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ABSTRACT
The Linux Kernel currently supports at least 8 distinct vir-
tualization systems: Xen, KVM, VMware’s VMI, IBM’s Sys-
tem p, IBM’s System z, User Mode Linux, lguest and IBM’s
legacy iSeries. It seems likely that more such systems will
appear, and until recently each of these had its own block,
network, console and other drivers with varying features and
optimizations.

The attempt to address this is virtio: a series of efficient,
well-maintained Linux drivers which can be adapted for vari-
ous different hypervisor implementations using a shim layer.
This includes a simple extensible feature mechanism for each
driver. We also provide an obvious ring buffer transport im-
plementation called vring, which is currently used by KVM
and lguest. This has the subtle effect of providing a path
of least resistance for any new hypervisors: supporting this
efficient transport mechanism will immediately reduce the
amount of work which needs to be done. Finally, we pro-
vide an implementation which presents the vring transport
and device configuration as a PCI device: this means guest
operating systems merely need a new PCI driver, and hy-
pervisors need only add vring support to the virtual devices
they implement (currently only KVM does this).

This paper will describe the virtio API layer as implemented
in Linux, then the vring implementation, and finally its em-
bodiment in a PCI device for simple adoption on otherwise
fully-virtualized guests. We’ll wrap up with some of the pre-
liminary work to integrate this I/O mechanism deeper into
the Linux host kernel.
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1. INTRODUCTION
The Linux kernel has been ported to a huge number of plat-
forms; the official kernel tree contains 24 separate architec-
ture directories and almost 2 million lines of architecture-
specific code out of 8.4 million. Most of these architectures
contain support for multiple platform variants. Unfortu-
nately we are aware of only one platform which has been
deleted from the tree (as the last machine of its kind was
destroyed) while new hardware variants sprout like weeds

after a rain. With around 10,000 lines changing every day,
the kernel has at least one of everything you can imagine.

When we look at Linux as a guest under virtualization, we
are particularly blessed: IBM’s System p, System z and
legacy iSeries are all supported. User Mode Linux[4] has
long been included, for running Linux as a userspace process
on Power, IA64 and 32 and 64 bit x86 machines. In the last
two years the x86 architecture has proven particularly fe-
cund, with support for Xen[2] from XenSource, VMI[1] from
VMware and KVM[5] from Qumranet. Last and least, we
should mention my own contribution to this mess, lguest[7]:
a toy hypervisor which is useful for development and teach-
ing and snuck quietly into the tree last year.

Each of these eight platforms want their own block, net-
work and console drivers, and sometimes a boutique frame-
buffer, USB controller, host filesystem and virtual kitchen
sink controller. Few of them have optimized their drivers in
any significant way, and offer overlapping but often slightly
different sets of features. Importantly, no-one seems par-
ticularly delighted with their drivers, or having to maintain
them.

This question became particularly pertinent as the KVM
project, which garnered much attention when it burst onto
the Linux scene in late 2006, did not yet have a paravirtual
device model. The performance limitations of emulating de-
vices were becoming clear[6], and yet the prospect of either
adopting the very-Xen-centric driver model was almost as
unappealing as developing Yet Another driver model. Hav-
ing worked on the Xen device model, we believe it possible to
create a general virtual I/O mechanism which is efficient[14],
works on multiple hypervisors and platforms, and atones for
Rusty’s involvement with the Xen device configuration sys-
tem.

2. VIRTIO: THE THREE GOALS
Our initial goal of driver unification is fairly straight-forward:
all the work is inside the Linux kernel so there’s no need for
any buy-in by other parties. If developers of boutique vir-
tual I/O mechanisms are familiar with Linux, it might guide
them to map the Linux API neatly onto their own ABI. But
“if” and “might” are insufficient: we can be more ambitious
than this.

Experience has shown that boutique transport mechanisms
tend to be particular not only to a given hypervisor and ar-
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chitecture, but often to each particular kind of device. So
the next obvious step in our attempt to guide towards uni-
formity is to provide a common ABI for general publication
and use of buffers. Deliberately, our virtio ring implemen-
tation is not at all revolutionary: developers should look at
this code and see nothing to dislike.

Finally, we provide two complete ABI implementations, us-
ing the virtio ring infrastructure and the Linux API for vir-
tual I/O devices. These implement the final part of virtual
I/O: device probing and configuration. Importantly, they
demonstrate how simple it is to use the Linux virtual I/O
API to provide feature negotiation in a forward and back-
ward compatible manner so that future Linux driver features
can be detected and used by any host implementation.

The explicit separation of drivers, transport and configu-
ration represents a change in thinking from current imple-
mentations. For example, you can’t really use Xen’s Linux
network driver in a new hypervisor unless you support Xen-
Bus probing and configuration system.

3. VIRTIO: A LINUX-INTERNAL ABSTRAC-
TION API

If we want to reduce duplication in virtual device drivers,
we need a decent abstraction so drivers can share code. One
method is to provide a set of common helpers which virtual
drivers can use, but more ambitious is to use common drivers
and an operations structure: a series of function pointers
which are handed to the generic driver to interface with any
of several transport implementations. The task is to create a
transport abstraction for all virtual devices which is simple,
close to optimal for an efficient transport, and yet allows a
shim to existing transports without undue pain.

The current result (integrated in 2.6.24) is that virtio drivers
register themselves to handle a particular 32-bit device type,
optionally restricting to a specific 32-bit vendor field. The
driver’s probe function is called when a suitable virtio device
is found: the struct virtio_device passed in has a vir-

tio_config_ops pointer which the driver uses to unpack the
device configuration.

The configuration operations can be divided into four parts:
reading and writing feature bits, reading and writing the
configuration space, reading and writing the status bits and
device reset. The device looks for device-type-specific fea-
ture bits corresponding to features it wants to use, such
as the VIRTIO_NET_F_CSUM feature bit indicating whether a
network device supports checksum offload. Features bits are
explicitly acknowledged: the host knows what feature bits
are acked by the guest, and hence what features that driver
understands.

The second part is the configuration space: this is effec-
tively a structure associated with the virtual device contain-
ing device-specific information. This can be both read and
written by the guest. For example, network devices have a
VIRTIO_NET_F_MAC feature bit, which indicates that the host
wants the device to have a particular MAC address, and the
configuration space contains the value.

These mechanisms give us room to grow in future, and for

hosts to add features to devices with the only requirement
being that the feature bit numbers and configuration space
layout be agreed upon.

There are also operations to set and get an 8 bit device
status word which the guest uses to indicate the status of
device probe; when the VIRTIO_CONFIG_S_DRIVER_OK is set,
it shows that the guest driver has completed feature probing.
At this point the host knows what features it understands
and wants to use.

Finally, the reset operation is expected to reset the device,
its configuration and status bits. This is necessary for mod-
ular drivers which may be removed and then re-added, thus
encountering a previously initialized device. It also avoids
the problem of removing buffers from a device on driver
shutdown: after reset the buffers can be freed in the sure
knowledge that the device won’t overwrite them. It could
also be used to attempt driver recovery in the guest.

3.1 Virtqueues: A Transport Abstraction
Our configuration API is important, but the performance-
critical part of the API is the actual I/O mechanism. Our
abstraction for this is a virtqueue: the configuration oper-
ations have a find_vq which returns a populated structure
for the queue, given the virtio device and an index number.
Some devices have only one queue, such as the virtio block
device, but others such as networking and console devices
have a queue for input and one for output.

A virtqueue is simply a queue into which buffers are posted
by the guest for consumption by the host. Each buffer is
a scatter-gather array consisting of readable and writable
parts: the structure of the data is dependent on the device
type. The virtqueue operations structure looks like so:

struct virtqueue_ops {

int (*add_buf)(struct virtqueue *vq,

struct scatterlist sg[],

unsigned int out_num,

unsigned int in_num,

void *data);

void (*kick)(struct virtqueue *vq);

void *(*get_buf)(struct virtqueue *vq,

unsigned int *len);

void (*disable_cb)(struct virtqueue *vq);

bool (*enable_cb)(struct virtqueue *vq);

};

The add_buf call is used to add a new buffer to the queue;
the data argument is a driver-supplied non-NULL token which
is returned when the buffer has been consumed. The kick

call notifies the other side (i.e., the host) when buffers have
been added; multiple buffers can be added before a kick, for
batching. This is important as notification usually involves
an expensive exit of the guest.

The get_buf call gets a used buffer: the length which was
written to the buffer by the other side is returned (we’ll
see why in the discussion of inter-guest communication). It
returns the cookie handed to add_buf or NULL: buffers are
not necessarily used in order.
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disable_cb is a hint that the guest doesn’t want to know
when a buffer is used: this is the equivalent of disabling
a device’s interrupt. The driver registers a callback for
the virtqueue when it is initialized, and the virtqueue call-
back might disable further callbacks before waking a service
thread. There’s no guarantee that the callback will not still
be called after this, however: that would require expensive
synchronization especially on an SMP system. In effect, this
is merely an optimization to reduce unnecessary interaction
with the host or VMM.

enable_cb is the counterpart to disable_cb. Often a driver
will re-enable callbacks once it has processed all the pending
buffers in the queue. On some virtio transports there is a
race: buffers might be used between get_buf returning NULL

and the enable_cb call, and yet no callback will be called.
Level-triggered interrupt implementations would not have
this problems, but for those that do, enable_cb will return
false to indicate more work has appeared in that window
where the callback was disabled.

All of these calls are usable from any context in Linux, and
it is up to the caller to ensure that they are not called si-
multaneously. The only exception is disable_cb—it is often
called from the callback itself, and also used to disable the
callback, but it is unreliable so it could occur at any time.

4. VIRTIO_RING: A TRANSPORT IMPLE-
MENTATION FOR VIRTIO

Although we believe any optimal transport will share simi-
lar characteristics, the Linux virtio/virtqueue API is biased
towards our particular transport implementation, called vir-
tio ring.

Prior to the creation of virtio, lguest already had a vir-
tual I/O system: a generic, n-way I/O mechanism which
we used for inter-guest networking, based on an earlier one
for Xen. But much of the complexity of the system came
from its broadcast N-way nature, which it seemed was only
desired for a special case of a guest LAN. As interesting as
that feature is, sacrificing it leads us to a simpler scheme
involving ringbuffers which is a standard method of high-
speed I/O[2][3]. After a few implementation iterations we
had the virtio ring scheme in use by both lguest and KVM
today [10].

The virtio ring consists of three parts: the descriptor array
where the guest chains together length/address pairs, the
available ring where the guest indicates what descriptors
chains are ready for use, and the used ring where the host
indicates which descriptors chains it has used. The size of
the ring is variable, but must be a power of two.

struct vring_desc

{

__u64 addr;

__u32 len;

__u16 flags;

__u16 next;

};

Each descriptor contains the guest-physical address of the
buffer, its length, an optional ’next’ buffer for chaining, and

Figure 1: virtio ring layout in guest memory

two flags: one to indicate whether the next field is valid
and one controlling whether the buffer is read-only or write-
only. This allows a chained buffer to contain both readable
and writable sections, which proves useful for implement-
ing a block device. By convention, readable buffers precede
writable buffers.

The use of 64-bit addresses even in 32-bit systems is a trade-
off: it allows one universal format at the cost of 32 bits on
older platforms. All structures are chosen to avoid padding
on any but the most perverse architectures, but we stop
short of defining a specific endian format: the guest assumes
its natural endianness.

struct vring_avail

{

__u16 flags;

__u16 idx;

__u16 ring[NUM];

};

The available ring consists of a free-running index, an in-
terrupt suppression flag, and an array of indices into the
descriptor table (representing the heads of buffers). The
separation of the descriptors from the available ring is due
to the asynchronous nature of the virtqueue: the available
ring may circle many times with fast-serviced descriptors
while slow descriptors might still await completion. This
is obviously useful for implementing block devices, but also
turns out to be useful for zero-copy networking.

struct vring_used_elem

{

__u32 id;

__u32 len;

};
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struct vring_used

{

__u16 flags;

__u16 idx;

struct vring_used_elem ring[];

};

The used ring is similar to the available ring, but is written
by the host as descriptor chains are consumed. 1 Note that
there is padding such as to place this structure on a page
separate from the available ring and descriptor array: this
gives nice cache behavior and acknowledges that each side
need only ever write to one part of the virtqueue structure. 2

Note the vring_used flags and the vring_avail flags: these
are currently used to suppress notifications. For example,
the used flags field is used by the host to tell the guest that
no kick is necessary when it adds buffers: as the kick requires
a vmexit, this can be an important optimization, and the
KVM implementation uses this with a timer for network
transmission exit mitigation. Similarly, the avail flags field
is used by the guest network driver to advise that further
interrupts are not required (i.e., disable_cb and enable_cb

set and unset this bit).

Finally, it’s worth noting that we have no infrastructure for
guest-aware suspend or resume; we don’t need them, as we
are merely publishing our own buffers. Indeed, the host
implementation of suspend and resume for KVM has proven
fairly trivial as well.

4.1 A Note on Zero-Copy And Religion of Page
Flipping

When designing efficient I/O we have to keep in mind two
things: the number of notifications required per operation,
and the amount of cache-cold data which is accessed. The
former is fairly well handled by the virtio ring interrupt sup-
pression flags (and a Linux virtio interface which encourages
batching). The handling of cache-cold data is worth some
further discussion.

In the KVM and lguest models, the guest memory appears
as a normal part of the virtual address space of a process in
the host: to the host OS, that process is the guest. Hence
I/O from the guest to the host should be as fast as I/O
from any normal host process, with the possible additional
cost of world switch between guest and host (which chip
manufacturers are steadily reducing). This is why virtio
concentrates on publishing buffers, on the assumption that
the target of the I/O can access that memory.

Xen does not have such a natural access model: there is
no “host” which has access to other guests’ memory, but
all domains are peers. This is equivalent to the inter-guest
communication in KVM or lguest, where mapping buffers
from one guest into another is necessary to allow zero-copy

1the id field is u32 only for padding reasons; it’s tempting
to steal 16 of those bits to enhance the length field in future.
2You may note that we don’t publish the other side’s pro-
ducer/consumer index; it’s not strictly necessary as neither
side can overfill the ring. This is a mistake, as the ring state
is not fully encapsulated. Fortunately, we can use feature
bits to fix this in a backward-compatible fashion.

between guests.

Copying time is dominated by the amount of cache-cold data
being copied: if either the guest or the host touch significant
amounts of the data, the cost of copying is highly amortized.
The cost of page mapping is independent of data size, but it
only works on page-aligned page-sized data. For this reason,
it’s only interesting for large data.

In a general “page flipping” scheme each inter-guest I/O in-
volves two separate page table changes: one to map and
one to unmap. We must ensure the buffer is unmapped be-
fore being released, otherwise the page might be recycled
for something else while another guest still has access to it.
The cost can be amortized somewhat by batching and de-
ferring notification of completion, but on SMP systems such
manipulations are still expensive.

Permanently sharing a fixed area of memory avoids the need
to page flip, but does not fit with a general purpose guest
OS such as Linux: if we’re going to copy to and from a fixed
area of memory so the other side can access the data, we
might as well simply copy between the guests.

Large inter-guest copies are currently rare: virtio net is lim-
ited to 64k packets due to the TSO implementation, and
inter-guest block devices seem an obscure use case. Nonethe-
less, proving the worth of page-flipping is a simple matter of
code and while we suspect the results would be marginal, we
hope some enthusiast will take this as a challenge to prove
us wrong.

One reason such work may never be done is the upcoming
use of DMA engines for copying large amounts of data. They
are optimal in similar cases to those where page flipping
would expect to provide benefits: large cache-cold transfers.

5. CURRENT VIRTIO DRIVERS
Now we’re familiar with the Linux virtio and virtqueue con-
cepts and API and have seen a transport implementation,
it’s useful to look at some of the existing virtio drivers. We
have a simple and very dumb console driver for lguest, while
KVM uses emulation for the console; console performance
is unlikely to receive attention until someone releases some-
thing like a virtcon benchmark. 3

We also have a simple balloon driver which allows the host
to specify the number of pages it wants to extract from the
guest. The guest passes arrays of (guest-physical) page num-
bers to the host; the host is allowed to unmap these pages
and replace them with zeroed pages when they are next ac-
cessed.

We’ll dive into more detail for the two more common and
important drivers, the block and network drivers.

5.1 Virtio Block Driver
For the block device[8], we have a single queue for requests.
The first 16 bytes of each buffer in the queue is always a

3Not to be confused with the current virtcon benchmark
which measures how much venture capital one can extract
for a virtualization project.
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Figure 2: Ingredients for a virtio block read

Figure 3: Virtio request placed into descriptor table

read-only descriptor:

struct virtio_blk_outhdr

{

__u32 type;

__u32 ioprio;

__u64 sector;

};

The type indicates whether it is a read, write or generic
SCSI command, and whether a write barrier should precede
this command. The I/O priority (higher values are higher
priority) allow the guest to hint about relative priorities of
requests, which are duly ignored by all current implemen-
tations, and the sector is the 512-byte offset of the read or
write.

All but one byte of the remainder of the descriptor is either
read-only or write-only, depending on the type of request,
and the total length determines the request size. The final
byte is write-only, and indicates whether the request suc-
ceeded (0) or not (1), or is unsupported (2).

The block device can support barriers, and simple SCSI com-
mands (mainly useful for ejecting virtual CDROMs). For
more sophisticated uses, a SCSI HBA over virtio should be
implemented.

5.1.1 Virtio Block Mechanics
To snap the mechanism into focus, let’s walk through the
conceptual path that the virtio block driver traverses to do a
single block read, using virtio ring as the example transport.
To begin with, the guest has an empty buffer which the data
will be read into. We allocate a struct virtio_blk_outhdr

with the request metadata, and a single byte to receive the
status (success or fail) as shown in Figure 2.

We put these three parts of our request into three free en-
tries of the descriptor table and chain them together. In this
example the buffer we’re reading into is physically contigu-
ous: if it wasn’t, we’d use multiple descriptor table entries.
The header is read-only, and the empty buffer and status
byte are write-only, as shown in Figure 3.

Figure 4: Virtio block read ready to be serviced

Figure 5: Virtio block request completed

Once this is done, the descriptor is ready to be marked avail-
able as Figure 4 shows. This is done by placing the index
of the descriptor head into the “available” ring, issuing a
memory barrier, then incrementing the available index. A
“kick” is issued to notify the host that a request is pending
(in practice our driver sets up all the pending requests which
fit into the ring, then issues a single kick).

At some point in the future, the request will be completed as
in Figure 5: the buffer is filled and the status byte updated
to indicate success. At this point the descriptor head is re-
turned in the “used” ring and the guest is notified (ie. inter-
rupted). The block driver callback which runs does get_buf
repeatedly to see which requests have been finished, until
get_buf returns NULL.

5.2 Virtio Network Driver
The network device[9] uses two queues: one for transmission
and one for receiving. Like the block driver, each network
buffer is preceded by a header, allowing for checksum of-
fload and TCP/UDP segmentation offload. Segmentation
offload was developed for network hardware to give the ef-
fect of large MTUs without actually requiring networks to
move from 1500 byte packets; fewer packets means fewer PCI
transfers to the card. In a virtual environment it means a
reduced number of calls out from the virtual machine, and
performance follows.
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struct virtio_net_hdr

{

// Use csum_start, csum_offset

#define VIRTIO_NET_HDR_F_NEEDS_CSUM 1

__u8 flags;

#define VIRTIO_NET_HDR_GSO_NONE 0

#define VIRTIO_NET_HDR_GSO_TCPV4 1

#define VIRTIO_NET_HDR_GSO_UDP 3

#define VIRTIO_NET_HDR_GSO_TCPV6 4

#define VIRTIO_NET_HDR_GSO_ECN 0x80

__u8 gso_type;

__u16 hdr_len;

__u16 gso_size;

__u16 csum_start;

__u16 csum_offset;

};

The virtio network driver in 2.6.24 has some infrastructure
to TSO on incoming packets, but as it does not allocate
large receive buffers, it cannot be used. We’ll see how to
make this change when we address forward compatibility.

An interesting note is that the network driver usually sup-
presses callbacks on the transmission virtqueue: unlike the
block driver it doesn’t care when packets are finished. The
exception is when the queue is full: the driver re-enables
callbacks in this case so it can resume transmission as soon
as buffers are consumed.

6. VIRTIO_PCI: A PCI IMPLEMENTATION
OF VRING AND VIRTIO

So far we have addressed two ways in which we can unify
virtual I/O. Firstly, by using virtio drivers within the Linux
kernel and providing appropriate ops structures to have them
drive particular transports. Secondly, by using the virtio ring
layout and implementation as their transport. We now ad-
dress the issues of device probing and configuration which
make for a complete virtual I/O ABI.

As most full-virtualization hosts already have some form
of PCI emulation and most guests have some method for
adding new third-party PCI drivers, it was obvious that we
should provide a standard virtio-over-PCI definition which
gives maximum portability for such guests and hosts. This is
a fairly straight-forward vring implementation, plus configu-
ration using an I/O region. For example, the virtio pci net-
work devices use the struct virtio_net_hdr from Linux’s
virtio net API as its ABI, and simply passes that header
through to the host. Such structures were deliberately de-
signed to be used in this way, and it makes a pass-through
transport much simpler.

Qumranet, who started the KVM project, has donated their
device IDs (vendor ID 0x1AF4) from 0x1000 through 0x10FF.
The subsystem vendor and device ids of the PCI device be-
come the virtio type and vendor fields, so the PCI driver
does not need to know what virtio types mean; in Linux
this means it creates a struct virtio_device and registers
it on the virtio bus for virtio drivers to pick up.

The I/O space may require special accessors, depending on
the platform, but conceptually it looks like the following
structure:

struct virtio_pci_io

{

__u32 host_features;

__u32 guest_features;

__u32 vring_page_num;

__u16 vring_ring_size;

__u16 vring_queue_selector;

__u16 vring_queue_notifier;

__u8 status;

__u8 pci_isr;

__u8 config[];

}

The features publishing and accepting bits are the first two
32-bit fields in the I/O space: the final bit can be used to ex-
tend that when it becomes necessary. vring_queue_selector
is used to access the device’s virtqueues: the queue doesn’t
exist if the vring_ring_size is zero. Otherwise, the guest
is expected to write the location it has allocated for that
queue into the vring_page_size: this is unlike the lguest
implementation where the host allocates the space for the
ring. 4

The vring_queue_notifier is used to kick the host when a
queue has new buffers, and the status byte is used to write
the standard virtio status bits, and 0 to reset the device.
The pci_isr field has a side-effect of clearing the interrupt
on read; non-zero means one of the device’s virtqueues is
pending, and the second bit means that the device’s config-
uration has changed.

The ring itself contains “guest-physical” addresses: for both
KVM and lguest there is a simple offset from these addresses
to the the host process’s virtual memory. 5 Hence the host
need only check that addresses are not beyond the guest
memory size, then simply apply the offset and hand them to
readv or writev: if they hit a memory hole for some reason,
this would give an -EFAULT and the host would return an
error to the guest.

All in all, implementing the PCI virtio driver is a fairly
simple exercise; it’s around 450 lines, or 170 semicolons in
2.6.25.

7. PERFORMANCE
Regrettably, little usable data is available on performance
at this early stage, except scratch tests to ensure that our
performance is not terrible. There’s no obvious roadblock
which will prevent us from meeting our goal of setting the
record for virtual I/O when modern Linux guests run on a
modern Linux host: like others[13] we expect to approach
bare-metal speeds as hardware support improves. 6

Networking performance is currently receiving the most at-

4Changing this might be useful, because it can be difficult
for the guest to allocate large contiguous buffers. This would
be done via a feature bit or some equivalent backwards-
compatible option.
5KVM may use non-linear mappings in the future by map-
ping memory regions separately, but the logic is very similar.
6At the first Linux Virtualization Minisummit, I (Rusty)
gamely prediced that we should reach 95% of bare-metal
network performance by the middle of this year. Caveats
have been added ever since.
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tention: enabling various TSO options is a priority, as is
removing the copies which occur within the QEMU frame-
work for KVM. Once this is done, we expect heuristics to
suppress notifications to receive more attention: our Linux
driver will enter polling mode under receive load as is stan-
dard for high-performance NICs, but the method for reduc-
ing notifications on packet transmission is still primitive.

8. ADOPTION
Currently KVM and lguest both use virtio as their native
transport; for KVM that means supporting Linux virtio
drivers on 32 and 64-bit x86, System z (i.e., S/390), IA64
and an experimental PowerPC port so far. lguest is 32-bit
x86 only, but there are patches to extend it to 64-bit which
may be included in the next year or so.

Qumranet has produced beta virtio pci Windows drivers for
Windows guests. KVM uses the QEMU emulator to sup-
port emulated devices, and the KVM version of QEMU has
host support for virtio, but it is not optimized; this is an
area where there is a great deal of work going on. lguest’s
launcher also supports a very minimal virtio implementa-
tion. We are not aware of other host implementations, and
there are currently no in-kernel host implementations, which
might be used to gain the last few percentage points of per-
formance.

We expect to see more virtio guest drivers for other oper-
ating systems, for the simple reason that virtio drivers are
simple to write.

8.1 Adapting Existing Transports to Use Vir-
tio Drivers

You will have noticed that both example drivers write a
defined header to the front of buffers: this looks a great deal
like an ABI, and indeed for KVM and lguest this is the case,
as they are passed straight through to the host.

However, a key aim of virtio drivers is to allow them to work
over different transports, and this is possible by manipulat-
ing the configuration ops and the feature bits a device sees.
For example, if the network driver is told that the host does
not support TSO or checksum offload, the entire network
header can be ignored on transmission, and zeroed out on
receive. This would happen in the add_buf callback. If the
format of the header is different, or the equivalent informa-
tion is sent some other way, it can similarly be interpreted
at this point.

One task which lies ahead of us is to create these shims
for other hypervisors, perform testing and benchmarks, and
hopefully convince the maintainers to switch over to the vir-
tio drivers. The Xen drivers are the most challenging: not
only have they been optimized to a fair degree already, they
are quite feature complete and support a disconnect and
reconnect model which the virtio drivers currently do not.

Replacing currently-working drivers is a marginal benefit,
but there are two cases where we believe that using the vir-
tio infrastructure is compelling. The first is when a virtual-
ization technology adds a new type of virtual device which
is already supported by a virtio driver, where adapting that

is a lesser burden than writing a driver from scratch. For
example, there is already a virtio entropy driver to provide
randomness to the guest [12] which will be merged into Linux
in 2.6.27.

The second case is when new virtualization transports want
support in Linux; while we would hope that they simply use
vring, if they do not they can at least get the existing drivers
for free, rather than having to implement and support Linux
drivers which is often outside their field of expertise.

9. FUTURE WORK
virtio and the drivers are under ongoing development; while
the ABI is officially stable as of 2.6.25, feature additions
and optimizations are expected to continue for some time
yet. It’s worth covering in some depth how we plan to add
new features in a compatible fashion, then some of the ex-
periments going on at the moment to provide insight into
what might be coming in future revisions.

9.1 Feature Bits and Forward Compatibility
Of course not all hosts will support all features, either be-
cause they are old, or because they simply don’t support
accelerations like checksum offload or TSO.

We’ve seen the feature bit mechanism, but the implemen-
tations are worth mentioning: both lguest and virtio pci
use two bitmaps, one for features presented by the host
and another for features accepted by the driver. When the
VIRTIO_CONFIG_S_DRIVER_OK status bit is set, the host can
examine this accepted feature set and see what the guest
driver is capable of.

So far all the defined features are specific to a particular de-
vice type, such as indicating that the host supports barriers
on a block device. We have reserved a few bits for device-
independent features, however (currently bits 24 through
32). While we don’t want to add feature bits randomly, as
it makes for more complicated guest and host interaction,
we do want to allow experimentation.

9.2 Inter-guest Communication
It’s fairly easy for the host to support inter-guest communi-
cation; indeed, there’s an experimental lguest patch which
does just this. The launcher process for each guest maps
the other guest’s memory as well as its own, and uses a pipe
to notify the other launcher of inter-guest I/O. The guests
negotiate which virtqueues to join together, and then the
process is simple: get a buffer from this guest’s virtqueue,
the other guest’s virtqueue, and memcpy data between them
based on the read/write flags of the buffers. This mechanism
is completely independent of what the virtqueues are being
used for; and because the virtio net protocol is symmetrical
it works for point-to-point inter-guest networking without
any guest changes. The exact same code would allow one
guest to serve a block or console device to another guest, if
the serving guest had a driver to do so.

There is a subtle but important protocol consideration for
efficient communication with untrusted parties, such as this.
Consider the case of an inter-guest network protocol in which
a guest receives a packet which claims to be 1514 bytes long.
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If all 1514 bytes weren’t copied in (because of a malicious
or buggy transmitter), the receiving guest would treat old
data which was in the buffer as the remainder of the packet.
This data could leak to userspace, or be forwarded out from
the guest. To prevent this, a guest would have to sanitize
all its receive buffers, which is complex, inefficient or both.

This is why the used ring in vring contains a length field. As
long as the amount copied in is written by a trusted source,
we can avoid this. In the lguest prototype, the launcher
was doing the copy, so it can be trusted. A virtio trans-
port implementation which only ever connects to the host
or another trusted source can also simply provide this length
field. If a transport can connect to an untrusted source, and
has no assured way of knowing the length copied in, it must
zero out writable buffers before exposing them to the other
end. This is far safer than requiring it of drivers, especially
since thoughtful transports will not have this issue.

While a host can conveniently join two vrings together for
inter-guest I/O, negotiating features is harder. We want to
offer all features to each guest so they can take advantage of
them, such as TSO and checksum offload, but if one guest
turns down a feature we already offered to the other, we
either need to do some translation between every I/O or hot-
unplug the device and re-add it with fewer features offered.

The solution we are considering to this is to add a ’multi-
round’ negotiation feature: if the guest acknowledged that
feature, then after the driver has completed feature acknowl-
edgement by setting the status field, it will expect the fea-
tures to be re-presented, until finally the ’multi-round’ fea-
ture is missing. We would use this by presenting a minimal
feature set at first, with the ’multi-round’ bit: if both guests
acknowledged it, we would present all possible features, and
iteratively remove those not accepted by the other side until
both were happy. This would be our first non-device-specific
feature bit.

9.3 Tun Device Vring Support
The userspace virtio host device in QEMU/KVM and lguest
uses the Linux tun device; this is a userspace-terminated net-
work interface into which the driver read()s incoming ether-
net packets and writes()s outgoing ones. We posted a sim-
ple patch to this device to support the virtio ring header[11]
to allow us to test the virtio network driver’s GSO support,
and Anthony Liguori and Herbert Xu adapted it for use with
KVM. According to Herbert, while the performance while
streaming TCP from guest to host was comparable with Xen
under full virtualization, the speed was only half that of the
guest loopback device.

This version copied the packets twice on transmission: once
inside QEMU to linearize the buffer, and once inside the ker-
nel. The former is a QEMU internal architectural limitation
to overcome, and the latter is more complicated to resolve.
If we want to avoid copying the packet buffers, we must pin
the userspace pages and only complete the write operation
when they are no longer referenced by any packet. Given the
packet manipulation which occurs especially to packets be-
ing received by local sockets or large packets being split for
non-GSO-capable devices, creating such a destructor call-
back is not entirely trivial. In addition, it could take an

arbitrarily long time to complete; the packet could sit in a
local socket forever if a process is not reading from it.

Fortunately, we believe we have a solution for this last prob-
lem: vring! It handles out-of-order buffer completion, is ef-
ficient, and already has a well-defined ABI. Hence we have a
’/dev/vring’ patch which creates a file descriptor associated
with a vring ringbuffer in user memory. This file descriptor
can be polled (have any buffers been used?), read (to update
the last-seen index and hence clear the polled flag) and writ-
ten (to notify the other end of the vringfd of new available
buffers). Finally a small patch adds methods to attach such
vringfds to the receive and transmission of the tun device.

We have also implemented an ioctl to set an offset and
bounds to where the vring can access; with this the guest’s
network vrings can be directly exposed to the host kernel’s
tap device. The ultimate experiment in efficiency would be
to avoid userspace altogether, and this is actually quite sim-
ple to do once all the other pieces are in place.

10. CONCLUSIONS
As we see more virtual I/O solutions, the common shape of
them is starting to appear: a ring buffer, some notification,
some feature bits. In fact, they look a lot like high speed
physical devices: you assume they can DMA from and to
your memory, and you talk to them as infrequently as pos-
sible. Quality of implementation becomes more interesting,
which implies that the time is right to create a quality im-
plementation and see if it will become a standard.

You will surely have noticed how mundane virtio is: it has
interrupts, device features, configuration spaces and DMA
rings. These are all familiar concepts to driver authors, and
an operating system’s device infrastructure is built to ac-
commodate them. If virtio drivers become the norm for
Linux under virtualized environments, it tethers one end
of the virtual I/O design process. Without this guidance
arbitrary differences run wild and free, integration into the
guest OS becomes an afterthought, and the resulting drivers
look like they’ve dropped in from an alien universe and are
unreadable to those not trained in that particular baroque
interface [15].

There is still a great deal to be done in virtual I/O, but if we
establish a solid foundation this innovation will accelerate,
rather then being bogged down reinventing the uninteresting
parts of configuration and bit-pushing. It is our hope that
virtio will raise the bar for what people believe they can
accomplish with a virtual I/O system, and encourage all
kinds of virtual devices in the future.
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