example, for 1000 bp contigs, the
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AUPRC of VirFinder were 0.71, 0.94, and 0.99 as viral

fraction increases from 10, 50, and 90%. Despite these

trends, VirFinder still exhibit higher TPRs than VirSorter

under almost all conditions tested, the exception being a

few cases when considering predictions on all contigs

>500 bp (Additional file 1: Figure S6).

While VirFinder shows better performance than

VirSorter, we ultimately advocate for the development

and use of future tools that combine the core principles

of each tool, k-mer and gene-based approaches, to make

even better predictions. Case in point is the prediction

of recently sequenced, novel virus genomes, whereby

each method could uniquely identify virus genomes that

the other could not (Additional file 1: Table S1). In

addition, performance of VirFinder and VirSorter were

comparable for larger contigs. For such longer contigs,

VirSorter may prove to be the more appropriate tool,

especially if the contig contains a hallmark gene, a

definitive piece of evidence for a virus. In practice, we

suggest users apply both methods and analyze the over-

lapping and/or additive lists of probable viruses found

by each tool.

As an example application of VirFinder, we assembled

and identified probable viruses for human gut metagen-

omes of healthy and cirrhosis patients. From analysis of

nearly 2700 viral contigs, viral diversity was significantly

lower in diseased individuals. This is consistent with pre-

vious studies of bacterial and viral diversity of human

microbiomes [3, 65, 66]. It is unclear if lower viral diver-

sity follows lower host diversity in response to health

status, vice versa, or a balanced combination of both.

Longitudinal studies of patients could provide a clearer

picture of which leads the other, and VirFinder would be

a valuable tool for such a study. Our analysis reveals

viral contigs that appear to be quite specific to particular

patients, consistent with the patterns of “personalized”

microbiomes observed at the prokaryotic and virus

level in previous studies [7, 67, 68]. In our study, viral

sequences could be used to predict with good

discriminating power the health status of patients,

suggesting the potential of viral microbiome analysis

as a diagnostic tool. Interestingly, two of the distin-

guishing viral bins had sequences with similarity to

crAssphage; an ubiquitous virus found in the healthy

human gut microbiome. First, this suggests that there

may be multiple populations of crAssphage-like viruses

that have yet to be fully characterized. Second, they are

both negatively associated with cirrhosis indicating that

they are part of the normal status of healthy microbiomes.

Furthermore, we found a putative prophage probably

associated with the genus Veillonella, within the viral bin

that was most strongly associated with liver cirrhosis

patients (Table 2). This is consistent with a recent analysis

of the prokaryotic component of this metagenome dataset,

which found that the host genus Veillonella are more

abundant in cirrhosis patients. This example application

of VirFinder highlights the type of downstream analyses

that can be done with VirFinder’s results to investigate

important viral ecology questions.

Conclusions
Our development of an innovative k-mer based viral

identification tool adds to the increasing number of

alignment-free k-mer based tools being utilized for

analysis of large sequence datasets. In side-by-side com-

parison to VirSorter, VirFinder has superior perform-

ance, especially for shorter contigs (i.e., 1000 bp). Since

such shorter contigs typically dominate metagenomic

assemblies, VirFinder will help greatly in expanding our

knowledge of natural virus communities. Our example

application of VirFinder to human gut microbiomes

highlights its utility in identifying diagnostic differences

in viral communities between healthy and diseased indi-

viduals. Since VirFinder can be broadly applied to any

type of metagenomic sample, it will be invaluable in

addressing a variety of questions in the ecology of natural

viral communities across various habitats types (i.e., aquatic,

soil, host-associated). We also propose that VirFinder could

be further implemented for identifying proviruses within

large contigs, using a sliding window approach. Future inte-

gration of our k-mer based approach with previous gene-

based tools, will further improve the accuracy and utility of

virus prediction.

Methods
Viruses and prokaryotic host genomes used for training

and validation

We collected 1562 virus RefSeq genomes infecting pro-

karyotes and 31,986 prokaryotic host RefSeq genomes

from NCBI in May 2015. The NCBI accession numbers

of the RefSeq sequences are provided in the Additional

file 2: Table S2. To mimic fragmented metagenomic

sequences, for a given length L = 500, 1000, 3000, 5000,

and 10000 bp, viruses were split into non-overlapping

fragments of length L and the same number of non-

overlapping fragments of length L were randomly sub-

sampled from the prokaryotic genomes. Fragments were

generated for virus genomes discovered before 1 January

2014 and after 1 January 2014 and were separately used

as training and testing sets, respectively (Table 1). To

generate evaluation datasets containing 10, 50, and 90%

viral contigs, the number of viral contigs was set as in

Table 1 and was combined with 9 times more, equal

numbers, or 9-fold less randomly sampled host contigs,

respectively.

Highly represented host phyla (Actinobacteria,

Cyanobacteria, Firmicutes, Proteobacteria) and gen-

era (Mycobacterium, Escherichia, Pseudomonas,
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Staphylococcus, Bacillus, Vibrio, and Streptococcus)

were selected for the analyses where viruses infecting

these taxa were excluded from the training of Vir-

Finder. For evaluation of the different trained VirFinder

models, equal numbers of contigs of the excluded viruses

and all other viruses were selected and then combined

with randomly selected host contigs such that total virus

and host contigs were equal in number.

For the analysis of VirFinder trained with 14,722

prokaryotic genomes with or without proviruses re-

moved, these genomes were downloaded from the

database cited in [6]. Likewise, the positions of provi-

ruses predicted by VirSorter in these 14,722 genomes

were obtained from the published data of [6] and

were used to remove theses sequence from their cor-

responding host genomes.

The k-mer based machine learning prediction model

For a fragment sequence S, let N(w) be the number of

occurrences of the word w =w1w2…wk and its

complimentary word w , wi∈A≡ A;C;G;Tf g; i ¼ 1; 2;…;

k . For simplicity, we use word w to refer to the word

patterns w and its compliment w . We defined the se-

quence signatures as the normalized word frequencies,

V wð Þ ¼ N wð Þ
X

w

N wð Þ
;w∈Ak . Duplicated word pairs were

removed as in [6, 39, 69]. For example, for k = 4, only

the 136 unique word pattern pairs are used. Based on se-

quence signatures, a binary classifier for identifying viral

sequences was built. The classifier was trained using the

training data and then was evaluated using the testing

data.

Given a training dataset composed of the same num-

ber of viral sequences and host sequences, we first used

t statistic to test for each word w if the mean word

frequency in viral sequences was significantly different

from that in host sequences. Note that V(w) were sub-

jected to the unit sum constraint
X

w
V wð Þ ¼ 1 . To

overcome the problem of multicollinearity, we excluded

the word with the highest p value (the least significant

word). Then based on the selected words, we used the

logistic regression model to build a binary classifier. We

added a lasso regularization to make the model flexible

and let the data choose the model with the highest

accuracy.

Let S1, S2,…, Sn be n sequences. Let Yi = 1 if Si comes

from viral sequences and Yi = 0 if it is from host

sequences, and Vi(w) is the sequence signatures of

Si, i = 1,…, n. Then we model,

log
P Y i¼1jV i wð Þð Þ

1−P Y i¼1jV i wð Þð Þ

� �

¼
P

w∈Ak β wð ÞV i wð Þ þ β0,

or in other words,

P Y i ¼ 1jV i wð Þð Þ ¼
exp

X

w∈Akβ wð ÞV i wð Þ þ β0

� �

1þ exp
X

w∈Akβ wð ÞV i wð Þ þ β0

� � :

Thus, the objective function is

−
1
n

X

i¼1

n
logl Y ijV i wð Þ; β wð Þ; β0

� �

þ λ
X

w∈Ak β wð Þj j,

where l is the likelihood, β is estimated by minimizing

the objective function. We chose the parameter λ to

have the highest AUROC using 10-fold cross validation

on the training data. The R package “glmnet” was used

for the model training and testing [41]. ROCs were plot-

ted using R package “ROCR” [70] and AUC scores, and

its confidence interval were computed using R package

“pROC” [71].

In real metagenomic experiments, the assembled con-

tigs are of various lengths. In order to compare scores

from different prediction models, for each query contig,

a p value was computed by comparing the score with

the null distribution, that is, the distribution of scores of

the testing host contigs. The p value was computed as

the fraction of testing host contigs that have greater

scores than the score of the query sequence. To estimate

the false discovery rate (the proportion of predictions

that are hosts), we used R package “qvalue” [37, 38] to

estimate false discovery rates based on the p values.

Then each query contig was associated with a false dis-

covery rate, also known as the q value. The contigs were

sorted by q values from the smallest to the largest. Given

a threshold, the contigs with q values smaller than the

threshold were predicted as viral sequences, and the

largest q value among the predicted contigs gave the

estimation of the false discovery rate for the prediction.

Simulation studies on metagenomes

Metagenomic samples were simulated based on spe-

cies abundance profiles derived from a real human

gut metagenomic sample (accession ID SRR061166,

Platform: Illumina) from the Human Microbiome Pro-

ject (HMP) [72], commonly used for metagenomic

data analysis [73–76].

Following a similar simulation procedure as in [77],

we first mapped reads from sample SRR061166 using

bwa-0.7.15 [78] to 1562 virus and 2698 host complete

genome sequences downloaded from NCBI RefSeq to

generate abundance profiles. The reads from the sample

were first mapped to viral genomes and then the

remaining unmapped reads were mapped to the host

complete genomes using the command of “bwa mem”.

10% of reads mapped to viral genomes, consistent with

the range previously reported for human gut metagen-

omes (4–17% viral) [7]. The abundance profiles are
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provided in the Additional file 3: Table S3. Then we used

NeSSM [33] to simulate metagenomic samples with

pair-end short reads of length 150 bp in an Illumina

MiSeq setting mode based on the abundance profiles.

Ten and 20 million read samples were generated at 3

different mixtures of virus and prokaryotic sequences.

The relative abundance among viruses and among hosts

were kept the same and the virus and hosts reads were

mixed to make 10 (the native level in sample SRR061166

determined from mapping), 50, and 90% viral samples.

metaSPAdes [34, 35] was used to de-novo assemble the

simulated metagenome samples, using the command

“spades.py –meta”. Only contigs ≥500 bp were used for

the downstream analysis.

To obtain the true labels of the assembled contigs,

reads in the simulated data were mapped to the set of

contigs using “bwa mem”. A contig was labeled as a viral

contig if it was assembled from reads only from viral ge-

nomes; similarly, a contig was labeled as a host contig if

it was assembled from reads from host genomes. A con-

tig was labeled as chimeric if it was assembled from a

mixture of virus and host reads. To validate the predic-

tion, we plotted ROC (receiver operating characteristic)

curves at different ranges of contig lengths, 500–

1000 bp, 1000–3000 bp and ≥3000 bp. The ROC curves

were based on the predictions of viral contigs from

genomes sequenced after 1 January 2014 paired with the

same number of randomly sampled host contigs.

VirSorter settings

VirSorter was run in the “Viromes” mode on the same

sets of evaluation sequences as used for VirFinder.

VirSorter reported predicted viral sequences in three

categories: I for “most confident” predictions, II for

“likely” predictions, and III for “possible” predictions.

Assembly and analysis of human gut metagenomic

samples from liver cirrhosis study

The data from Qin et al. [36] contains two independent

datasets each of which contains Illumina 2 × 100 bp

paired read metagenomes of stool samples from both

healthy individuals and liver cirrhosis patients, all of

Han Chinese origin. These metagenomes were down-

loaded from the European Nucleotide Archive, accession

number ERP005860. The first dataset, referred to as the

“training set”, has 78 samples comprised of 40 samples

from 31 healthy patients and 38 samples from 25 liver

cirrhosis patients. The second dataset, referring to as the

“testing set”, has 230 samples comprised of 103 samples

from 83 healthy patients and 127 samples from 98 liver

cirrhosis patients.

Megahit [79] was used to cross-assemble the 78

sample training dataset using the default settings since

the 230 sample dataset was too large for assembly.

COCACOLA [39] was used to separately cluster viral

contigs predicted by VirFinder and VirSorter based on

sequence tetranucleotide frequencies and contig cover-

ages normalized by contig length and number of

mapped reads in samples. Contig coverages (RPKMs)

were determined by mapping sample reads with Bowtie2

[80] using the default settings and were averaged for

each bin. Averaged bin RPKMs were used to train a

classification model to classify the disease status (0 for

healthy and 1 for liver cirrhosis). A logistic regression

model with lasso regularization was used in order to en-

hance the prediction accuracy and interpretability. Thus,

a subset of viral bins was chosen to achieve the best pre-

diction accuracy. To assess the classification model, the

average RPKM of bins in the second dataset with 230

samples were used to test the classification model, and

ROC curves were used for evaluation. Two-way hier-

archical clustering was performed using the average

RPKM coverages of the 116 VirFinder contig bins using

all 78 training set samples and 78 samples randomly

selected from the 230 sample testing dataset. Distances

were computed using Euclidean distance and were clus-

tered with complete linkage method in R.

Blast analyses were used to assess if predicted viral

contigs assembled from the cirrhosis study samples had

similarity to previously reported sequences. Blastn and

blastp searches were performed with default settings

against NCBI’s non-redundant nucleotide (nt) and pro-

tein (nr) databases from August 2016. Protein sequences

were predicted for each contig using Prodigal [81, 82]

with the “meta” procedure (−p meta). The best hits for

each contig (nucleotide) or each predicted protein on

the contigs were retained. Resulting proteins in the nr

databases were called as viral if they came from a virus

(recorded in their taxonomy) or had one of the following

terms in their definition lines: virus, phage, capsid, tail,

head, or terminase. Proteins were also searched against

Pfam domains via the webserver at http://pfam.xfa-

m.org/. Resulting domains were considered viral if their

description contained one of the following terms: virus,

phage, capsid, tail, head, tape, terminase, Gpnn (where n

are digits), “podo”, or “sipho”.
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scores, p values and q values, the membership of bins, the number of
predicted proteins, and the number of blastn and blastp hits. The sequences
of the 2657 VirFinder predicted viral contigs cross-assembled from short
reads in the liver cirrhosis study are available online at https://github.com/
jessieren/VirFinder/tree/master/dataForPaper/LiverCirrhosis_2657Contigs.fasta.
All data generated or analyzed during this study are included in this
published article and its Additional files (see above) or are available from the
corresponding author on reasonable request.
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