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Abstract

Background: Viruses are a significant player in many biosphere and human ecosystems, but most signals remain

“hidden” in metagenomic/metatranscriptomic sequence datasets due to the lack of universal gene markers,

database representatives, and insufficiently advanced identification tools.

Results: Here, we introduce VirSorter2, a DNA and RNA virus identification tool that leverages genome-informed

database advances across a collection of customized automatic classifiers to improve the accuracy and range of

virus sequence detection. When benchmarked against genomes from both isolated and uncultivated viruses,

VirSorter2 uniquely performed consistently with high accuracy (F1-score > 0.8) across viral diversity, while all other

tools under-detected viruses outside of the group most represented in reference databases (i.e., those in the order

Caudovirales). Among the tools evaluated, VirSorter2 was also uniquely able to minimize errors associated with

atypical cellular sequences including eukaryotic genomes and plasmids. Finally, as the virosphere exploration

unravels novel viral sequences, VirSorter2’s modular design makes it inherently able to expand to new types of

viruses via the design of new classifiers to maintain maximal sensitivity and specificity.

Conclusion: With multi-classifier and modular design, VirSorter2 demonstrates higher overall accuracy across major

viral groups and will advance our knowledge of virus evolution, diversity, and virus-microbe interaction in various

ecosystems. Source code of VirSorter2 is freely available (https://bitbucket.org/MAVERICLab/virsorter2), and

VirSorter2 is also available both on bioconda and as an iVirus app on CyVerse (https://de.cyverse.org/de).

Introduction
Microbes are now widely recognized as driving nutrient

and energy cycles that fuel marine and terrestrial ecosys-

tems [1, 2], directly influencing human health and

disease, and controlling the output of engineered ecosys-

tems [3]. This explosive paradigm shift of our perspec-

tive of microbes is derived in large part from an ability

to identify the “unculturable majority.” As high-

throughput gene marker and metagenomic sequencing

technologies have advanced, the true taxonomic and

functional diversity of microbial communities could pro-

gressively be better explored [4–6]. Discovery and identi-

fication of viral sequences was at the forefront of the

metagenomic revolution [7–9], but early studies were

plagued by the lack of marker genes and an inability to

“count” appropriate units in viral sequence space [10–

12]. Fortunately, relevant “units” of viral diversity, at

least for dsDNA viruses, are now routinely accessible

through the de novo assembly of viral genomes from

metagenomes. Thus the estimated 1031 viruses on the
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planet [13, 14] are being rapidly surveyed across soil,

ocean, and human microbiomes, commonly yielding

thousands to hundreds of thousands of dsDNA viruses

in a single study [12, 15–19]. These large-scale surveys

have helped implicate viruses as key microbiome regula-

tors infecting ecologically critical microbes, impacting

biogeochemical cycles, and altering evolutionary trajec-

tories through horizontal gene transfer [20, 21]. Beyond

viruses of bacteria and archaea, vast stores of previously

unidentified viruses that infect eukaryotes including

ssDNA viruses [22], RNA viruses [23–25], and giant vi-

ruses (the phylum Nucleocytoviricota, also known as

NucleoCytoplasmic Large DNA Viruses [NCLDV]) [19,

26] are being identified, but are still in need of analytical

approaches for systematic identification.

Given the sheer magnitude and significant importance

of the virosphere across diverse ecosystems, establishing

a broad genomic catalog of Earth’s viral diversity is crit-

ical. These efforts will rely on automated detection of

viral genomes across a broad range of sequencing

datasets [9]. Currently, two general computational ap-

proaches exist to identifying viral sequences. One set of

tools rely on a combination of gene content and gen-

omic structural features to distinguish viral from micro-

bial sequences, including Prophinder [27], PhiSpy [28],

VirSorter [29], the Earth’s Virome pipeline [17], PHAS

TER [30], MARVEL [31], and VIBRANT [32]. These

genomic features are either statistically compared to a

null model (Prophinder, VirSorter, PHASTER), or more

recently have been used as input for automatic machine-

learning classifiers (MARVEL and VIBRANT). The other

approach uses the frequencies of DNA “words” (i.e., k-

mers) found in known viral and cellular genomes as sig-

natures to train machine-learning classifiers to recognize

new viral and microbial sequences (e.g., VirFinder and

DeepVirFinder [33, 34]). Both approaches efficiently

detect common viruses that are well represented in

databases, such as dsDNA bacteriophages from the Cau-

dovirales order [31, 32], but they struggle with less well-

documented viruses like ssDNA viruses [35], RNA

viruses [36, 37], and viruses that infect archaea [38, 39].

One reason for this is that current approaches consider

viruses as a single cohesive group for detection purposes,

which is potentially problematic given the varied eco-

logical and evolutionary rules that govern the diversity

and evolution of different viral genomes [40]. While

some features may span the virosphere (e.g., enrichment

of uncharacterized genes, relative to microbes), others

are group-specific (e.g., hallmark genes, specific genomic

structure, or the presence of metabolic genes). Though

machine learning approaches based on nucleotide com-

position would not suffer as much from viral database

representation, they tend to confuse any unusual se-

quence as viral (e.g., plasmids or eukaryotic genome

fragments [39]). Together, these observations call for the

field to move beyond a single model to represent the

virosphere for virus identification.

Here, we develop and introduce a new viral sequence

identification tool, VirSorter2, which leverages recent se-

quencing efforts for under-represented viral groups to

develop customized automatic classifiers that improve

detection of viruses in the order Caudovirales (the focus

of the original VirSorter tool [29]), while also identifying

other major virus groups across a broad range of hosts,

genome lengths, and genome complexity. VirSorter2 is

designed modularly, enabling easy update of reference

databases and individual classifiers as new viral groups

are progressively described and characterized.

Results and discussion
The VirSorter2 framework

Viral sequence identification in VirSorter2 occurs via

three steps: (i) input sequences are automatically anno-

tated and relevant features are extracted, (ii) each se-

quence is scored independently using a set of classifiers

customized for individual viral groups, and (iii) these

scores are aggregated into a single prediction provided

to the user (Fig. 1). Annotation of the input sequences

follows current standards in the field [9] including cod-

ing sequence (CDS) identification with Prodigal (version

2.6.3) [41], and annotation of predicted CDS using

HMMER3 (version 3.3) [42] against Pfam (release 32.0)

[43] and a custom comprehensive viral HMM database

including Xfams (described in the “Methods” section)

and viral protein families (VPF) from the JGI Earth’s vir-

ome project [17]. Within this custom viral HMM data-

base, profiles corresponding to viral hallmark genes were

manually identified based on functional annotation and

distribution across viral and microbial genomes for dif-

ferent viral groups. These include structural genes such

as major capsid protein (MCP) or terminase large sub-

unit for viruses in the order Caudovirales (as done in

the original VirSorter); RNA-dependent RNA polymer-

ase (RdRP) for the viral kingdom Orthornavirae (RNA

viruses); MCP for viruses in the family Microviridae;

replication-associated protein for viruses in the phylum

Cressdnaviricota [44]; ATPase for viruses in the family

Inoviridae; MCP, pATPase, primase, transcription elong-

ation factor (TFIIS), and viral late gene transcription

factor (VLTF3) for viruses in the phylum Nucleocytoviri-

cota (i.e., nucleocytoplasmic large DNA viruses; NCLD

Vs); and MCP for viruses in the family Lavidaviridae

(virophages) [40].

Different features were extracted from these annota-

tions (Table 1 and Fig. 2). These features were then used

as input for five distinct random forest classifiers, each

associated with a different major type of viral group.

These classifiers were trained on reference virus
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sequences from NCBI RefSeq and high quality genomes

from new unpublished isolates (ssDNA) [22], metagen-

omes [15, 16, 19, 26, 45–47], and proviruses, i.e., viral

genomes residing in bacteria or archaeal host cell [48]

(see “Methods” section). Each classifier yields a “viral-

ness” score, which can be used to determine the likeli-

hood of the input sequence to represent a partial or

complete genome from the corresponding viral group.

To train the different classifiers, reference genomes

for each viral group were split into training and test-

ing sets with a 9 to 1 ratio, respectively, and 5 ran-

dom fragments were generated from each genome

starting at a random position and with size ranging

from 1 kb to complete genomes. Separate classifiers

were trained for the following viral groups (i) caudo-

virids (Caudovirales) and comparable dsDNA phages

(e.g., corticovirids), (ii) NCLDVs, (iii) RNA viruses,

(iv) ssDNA viruses, and (v) lavivirids (Lavidaviridae).

Separately, a negative (non-viral) dataset was gener-

ated from genomes of three groups: (i) bacteria and

archaea, (ii) eukaryotes (fungi and protozoa), and (iii)

plasmids. The training and testing sets for non-viral

genomes were generated the same way as the viral set

described above.

For each input sequence to be classified, all ran-

dom forest classifiers are first applied to the entire

sequence. If the score obtained with one or more of

the classifiers is above the cutoff set by the user (the

default was 0.5, as used in the classifier training

step), the score is considered significant and the se-

quence was considered as entirely or near-entirely

viral. To identify potential host regions on the edge

Fig. 1 Overview of the VirSorter2 framework. Schematic of the viral prediction pipeline used in VirSorter2. “hmmDB” represents databases of

HMM profiles including viral HMMs from Xfam (described in the “Methods” section) and viral protein families (VPF) from JGI Earth’s Virome [17],

and cellular HMMs (archaeal, bacterial, eukaryotic) as well as “mixed” HMMs (not specific to either virus or cellular organisms) from Pfam [43]. A

default cutoff of 30 is used for the HMM searches. “Classifiers” refers to random forest classifiers trained on known viral genomes and cellular

genomes from different viral groups (see “Training classifiers” section in “Methods”). The default max score cutoff is set to 0.5

Table 1 Features used in Virsorter2, VirSorter, and MARVEL.

Detailed explanation of each feature is provided in the

“Methods” section. In VirSorter, features 3 to 6 are summed up

as one feature (% of Pfam affiliated genes)

VirSorter2 VirSorter MARVEL

1. Hallmark gene count x x

2. % of viral genes x x x

3. % of archaeal genes x x

4. % of bacterial genes x

5. % of eukaryotic genes x

6. % of mixed genes x

7. % of unaligned genes x x

8. Average gene size x x x

9. Gene overlapping frequency x

10. Gene density x x x

11. Strand switching frequency x x x

12. % of ATG as starting codon x x

13. % of GTG as starting codon x

14. % of TTG as starting codon x

15. Mean of GC content x

16. SD of GC content x

17–27. % of RBS motifs x
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of these contigs, sub-sequences of the input se-

quence with 0 to 5 genes or 10% of total genes

(whichever larger) trimmed in 5′ and/or 3′ proc-

essed with the same classifiers, and selected if the

viralness score increased compared to the full se-

quence. If no score was significant when analyzing

the complete sequence, the same classifiers are ap-

plied to sliding windows across the input sequence.

The size of the sliding window was determined sep-

arately for each classifier as the minimal size of a

genome from the corresponding viral group (Table

S1). The sliding window starts from the 5′ edge of a

contig and shifts one gene at a time while there is

no significant score. For each window yielding a sig-

nificant score, this window is extended one CDS at a

time in 3′ as long as the score stays significant.

Eventually, overlapping regions identified by different

classifiers are compared and the longest prediction is

retained.

Expanded and manually curated databases enable a

robust detection of viruses in the order Caudovirales

We first evaluated the new VirSorter2 approach on ge-

nomes in the order Caudovirales. As described above,

test sequences included both phage isolate sequences

from NCBI Viral RefSeq [49] and uncultivated phage ge-

nomes obtained from metagenomes or identified as pro-

viruses in bacterial and archaeal whole genome shotgun

sequencing ([15, 16, 48], see “Methods” section). Test se-

quences also did not overlap with the references used to

train the classifier. As negative control, the same number

of sequences from the non-viral testing set were in-

cluded. The same test sequences were also processed

with established viral sequence detection tools including

VirSorter [29], VirFinder [33], DeepVirFinder [34],

MARVEL [31], and VIBRANT [32]. The overall per-

formance of each tool was evaluated using the F1 score,

which represents the harmonic mean of precision and

recall [50].

Fig. 2 Boxplot of different features across non-viral and viral groups. “Nonviral” includes bacteria and archaea, fungi and protozoa, and plasmids.

A subset of 100 random genome fragments were used for each group. “% of viral gene” is calculated as the percent of genes annotated as viral

(best hit to viral HMMs) of all genes; “% of bacterial gene” is calculated as the percent of genes annotated as bacterial (best hit to bacterial

HMMs) of all genes; “Strand switch frequency” is the percent of genes located on a different strand from the upstream gene (scanning from 5′ to

3′ in the + strand); “Gene density” is the average number of genes in every 1000 bp sequence (total number of genes divided by contig length

and then multiplied by 1000); “Average GC content of genes” is the mean of GC content of all genes in a contig; “TATATA_3-6 motif frequency” is

the percent of ribosomal binding sites (RBS) with “TATATA_3-6” motif
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Overall, all tools performed well in the identification

of viral sequences in the order Caudovirales from

RefSeq, as they all displayed F-score ≥ 0.8 with se-

quences 5 kb and longer (Fig. 3a, Figs. S1 & S2). As pre-

viously observed [29, 39], all approaches also displayed a

decreased accuracy with shorter sequences, especially

when reaching lengths of ~ 1–2 kb (Fig. 3a). While in-

creased accuracy with sequence length was also observed

when evaluating the same tools with uncultivated viral

sequences of the order Caudovirales, the overall per-

formance of several tools was lower (Fig. 3b, c, Figs. S1

& S2). Specifically, the performance of VirSorter, VirFin-

der, DeepVirFinder, and MARVEL was decreased by 10–

30%, while VIBRANT and VirSorter2 displayed F-score

comparable to those when evaluated with the RefSeq se-

quences (± 5%), likely due to their larger reference data-

base and their ability to use hallmark genes to identify

viruses only distantly related to RefSeq genomes. Similar

results were obtained when analyzing viral sequences, ei-

ther from RefSeq or uncultivated, for which < 25% of the

genes were annotated as viral based on the custom

HMM database (Fig. S3), confirming that the differences

in tool performances were mostly due to the ability to

identify novel viruses. To verify that the VirSorter2 ap-

proach was similarly efficient for integrated proviruses,

we processed bacterial genomes from a gold-standard

set of 51 microbial genomes [51] for which 82 integrated

proviruses have been manually curated. As for viral con-

tigs, VirSorter2 recall and precision was comparable or

higher to all other tools (Table 2). Overall, the approach

used by VirSorter2 to identify Caudovirales is thus on

par or more efficient than other recently published tools

for both isolate and environmental sequences, across a

broad range of contig length, and for sequences both en-

tirely and partially viral. The only exception was for viral

contigs of < 3 kb that have representation in NCBI

RefSeq, which were better recovered by kmer-based

methods such as VirFinder and DeepVirFinder (Fig. 3a).

Dedicated custom models allow identification of diverse

viral sequences

We next reasoned that, since different viral groups have

different defining characteristics, a single model was un-

likely to efficiently handle the entire viral diversity.

Hence, just as viral taxonomists have to use different

characteristics to classify viruses across the known viro-

sphere [52], different rules would be needed to robustly

identify different types of viruses in nature instead of the

single model used by all other tools available to date, in-

cluding the original VirSorter. To demonstrate the

Fig. 3 Tool performances on dsDNA phages from different data sources. VirSorter2 consistently has comparable or better performance than

existing tools in identifying dsDNA phages. Genome fragments of different lengths (x-axis) are generated from genomes in the order Caudovirales

in NCBI Viral RefSeq (a), proviruses extracted from microbial genomes in NCBI RefSeq (b) [48], and other sources (c) [15, 16]. An equal number

(50) of viral and non-viral (archaea and bacteria, fungi and protozoa, and plasmids) genome fragments were combined as an input for the tested

tools. Error bars show 95% confidence intervals over five replicates (100 sequences each as described above). F1 score is used as the metric (y-

axis) to compare tools, while detailed recall and precision results are available in Figs. S1 and S2. The dotted line is y = 0.8

Table 2 Performance of VirSorter2 and previously published prophage identification tools when calling proviruses from the standard

dataset described in Casjens [51]

PHAST
(all categories)

PHAST
(no questionable)

PhiSpy Phage
Finder

VirSorter
(categories 1 and 2)

Virsorter
(ll categories)

VirSorter2

Recall 84.27% 70.04% 78.28% 64.42% 73.41% 79.30% 94.38%

Precision 83.03% 82.74% 73.59% 79.26% 92.89% 72.24% 73.04%
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effectiveness of this multi-classifier approach, we focused

our efforts on four major virus groups outside the order

Caudovirales where significant data and expertise have

accumulated—ssDNA viruses, RNA viruses, NCLDV,

and lavidavirids (virophages)—as described above.

Comparing the range and median value of each feature

between groups confirmed that features such as gene

density or percentage of viral gene could clearly differ

between groups (Fig. 2). The relative importance of each

feature in individual classifiers was also variable between

different groups, confirming fundamental differences in

genome organization and content between viruses (Fig.

S4). Comparing the performance of VirSorter2 to other

existing approaches on these non-Caudovirales viruses

demonstrated that most of the tools evaluated were not

able to consistently identify these sequences (Fig. 4, Figs.

S5 & S6). Overall, current virus detection tools typically

struggled with at least one type of non-Caudovirales

virus, and also showed reduced performance for se-

quences not currently part of NCBI Viral RefSeq, i.e.,

more distantly related to known references. Meanwhile,

VirSorter2 was the only tool which displayed F1-scores

> 0.8 across all groups for contigs 5 kb and longer, and

always had the highest F-score for all contigs ≥ 3 kb

Fig. 4 Tool performances on different viral groups (other than dsDNA phage) from different data sources. VirSorter2 consistently outperforms

existing tools in identifying viral groups outside dsDNA phages Genome fragments of different lengths (x-axis) are generated from NCBI RefSeq

(“refseq”) genomes in each viral group and other sources (“non-refseq”) [19, 45–47, 53]. “RNA-non-refseq*” is a collection of ssRNA phage

genomes [45]. An equal number (50) of viral and non-viral (archaea and bacteria, fungi and protozoa, and plasmids) genome fragments were

combined as an input for the tested tools. F1 score is used as the metric (y-axis) to compare tools. The dotted horizontal line is y = 0.8. vs2

VirSorter2, vs1 VirSorter, vf VirFinder, dvf DeepVirFinder, mv MARVEL, vb VIBRANT
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except for RNA viruses from RefSeq where DeepVirfin-

der performed better. Through its modular framework,

VirSorter2 is thus uniquely able to reliably detect differ-

ent types of non-Caudovirales viruses. Importantly how-

ever, VirSorter2’s F1-score substantially decreased for

sequences < 3 kb, as previously observed for the viruses

in the order Caudovirales, due to loss of sensitivity (Figs.

S5 and S6). Thus, the VirSorter2 approach is currently

not optimal for short (< 3 kb) contigs.

The decrease in F1-score between VirSorter2 and the

next best tool varied between groups and lengths, from

4.4% for the ssDNA to 31.8% for NCLDV on average

with sequences longer than 5 kb, highlighting that some

groups benefited from a separate classifier more than

others (Fig. 4, Figs. S5 & S6). Pragmatically, this means

that lavidavirid gene content and genome structure may

be close enough to the “extended Caudovirales” group

that it could potentially be included in the same classi-

fier, whereas NCLDV and ssDNA viruses are better

identified when considered separately. VirSorter2 was

thus designed modularly to enable modification and

addition of new classifiers as our knowledge of viral se-

quence space increases.

Plasmids and eukaryotic genomes represent unique

challenges for viral detection tools

While initial tests were performed using random frag-

ments of bacterial and archaeal genomes as non-virus

sequences, previous studies showed that eukaryotic gen-

ome and plasmid fragments were especially prone to be

mis-identified as a putative viral sequence [39]. We thus

evaluated how VirSorter2 and other tools handled both

eukaryotic and plasmid sequences, by processing data-

sets entirely composed of eukaryotic genome fragments

or plasmid fragments and measuring at which frequency

these would be wrongly considered as viral (Fig. 5).

For eukaryotic genomes, both MARVEL and VirSorter

showed high specificity with 2.4% and 0.1% false posi-

tives on average respectively, while VirSorter2 and VI-

BRANT displayed on average 12.1% and 20.9% of false

positives respectively (Fig. 5a). The error rate was con-

sistent across sequence length for all tools except for

VirSorter2, where this error rate decreased quickly when

sequence length increased, to reach < 1% for fragments

≥ 20 kb. These differences in specificity are consistent

with the original scope of the tools: both VirSorter and

MARVEL were designed to identify bacteriophages and

archaeoviruses [29]. While they do not mistake

eukaryotic sequences as viral, they also poorly detect

eukaryotic viruses such as NCLDV (Fig. 4). VirSorter2

and VIBRANT are both able to recover eukaryotic virus

sequences, such as NCLDV, and RNA viruses, but do so

at the cost of a specificity loss that is relatively similar

across the two tools. However, VirSorter2’s modular

framework can be leveraged by users interested in

particular subsets of viruses to reduce these losses. For

example, to target viruses of bacteria and archaea, users

can omit the NCLDV, Lavidaviridae, and RNA virus

classifiers to drop VirSorter2 error rate associated with

eukaryotic genomes, as demonstrated by a reduction in

false-positive rate to < 1.5% for all fragment lengths on

average (Fig. S7). Finally, both VirFinder and DeepVir-

Finder were most likely to mistake eukaryotic sequences

as viruses as they had more than double the false posi-

tive rate of VirSorter2 (21.7% for VirFinder, 32.1% for

DeepVirFinder on average). This high eukaryote-for-

virus error rate for k-mer-based methods, including for

large (20 kb) sequences, is a known limitation of these

approaches [39].

In contrast to eukaryotic genome sequences, no tool

performed well against plasmid sequences (Fig. 5b).

This included both gene-content and k-mer based

tools, and stayed true even for large plasmid frag-

ments (e.g., ≥ 20 kb) for which the error rate ranged

between 6.4 and 42.0% for all tools. This highlights

how plasmid sequences cannot be entirely distin-

guished from viruses using current approaches and

suggests that alternative methods need to be designed

for this purpose. Given the growing list of examples

of how plasmid and viral sequence space are inter-

twined [54–57], significant work in this area will

presumably be required, including possibly the in-

corporation of a dedicated tool for plasmid detection

in VirSorter2 modular framework.

Fig. 5 False positives comparison of tools on eukaryotes and plasmids. Genome fragments (50) of different lengths (x-axis) were generated from

eukaryotic genomes (fungi and protozoa) in NCBI RefSeq, and plasmids. Percent of genome fragments classified as viral is used as the metric (y-

axis) to compare tools. vs2 VirSorter2, vs1 VirSorter, vf VirFinder, dvf DeepVirFinder, mv MARVEL, vb VIBRANT
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VirSorter2 is easily available and can be scaled to handle

large-scale datasets

Beyond accurate and sensitive virus identification, scal-

ability to process large (> 100,000 sequences) datasets

and broad availability for users regardless of their know-

ledge of command-line or scripting are desirable traits in

virus sequence detection tools. For the former, VirSor-

ter2 can process an input dataset of 100,000 sequences

totaling 4.2 Gb in 28.6 h using 32 threads. Its memory

usage stays nearly constant with increasing data size,

and scales nearly linearly with threads used (Figs. S8 &

S9). Its total CPU time is higher than other tools (typic-

ally 2–10× higher, Fig. S8), but VirSorter2’s internal pro-

cesses are highly parallelizable, and written with

snakemake, a cutting-edge pipeline management tool de-

signed for computer clusters [58]. VirSorter2 is thus able

to utilize multiple cores in the same node and across

multiple nodes efficiently, so that compute time would

not be a limiting factor even for (ultra)large-scale data-

sets if state-of-the-art computing cluster resources are

available (Fig. S9). Further, this increased CPU time is

mostly due to the annotation step with larger viral

HMM database (> 90% of CPU time) and not to the use

of several distinct classifiers, suggesting that additional

viral groups and classifiers could be added to the VirSor-

ter2 framework with minimal impact on performance.

Finally, users can explore the annotation and per-model

score computed by VirSorter2 for each individual se-

quence, and can generate new output files using differ-

ent options and cutoffs based on an existing VirSorter2

directory without having to re-compute the annotation

step. To illustrate this and other differences between

VirSorter and VirSorter2, we provide a detailed analysis

of viral sequence detection from an ocean virome using

both VirSorter and VirSorter2 (Supplementary Text, Fig.

S10, Additional files 4 and 5).

In order to make VirSorter2 useful for the largest

community possible, we provide it through multiple

implementations and accompanied with extended docu-

mentation. Specifically, VirSorter2 is freely available at

bitbucket (https://bitbucket .org/MAVERICLab/

VirSorter2), as an App on the CyVerse (https://de.

cyverse.org/de), and available for local installation

through a bioconda package (https://anaconda.org/

bioconda/virsorter). In addition, we provide an extensive

step-by-step tutorial on how to run VirSorter2 and how

to design new classifiers for additional viral groups and

integrate this within a local VirSorter2 instance on pro-

tocols.io/VERVENET (https://www.protocols.io/view/

getting-started-with-virsorter2-bhdij24e).

Current limitations and future developments

Together, these benchmark experiments demonstrate

that by integrating multiple classifiers, each customized

for a specific viral group, VirSorter2 vastly improves the

diversity of viruses that can be automatically detected

from environmental sequence data. However, we note

several limitations that will benefit from future improve-

ments in our understanding of the virosphere and tech-

nical capabilities.

First, while separating the global viral diversity in dif-

ferent groups clearly improved viral sequence detection,

there is currently no automated process to optimally

group reference viral sequences into different viral clas-

sifiers. If the viral groups selected are too large and/or

diverse, the corresponding classifier would likely suffer

from the same flaw as previous tools, whereby rare

members would be under-detected. Conversely, classi-

fiers designed for groups lacking diverse representation

will show reduced accuracy, due to an under-trained

random forest classifier being unable to extract mean-

ingful identifying features for the group. Thus, further

virosphere exploration and systematic classification is

critical to provide the training data needed to optimize

detection.

Second, some viral groups may require additional ref-

erences and/or features to achieve a systematic and ro-

bust identification. The limits associated with reference

sequences are shared by all viral sequence identification

tools: as new viral genomes and groups are discovered,

e.g., high-quality genomes assembled from metagenomes

[59], these need to be integrated into virus detection ap-

proach to keep these up-to-date. This iterative process is

now facilitated by the modular framework of VirSorter2,

for which we provide a detailed step-by-step protocol to

add additional viral groups and classifiers. The addition

of other features would also be a possible avenue for ex-

tending the range and/or accuracy of VirSorter2. Con-

trary to the addition of new viral groups, integrating new

feature(s) would require substantial modification of Vir-

Sorter2 code, and would thus be only associated with

the release of new versions of the tool.

Finally, while run times and computational resources

required by VirSorter2 are compatible with modern

omics datasets, the size of these datasets will likely keep

increasing over the next few years, and may eventually

limit the usefulness of VirSorter2. Given that most of

the computation time is currently dedicated to the anno-

tation step, this issue will require integration of scalable

and improved sequence comparison tools (e.g.,

MMSeqs2 [60], HHBlits [61]) and/or new versions of

the tools currently used.

Conclusion
The automatic extraction of viral sequences from large-

scale sequencing data is now a cornerstone of the

current viral ecogenomics toolkit. Identifying viral ge-

nomes from omics data enables unprecedented studies
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of viral taxonomic diversity [62], viral population distri-

bution and associated eco-evolutionary constraints [15,

16, 47], and viral potential for microbial metabolic re-

programming [20]. While current tools typically detect

known and “standard” viruses, i.e., viruses in the order

Caudovirales, pretty well, the approaches available to

date remain challenged by novel and/or unusual viral

groups. VirSorter2 now provides a framework to go be-

yond the detection of viruses in the order Caudovirales

and enables robust detection of all types of viruses in se-

quencing data. By defining subgroups of viruses with

consistent genome features and unique markers, the Vir-

Sorter2 framework is designed to grow as databases do

such that new viral diversity can be readily detected in

large-scale datasets. This will in turn enable researchers

to investigate the role(s) played by all viruses across

Earth’s biomes, and better understand how these viruses

constrain fundamental microbial processes.

Methods
Viral HMM database

The viral HMM database includes viral HMMs from

viral protein families (VPF) of JGI earth’s virome project

[17] and Xfams (https://de.cyverse.org/dl/d/648936

0D-1126-413B-A667-D18E39D5F2F1/viral_db_default.

hmm). Xfams were generated from a large collection of

viral sequences from the Global Ocean Viromes 2.0

(GOV 2.0) [16] and the Stordalen Mire Viromes (SMV)

[63]. Briefly, viral contigs were identified by VirSorter

[29], DeepVirFinder [34], and MARVEL [31]. The inter-

section between the three tools (Category 1 in VirSorter

with “--virome” mode, score ≥ 90% in Marvel, and a

score of ≥ 0.9 with a p value of < 0.05 in DeepVirFinder),

were kept. Open reading frames (ORF) were predicted

using prodigal with “--meta” mode [41], filtered by remov-

ing ones with ≥ 95% similarity to RefSeq’s bacterial and ar-

chaeal proteins, and then clustered by ClusterONE [64] to

get rid of singletons (-d 0.3 -s 0.2 --max-overlap 0.8). Mul-

tiple sequence alignments were generated for each cluster

by MUSCLE (--maxiters 4) [65], and then made into

HMMs by hmmbuild in HMMER3 package [66]. More

details of Xfams can be found at iVirus in CyVerse’s Dis-

covery Environment (https://de.cyverse.org/de/): /iplant/

home/shared/iVirus/Xfams/version_0.5/Xfams-XC.

Training classifiers

NCBI RefSeq genomes including archaea, bacteria, protists,

fungi, and virus were downloaded from NCBI (ftp://ftp.

ncbi.nlm.nih.gov/genomes/refseq) on 2020-01-12. Viral ge-

nomes from the order Caudovirales were used for dsDNA

phage; genomes from the families Mimiviridae, Phycodna-

viridae, Faustoviridae, Iridoviridae, Marseilleviridae, Ascov-

iridae, Pithoviridae, Poxviridae, and Pandoraviridae were

used for NCLDV; genomes from the realm Riboviria were

used for RNA viruses; genomes from the families Bacillad-

naviridae, Circoviridae, Geminiviridae, Nanoviridae

Genomoviridae, Parvoviridae, Microviridae, Smacoviridae,

Alphasatellitidae, Tolecusatellitidae, Anelloviridae, Bidna-

viridae, Pleolipoviridae, Spiraviridae, and Inoviridae were

used for ssDNA viruses; genomes from the family Lavida-

viridae were used for Lavidaviridae classifier. Other than

NCBI RefSeq genomes, a set of high-quality genomes was

also obtained from the literature [15, 16, 19, 45–47, 53] and

unpublished ssDNA virus genome data (Varsani, unpub-

lished data). These genomes were identified based on Vir-

Sorter1, VirFinder, or using custom pipelines, and were

further analyzed and manually curated as part of their re-

spective publication. Hence, they represent useful examples

of “novel” viruses, often distantly related to RefSeq refer-

ence genomes. The genomes of all viral and non-viral

groups were split into “training” and “testing” sets with a 9

to 1 ratio, respectively. The “training” sets from RefSeq and

non-RefSeq sources were combined. For viral genomes, five

fragments were generated starting at a random genome

position with length ranging from 1000 bp to the maximal

length (extending to the end of genome). For bacteria, ar-

chaea, and eukaryotes, five fragments were generated from

a representative genome from each genus in the same way

as described above; for plasmids, because no systematic glo-

bal classification is available and the total number of plas-

mids in the input dataset [67] was only 6642 sequences, five

fragments were generated from each sequence. The gener-

ated fragments from each of the three non-viral groups

(bacteria and archaea, eukaryotes, and plasmids) were sub-

sampled to the minimum within these three negative

groups (bacterial and archaea, eukaryotes, and plasmids)

and combined as a final “negative set.” For each viral group,

the viral “training set” and the non-viral “training set” were

evenly subsampled to the smaller size between the two, and

then used for training the classifier. Then the following 27

features were extracted from each sequence fragment:

1. “Hallmark gene count” is the count of hallmark

genes in a viral sequence

2. “% of viral genes” is calculated as the percent of genes

annotated as viral (best hit to viral HMMs) of all genes

3. “% of archaeal genes” is calculated as the percent of

genes annotated as archaeal (best hit to archaeal

HMMs) of all genes

4. “% of bacterial genes” is calculated as the percent of

genes annotated as bacterial (best hit to bacterial

HMMs) of all genes

5. “% of eukaryotic genes” is calculated as the percent

of genes annotated as eukaryotic (best hit to

eukaryotic HMMs) of all genes

6. “% of mixed genes” is calculated as the percent of

genes with best hit to HMMs shared between

viruses and cells
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7. “% of unaligned genes” is calculated as the percent

of genes with no hits to HMMs in the VirSorter2

HMM database (bit score cutoff 30)

8. “Average gene size” is the mean of gene sizes in a

viral sequence

9. “Gene overlapping frequency” is the percent of

consecutive genes that are on the same strand and

overlap when scanning from 5′ to 3′ on the +

strand

10. “Gene density” is the average number of genes in

every 1000 bp sequence window (total number of

genes divided by contig length and then multiplied

by 1000)

11. “Strand switching frequency” is the percent of genes

located on the opposite strand from the gene

upstream (scanning from 5′ to 3′ in the + strand)

12. “% of ATG as starting codon” is the percent of gene

with ATG as starting codon

13. “% of GTG as starting codon” is the percent of gene

with ATG as starting codon

14. “% of TTG as starting codon” is the percent of gene

with ATG as starting codon

15. “Mean of GC content” is the mean of GC content

of all genes in a sequence

16. “SD of GC content” is the standard deviation of GC

content of all genes in a sequence

17. “% of RBS motifs” is percent of ribosomal

binding sites (RBS) with a specific motif. There are

11 types of motifs included: SD_Canonical,

SD_Bacteroidetes, TATATA_3-6, OnlyA, OnlyT,

DoubleA, DoubleT, Other_GA, NoA, Other, and

None (no motif found) [19].

Features 8–27 are all extracted from the gff output

from prodigal [41].

With the above features, “RandomForestClassifier”

in scikit-learn package [50] was used to train the ran-

dom forest classifier. “MinMax” scaler was used to

scale all the feature data, and “GridSearchCV” was

used to find optimal parameter sets among “n_estima-

tors” of 20, 50, 100, 150, 200, and “criterion” of gini

or entropy.

Accuracy

To compare the accuracy of VirSorter2 to other viral

identification tools, datasets with equal number (50)

of viral and non-viral random DNA fragments were

generated from the testing set created above and with

different lengths (1.5, 3, 5, 10, and 20 kb) to discern

the impact of sequence length on accuracy. VirSorter2

(version 2.0.beta) was run with “--include-groups

dsDNAphage, NCLDV, RNA, ssDNA, lavidaviridae,

--min-score 0.5,” and sequences in “final-viral-combi-

ned.fa” were considered as viral. VirSorter (version

1.1.0) was run with “--db 2 --virome –diamond,” and

sequences in categories 1, 2, 4 and 5 were considered

as viral; VIBRANT (version 1.2.1) was run with “--vir-

ome -f nucl”, and sequences in “VIBRANT_*/VI-

BRANT_phages_*/*.phages_combined.fna” were

considered as viral; VirFinder (version 1.1) was run

with VF.pred function within R as described in

(https://github.com/jessieren/VirFinder); DeepVirFin-

der was installed directly from GitHub (https://github.

com/jessieren/DeepVirFinder) with last commit ID of

ddb4a9433132febe5cda39548cb9332669e11427 and

was run with default parameters; for both VirFinder

and DeepVirFinder, sequences with p value < 0.05

were chosen as viral. Since MARVEL (version 0.2) re-

quired each viral genome as a separate file, input se-

quences were first split so that each sequence was an

individual sequence file, and then default parameters

were used, and the sequences in “results/phage_bins”

were considered as viral. F1 score (harmonic mean of

recall and precision) was used as a metric for tool ac-

curacy comparisons. For measuring false positives on

eukaryotic and plasmid sequences, the fraction of

eukaryotic or plasmid sequences classified as viral

were calculated. To test performance on provirus de-

tection, 54 bacterial genomes with known provirus

boundary [51] were used. VirSorter2 was run with the

“--include-groups all, --min-score 0.5” flag. If a pro-

virus has ≥ 50% of its genome recovered, it was con-

sidered as a true positive, and the VirSorter2

identified viral sequences without any true positives

identified in them were considered as false positives.

Recall and precision of other tools [28, 68, 69] were

retrieved from the original VirSorter benchmarking

experiments [29].

Computational efficiency

To measure how tools scale with input data size,

datasets with 10, 100, and 1000 sequences of 10 kb

in length were generated in the same way as in ac-

curacy benchmarking described above. To measure

multithreading efficiency, datasets with 1000 se-

quences of 10 kb were generated and used as an

input for VirSorter2, VirSorter, MARVEL, and VI-

BRANT were run with 1, 2, 4, 8, 16, 32 threads. Vir-

Finder was not included since it did not have a

multi-threading option. DeepVirFinder had unex-

pected behavior with its multi-threading option

(“-c”), i.e., the “-c” option could not control thread

number, so was also not included. CPU time and

run time was measured with “/usr/bin/time -v” com-

mand available in the Linux operating system and

peak memory was measure with “memusg” script

(https://gist.github.com/netj/526585).
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Additional file 1: Figure S1. Recall comparisons of tools on dsDNA

phages from different data sources. VirSorter2 consistently has

comparable or better performance than existing tools in identifying

dsDNA phages. Genome fragments of different lengths (x-axis) are

generated from genomes in the order Caudovirales in NCBI Viral RefSeq

(A), proviruses extracted from microbial genomes in NCBI RefSeq (B) and

other sources (C) (described in the “Training classifier” part of the Method

section). An equal number (50) of viral and non-viral (archaea and bac-

teria, fungi and protozoa, and plasmids) genome fragments were com-

bined as an input for the tested tools. Error bars show 95% confidence

intervals over five replicates (100 sequences each as described above). Re-

call is used as the metric (y-axis) to compare tools. The dotted line is y =

0.8. Figure S2. Precision comparisons of tools on dsDNA phages from

different data sources. Genome fragments of different lengths (x-axis) are

generated from genomes in the order Caudovirales in NCBI Viral RefSeq

(A), proviruses extracted from microbial genomes in NCBI RefSeq (B) and

other sources (C) (described in the “Training classifier” part of the Method

section). An equal number (50) of viral and non-viral (archaea and bac-

teria, fungi and protozoa, and plasmids) genome fragments were com-

bined as an input for the tested tools. Error bars show 95% confidence

intervals over five replicates (100 sequences each as described above).

Precision is used as the metric (y-axis) to compare tools. The dotted line

is y = 0.8. Figure S3. Tool performances with viral sequences having <

25% of the genes annotated as viral. Genome fragments of different

lengths (x-axis) were generated from Caudovirales genomes from both

NCBI RefSeq genomes and other sources. Only data sources with > 10

viral sequences that have < 25% genes annotated as viral were kept.

Then equal numbers (50) of viral and non-viral (archaea and bacteria,

fungi and protozoa, and plasmids) genome fragments were combined as

an input for the tested tools. F1 score is used as the metric (y-axis) to

compare tools. vs2 = VirSorter2; vs1 = VirSorter; vf = VirFinder; dvf = Deep-

VirFinder; mv = MARVEL; vb = VIBRANT. Figure S4. Importance of differ-

ent features for viral sequence identification across viral groups. The y-

axis shows the relative contribution of individual features in separating

the training viral and nonviral (bacterial and archaea, fungi and protozoa,

and plasmid) data (total is 1), provided by the Random Forest classifier

after processing training data, and based on the F1 score. Top four fea-

tures from each viral group (10 in total) are shown. In the features (color),

“vir” (% of viral genes) is calculated as the percent of genes annotated as

viral (best hit to viral HMMs) of all genes; “bac” (% of bacterial genes) is

calculated as the percent of genes annotated as bacterial (best hit to bac-

terial HMMs) of all genes; “hallmark” (hallmark gene count) is the count of

hallmark genes in a viral sequence; “mix” (% of mixed genes) is calculated

as the percent of genes with best hit to HMMs not specific to virus or

non-virus; “Strand_switch_perc” (Strand switching frequency) is the per-

cent of genes located on a different strand from the previous gene (scan-

ning from 5′ to 3′ in the + strand); “density” (Gene density) is the average

number of genes in every 1000 bp sequence (total number of genes di-

vided by contig length and then multiply by 1000); “gc_mean” (Mean GC

content) is the mean of GC content of all genes in a contig; “atg_perc”

(% of ATG as start codon) is the percent of genes with ATG as a starting

codon; “rbs_None” is the percent of ribosomal binding sites (RBS) with

no motif detected; “rbs_TATATA_3-6” is the percent of RBS with

“TATATA_3-6” motif. Figure S5. Recall comparisons of tools on different

viral groups (other than dsDNA phage) from different data sources. Gen-

ome fragments of different lengths (x-axis) are generated from NCBI

RefSeq (“refseq”) genomes in each viral group and other sources (“non-

refseq”). Then equal numbers (50) of viral and non-viral (archaea and bac-

teria, fungi and protozoa, and plasmids) genome fragments were com-

bined as input for tools. Recall was used as the metric (y-axis) to compare

tools. The dotted horizontal line is y = 0.8. vs2 = VirSorter2; vs1 = VirSorter;

vf = VirFinder; dvf = DeepVirFinder; mv = MARVEL; vb = VIBRANT. Figure

S6. Precision comparisons of tools on different viral groups (other than

dsDNA phage) from different data sources. Genome fragments of differ-

ent lengths (x-axis) are generated from NCBI RefSeq (“refseq”) genomes

in each viral group and other sources (“non-refseq”). Then equal numbers

(50) of viral and non-viral (archaea and bacteria, fungi and protozoa, and

plasmids) genome fragments were combined as input for tools. Precision

was used as the metric (y-axis) to compare tools. The dotted horizontal

line is y = 0.8. vs2 = VirSorter2; vs1 = VirSorter; vf = VirFinder; dvf = DeepVir-

Finder; mv = MARVEL; vb = VIBRANT. Figure S7. False positives by VirSor-

ter2 on eukaryotes and plasmids. Genome fragments (50) of different

lengths (x-axis) are generated from eukaryotic genomes (fungi and proto-

zoa) in NCBI RefSeq, and plasmids. Percent of genome fragments classi-

fied as viral was used as the metric (y-axis) to evaluate tools. Plot A and C

show contribution of each classifier (color) to total false positives in Vir-

Sorter2 (as shown in Fig. 4) for eukaryotes and plasmid respectively. Plot

B and D show the total false positive in VirSorter2 after excluding NCLDV,

RNA, and Lavidaviridae classifiers. vs2 = VirSorter2. Figure S8. CPU time

and peak memory comparison among tools across data sizes. Tools were

run on different input sizes of 10, 100, 1000 sequences with 10 kb in

length. Plot (A) shows all tools scale nearly linearly with data size, and (B)

shows peak memory usage of all tools are <1 GB. VirSorter2 and VirFinder

peak memory usage stay nearly constant. vs2 = VirSorter2; vs1 = VirSorter;

vf = VirFinder; dvf = DeepVirFinder; mv = MARVEL; vb = VIBRANT. Figure

S9. Multi-threading efficiency comparison among tools. Tools were run

on 1000 sequences with 10 kb in length. Plot (A) shows VirSorter2 and VI-

BRANT have the best multi-threading efficiency, i.e. total run time de-

creases nearly linearly with the number of threads used. VirSorter can not

use more than four threads. MARVEL’s multi-threading option does not

significantly reduce run time. Plot (B) shows VirSorter2, VirSorter and VI-

BRANT memory usage increases with the number of threads used, with

VirSorter2 and VIBRANT increasing at a higher rate than VirSorter. MARV

EL’s memory usage stayed constant. vs2 = VirSorter2; vs1 = VirSorter; mv =

MARVEL; vb = VIBRANT. Figure S10. Overview of VirSorter2 results for

Tara Oceans virome 85_SRF. A. Detection of viral contigs via VirSorter

1.0.4 and VirSorter 2.0.beta by contig size. The top panel displays the total

number of viral contigs identified in each size class, while the bottom

panel indicates the overlap between these predictions. B. Distribution of

VirSorter 2.0.beta score (maximum score across all 5 classifiers, y-axis) for

Tara Oceans virome 85_SRF sequences, according to the confidence cat-

egory estimated by VirSorter1 (x-axis). “NA” indicates contigs that were

not detected as viral by VirSorter1. VirSorter 2.0.beta detections were

based on a minimum score cutoff of 0.5. C. Proportion of sequences from

Tara Oceans virome 85_SRF detected as viral based on the dsDNAphage,

RNA, and/or ssDNA model(s) (red) or detected based on the NCLDV or

Lavidaviridae classifiers only, by size class (x-axis). Table S1. Summary sta-

tistics of the genomes used for training VirSorter2 classifiers of different

viral groups from RefSeq and non-RefSeq sources. “Genome #” is the

number of genomes. “Min size”, “Median size”, and “Max size” are the

minimum, median, and maximum of genome sizes per each viral group.

Additional file 2. Case-study: identifying viral contig from a Tara Oceans

virome dataset

Additional file 3. First 20 rows of the “final-viral-score.tsv” VirSorter2

output file for Tara Oceans virome 85_SRF. VirSorter 2.0.beta was used with

default parameters, including all classifiers and a minimum score cutoff of

0.5. The columns include first the sequence name, the score for each of the

5 classifiers, the maximum score for this sequence, the group yielding this

maximum score, the sequence length, the number of hallmark gene(s) for

the maximum score group, and the percentage of viral and cellular genes.

Additional file 4. Manual inspection of contigs newly identified by

VirSorter2 in Tara Oceans virome 85_SRF. The spreadsheet includes four

tabs, including the list and characteristics of contigs ≥ 5kb selected for

manual inspection (“Contigs ≥ 5kb - Manual inspection”), the DRAM-v an-

notation of these contigs (“Contigs ≥ 5kb - DRAM-v annotation”), the list

and characteristics of contigs ≥ 5kb selected for manual inspection (“Con-

tigs < 5kb - Manual inspection”), and their DRAM-v annotation (“Contigs

< 5kb - DRAM-v annotation”). For the manual inspection tabs, column

headers correspond to the standard output of VirSorter2 (“final-viral-scor-

e.tsv”), i.e. sequence name, score for each of the 5 classifiers, maximum

score for this sequence, group yielding this maximum score, sequence

length, number of hallmark gene(s) for the maximum score group, per-

centage of viral and cellular genes, along with an additional column

(“Manual inspection notes”) indicating the conclusions from the expert
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curators. The DRAM-v annotation tabs column headers correspond to the

default DRAM-v output.
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